Skip to main content
Log in

Effect of punch profile on deformation behaviour of AA5052 sheet in stretch flanging process

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Stretch flanging is a type of bending process widely used in automobile and aerospace industries. Forming of the stretch flange is mainly affected by three important parameters: materials of the sheet, the geometry of tools and different process parameters. This work focuses on the effect of punch profile on deformation behavior of AA5052 alloy sheet to form the stretch flange. Six punches of different geometry i.e. cylindrical, two stepped, three stepped, six stepped, conical and hemispherical are used. Results are presented in the form of edge crack in the sheet at edge corner and its propagation towards center, forming load comparison for different punch profile and distribution of radial and circumferential strain in the sheet. It is observed that the punch profile has a considerable effect on the deformation behavior of the sheet. Circumferential strain, radial strain and load requirement to form the flange are found to be minimum in hemispherical punch profile as compared to other punch profiles. Experiments are performed to validate the FE simulation results and results are found in very good agreement in terms of edge crack length. Fractography study shows uniform and large number of small size dimples at the fractured surface for hemispherical and conical punch profile.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chuan-Tao W, Kinzel G, Altan T. Failure and wrinkling criteria and mathematical modeling of shrink and stretch flanging operations in sheet-metal forming. J Mater Process Technol. 1995;53(3):759–80.

    Google Scholar 

  2. Stachowicz F. Estimation of hole-flange ability for deep drawing steel sheets. Arch Civil Mech Eng. 2008;8(2):167–72.

    Google Scholar 

  3. Chuan-Tao W, Kinzel G, Altan T. Failure and wrinkling criteria and mathematical modeling of shrink and stretch flanging operations in sheet-metal forming. J Mater Process Technol. 1995;3(53):759–80.

    Google Scholar 

  4. Wang N-M, Wenner M. An analytical and experimental study of stretch flanging. Int J Mech Sci. 1974;16(2):135–43.

    Google Scholar 

  5. Kalpakjian S, Sekar KV, Schmid SR. Manufacturing engineering and technology. London: Pearson; 2014.

    Google Scholar 

  6. Groover MP. Fundamentals of modern manufacturing: materials processes, and systems. New York: Wiley; 2007.

    Google Scholar 

  7. Dewang Y, Panthi SK, Hora M. Binder force effect on stretch flange forming of aluminum alloy. Mater Manuf Process. 2019;34(13):1516–27.

    Google Scholar 

  8. Logan DL. A first course in the finite element method. Boston: Cengage Learning; 2011.

    Google Scholar 

  9. Panthi S, Ramakrishnan N, Ahmed M, Singh SS, Goel M. Finite element analysis of sheet metal bending process to predict the springback. Mater Des. 2010;31(2):657–62.

    Google Scholar 

  10. Panthi S, Ramakrishnan N, Pathak K, Chouhan J. An analysis of springback in sheet metal bending using finite element method (FEM). J Mater Process Technol. 2007;186(1):120–4.

    Google Scholar 

  11. Hu P, Li D, Li Y. Analytical models of stretch and shrink flanging. Int J Mach Tools Manuf. 2003;43(13):1367–73.

    Google Scholar 

  12. Sartkulvanich P, Kroenauer B, Golle R, Konieczny A, Altan T. Finite element analysis of the effect of blanked edge quality upon stretch flanging of AHSS. CIRP Ann Manuf Technol. 2010;59(1):279–82.

    Google Scholar 

  13. Huang Y-M. An elasto-plastic finite element analysis of the sheet metal stretch flanging process. Int J Adv Manuf Technol. 2007;34(7–8):641–8.

    Google Scholar 

  14. Vafaeesefat A, Khanahmadlu M. Comparison of the numerical and experimental results of the sheet metal flange forming based on shell-elements types. Int J Precis Eng Manuf. 2011;12(5):857–63.

    Google Scholar 

  15. Bahloul R. Optimisation of process parameters in flanging operation in order to minimise stresses and Lemaitre’s damage. Mater Des. 2011;32(1):108–20.

