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Abstract
Acute lung injury and its severe form acute respiratory distress syndrome are lethal lung diseases. So far, effective therapy 
for the diseases is deficient and the prognosis is poor. Recently, it was found activating nuclear factor erythroid 2-related 
factor 2 could attenuate the injury including inflammation, oxidative stress, and apoptosis in those diseases. To discover 
novel therapy, we have evaluated safflor yellow A and explored the underlying mechanisms using Beas-2B cells injured 
by lipopolysaccharide. As a result, safflor yellow A could improve the viability of Beas-2B cells treated with lipopolysac-
charide. Further investigations have revealed safflor yellow A suppressed oxidative stress induced by lipopolysaccharide 
via reducing reactive oxygen species and malondialdehyde, and elevating superoxide dismutase, catalase, and glutathione 
peroxidase. Meanwhile, the inflammation resulting from lipopolysaccharide was ameliorated through decreasing the pro-
inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6. It was also found nuclear factor 
κB was inactivated by safflor yellow A. In addition, safflor yellow A downregulated cysteinyl aspartate specific proteinase-3 
and Bcl-2-associated X protein and upregulated B-cell lymphoma-2 to inhibited apoptosis of Beas-2B cells induced by 
lipopolysaccharide. The activation of nuclear factor erythroid 2-related factor 2 was observed in Beas-2B cells, which was 
associated with the protective effects of safflor yellow A. And molecular docking elucidated safflor yellow A interacted 
with Kelch-like ECH-associated protein 1 to activate nuclear factor erythroid 2-related factor 2. These results can provide 
evidences for the discovery of novel therapy for further evaluation of safflor yellow A in the treatment of acute lung injury 
and acute respiratory distress syndrome.
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Introduction

Acute lung injury (ALI) and the following acute respiratory 
distress syndrome (ARDS) are lethal lung diseases with high 
morbidity and mortality (Liu et al. 2022a). Direct pulmo-
nary insults and indirect inflammatory responses resulting 

from sepsis, trauma, and major surgery related to pulmo-
nary infection are the major causes of ALI/ARDS (Fan and 
Fan 2018). In clinics, the primary treatment for ALI/ARDS 
mainly focuses on symptomatic therapy including mechani-
cal ventilation and fluid management. However, due to the 
lack of effective therapeutic strategies, the prognosis for 
most ALI/ARDS patients is despondent (Liu et al. 2022b). 
The pathogenesis of ALI/ARDS has revealed inflammation 
plays a pivotal role (Mokrá 2020). In addition, oxidative 
stress and apoptosis were also observed in the progression 
of ALI/ARDS (Imai et al. 2008; Galani et al. 2010).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a 
transcription factor affording the regulation of some genes 
via binding to antioxidant response elements (ARE) in their 
promoter regions (Torrente and DeNicola 2022). Under basal 
condition, Nrf2 is captured in cytosol by Kelch-like ECH-
associated protein 1 (Keap1) and degraded by 26S protea-
some after ubiquitination (Bryan et al. 2013). However, in 
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the presence of oxidants or electrophiles, the interaction 
between Keap1 and Nrf2 is disrupted and Nrf2 translocates 
into nucleus from cytosol, which resulted in its activation 
(Yamamoto et al. 2018). The activated Nrf2 can bind to the 
ARE of target genes to promote the expression of the antioxi-
dant and detoxified enzymes such as heme oxygenase-1 (HO-
1), NAD(P)H:quinone oxidoreductase 1 (NQO1), superoxide 
dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GSH Px) (Shaw and Chattopadhyay 2020). Therefore, acti-
vating Nrf2 gives a potential approach to attenuate oxidative 
stress-related diseases (Cuadrado et al. 2019). Meanwhile, 
it is approved activation of Nrf2 could ameliorate inflam-
mation through multiple pathways (Keleku-Lukwete et al. 
2018). Recently, it has been raised that activation of Nrf2 
could attenuate respiratory diseases including ALI/ARDS 
(Rojo de la Vega et al. 2016; Lee et al. 2021).

In the discovery of a Nrf2 activator, phytochemicals play 
a pivotal role (Wu et al. 2022). Some natural compounds 
such as vincamine, sophoricoside, and diosmetin could 
attenuate ALI via activating Nrf2 (Liu et al. 2018; Wu et al. 
2021; Patangrao Renushe et al. 2022). Safflor yellow A (1) 
is the major phytochemical found in Carthamus tinctorius 
L., Asteraceae (Takahashi et al. 1982). As a chalcone deriva-
tive, it showed antioxidant activity and protective effects on 
human umbilical vein endothelial cells and rat cardiomy-
ocytes against oxidative stress and apoptosis (Duan et al. 
2013; Bacchetti et al. 2020; Zhang et al. 2022). In our inter-
ests in searching a natural Nrf2 activator for the treatment of 
ALI/ARDS, we have explored the protective effects of safflor 
yellow A on human lung bronchial epithelial Beas-2B cells 
against the injury induced by lipopolysaccharide (LPS) and 
underlying mechanisms.

Materials and Methods

Chemicals and Reagents

Safflor yellow A (purity ≥ 98%, lot No. 157723) was pro-
vided by TargeMol (Wellesley Hills, MA). 3-[4,5-Dimeth-
ylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), 
LPS, and sulforaphane (SFN) were purchased from 

Sigma-Aldrich (St. Louis, MO). ML385 was obtained from 
Meilunbio (Dalian, China). ROS assay kit, 4′,6-diamidino-
2-phenylindole (DAPI) staining solution, bicinchoninic 
acid (BCA) protein assay kit, nuclear and cytosolic protein 
extraction kit, SOD activity assay kit, CAT activity assay 
kit, GSH Px activity assay kit, malondialdehyde (MDA) 
assay kit, and horseradish peroxidase conjugated second-
ary antibody, enhanced chemiluminescence (ECL) assay 
kit together with enzyme-linked immunosorbent assay 
(ELISA) kits including tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were 
provided by Beyotime Biotechnology Institute (Shanghai, 
China). The ELISA kits for HO-1 and NQO1 were prod-
ucts of Colorfulgene Biotechnology (Wuhan, China). The 
primary antibodies for cleaved cysteinyl aspartate specific 
proteinase-3 (cleaved caspase-3) (AF7022), cysteinyl aspar-
tate specific proteinase-3 (caspase-3) (AF6311), B-cell lym-
phoma-2 (Bcl-2) (AF6139), and Bcl-2-associated X protein 
(Bax) (AF0120) were supplied by Affinity Biosciences (Cin-
cinnati, OH). And others including phosphorylated nuclear 
factor κB p65 (p-NF-κB p65) (ab76302), nuclear factor 
κB p65 (NF-κB p65) (ab32536), phosphorylated inhibitor 
of NF-κB α (p-IκBα) (ab133462), inhibitor of NF-κB α 
(IκBα) (ab32518), Nrf2 (ab92946), GAPDH (ab9485), and 
lamin B1 (ab16048) together with DyLight594 conjugated 
secondary antibody (ab96885) were obtained from Abcam 
(Cambridge, UK).

Cell Culture and Treatment

Human lung bronchial epithelial Beas-2B cells were 
obtained from American Type Culture