    Google Scholar 

  16. Golovashchenko SF. Quality of trimming and its effect on stretch flanging of automotive panels. J Mater Eng Perform. 2008;17(3):316–25.

    Google Scholar 

  17. Asnafi N. On stretch and shrink flanging of sheet aluminium by fluid forming. J Mater Process Technol. 1999;96(1):198–214.

    Google Scholar 

  18. Kacem A, Krichen A, Manach P-Y, Thuillier S, Yoon J-W. Failure prediction in the hole-flanging process of aluminium alloys. Eng Fract Mech. 2013;99:251–65.

    Google Scholar 

  19. Zhang GE, Yao J, Hu SJ, Wu X. Shrink flanging with surface contours. J Manuf Process. 2003;5(2):143–53.

    Google Scholar 

  20. Chen L, Chen H, Wang Q, Li Z. Studies on wrinkling and control method in rubber forming using aluminium sheet shrink flanging process. Mater Des. 2015;65:505–10.

    Google Scholar 

  21. Wang X, Cao J, Li M. Wrinkling analysis in shrink flanging. J Manuf Sci Eng. 2001;123(3):426–32.

    Google Scholar 

  22. Wang X, Cao J. An analytical prediction of flange wrinkling in sheet metal forming. J Manuf Process. 2000;2(2):100–7.

    Google Scholar 

  23. Li D, Luo Y, Peng Y, Hu P. The numerical and analytical study on stretch flanging of V-shaped sheet metal. J Mater Process Technol. 2007;189(1):262–7.

    Google Scholar 

  24. Lu Y-H, Yeh F-H, Li C-L, Wu M-T. Study of using ANFIS to the prediction in the bore-expanding process. Int J Adv Manuf Technol. 2005;26(5–6):544–51.

    Google Scholar 

  25. Voswinckel H, Bambach M, Hirt G. Improving geometrical accuracy for flanging by incremental sheet metal forming. IntJ Mater Form. 2015;8(3):391–9.

    Google Scholar 

  26. Feng X, Zhongqin L, Shuhui L, Weili X. Study on the influences of geometrical parameters on the formability of stretch curved flanging by numerical simulation. J Mater Process Technol. 2004;145(1):93–8.

    Google Scholar 

  27. Kurra S, Regalla SP. Experimental and numerical studies on formability of extra-deep drawing steel in incremental sheet metal forming. J Mater Res Technol. 2014;3(2):158–71.

    Google Scholar 

  28. Wen T, Zhang S, Zheng J, Huang Q, Liu Q. Bi-directional dieless incremental flanging of sheet metals using a bar tool with tapered shoulders. J Mater Process Technol. 2016;229:795–803.

    Google Scholar 

  29. Abe Y, Mori K-I, Norita K. Gradually contacting punch for improving stretch flangeability of ultra-high strength steel sheets. CIRP Ann Manuf Technol. 2013;62(1):263–6.

    Google Scholar 

  30. Centeno G, Martínez-Donaire A, Vallellano C, Martínez-Palmeth L, Morales D, Suntaxi C, García-Lomas F. Experimental study on the evaluation of necking and fracture strains in sheet metal forming processes. Procedia Eng. 2013;63:650–8.

    Google Scholar 

  31. Dewang Y, Hora M, Panthi S. Prediction of crack location and propagation in stretch flanging process of aluminum alloy AA-5052 sheet using FEM simulation. Trans Nonferrous Metals Soc China. 2015;25(7):2308–20.

    Google Scholar 

  32. Wang Y-G, Huang G-S, Liu D-K, Lin C, Han T-Z, Jian P, Pan F-S. Influence of blank holder type on drawability of 5182-O aluminum sheet at room temperature. Trans Nonferrous Metals Soc China. 2016;26(5):1251–8.

    Google Scholar 

  33. Frącz W, Stachowicz F, Trzepieciński T. Investigations of thickness distribution in hole expanding of thin steel sheets. Arch Civil Mech Eng. 2012;12(3):279–83.

    Google Scholar 

  34. Centeno G, Silva M, Cristino V, Vallellano C, Martins P. Hole-flanging by incremental sheet forming. Int J Mach Tools Manuf. 2012;59:46–54.

    Google Scholar 

  35. Cao T, Lu B, Ou H, Long H, Chen J. Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool. Int J Mach Tools Manuf. 2016;110:1–17.

    Google Scholar 

  36. Krawczyk J, Gronostajski Z, Polak S, Jaśkiewicz K, Chorzępa W, Pęcak I. The influence of the punch shape and the cutting method on the limit strain in the hole expansion test. Key Engineering Materials: Trans Tech Publ; 2016. p. 129–37.

    Google Scholar 

  37. Sriram S, Chintamani J, Guidelines for stretch flanging advanced high strength steels. In: AIP Conference Proceedings, AIP, 2005, p. 681–686.

  38. Syafiq YM, Hamedon Z, Aziz WA, Yusoff AR, Prevention of crack in stretch flanging process using hot stamping technique. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, p. 012071.

  39. Simha CH, Grantab R, Worswick MJ. Application of an extended stress-based forming limit curve to predict necking in stretch flange forming. J Manuf Sci Eng. 2008;130(5):051007.

    Google Scholar 

  40. Dewang Y, Hora M, Panthi S. Finite element analysis of non-axisymmetric stretch flanging process for prediction of location of failure. Procedia Mater Sci. 2014;5:2054–62.

    Google Scholar 

  41. Wang M, Wang S, Li Z. Multi-step forming punch (MFP) for improving stretch-flangeability of advanced high-strength steel. Int J Adv Manuf Technol. 2018;99(5–8):1627–38.

    Google Scholar 

  42. Zhang H, Zhang Z, Ren H, Cao J, Chen J. Deformation mechanics and failure mode in stretch and shrink flanging by double-sided incremental forming. Int J Mech Sci. 2018;144:216–22.

    Google Scholar 

  43. Y. Bao, Prediction of ductile crack formation in uncracked bodies, Ph.D. thesis, Impact and Crashworthiness Lab, Massachusetts Institute of Technology, Cambridge, MA; 2003.

  44. Liu J, Bai Y, Xu C. Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng. 2014;136(1):011010.

    Google Scholar 

  45. Hooputra H, Gese H, Dell H, Werner H. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness. 2004;9(5):449–64.

    Google Scholar 

  46. Kiran R, Khandelwal K. Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue Fract Eng Mater Struct. 2014;37(2):171–83.

    Google Scholar 

  47. Kut S. A simple method to determine ductile fracture strain in a tensile test of plane specimen’s. Metalurgija. 2010;49(4):295–9.

    Google Scholar 

  48. A. Documentation, Getting started with Abaqus interactive edition, Version, 2013.

  49. Davis JR. Tensile testing. New York: ASM International; 2004.

    Google Scholar 

  50. Ahmed M, Kumar DR, Nabi M. Enhancement of formability of AA5052 alloy sheets by electrohydraulic forming process. J Mater Eng Perform. 2017;26(1):439–52.

    Google Scholar 

  51. Mugendiran V, Gnanavelbabu A, Ramadoss R, Tensile behaviour of Al5052 alloy sheets annealed at different temperatures, Advanced Materials Research, Trans Tech Publ, 2014, p. 431–435.

Download references

Acknowledgements

The authors would like to thank Director, CSIR-AMPRI Bhopal for providing the facilities and support for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Panthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Ahmed, M. & Panthi, S.K. Effect of punch profile on deformation behaviour of AA5052 sheet in stretch flanging process. Archiv.Civ.Mech.Eng 20, 18 (2020). https://doi.org/10.1007/s43452-020-00016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00016-2

Keywords

Navigation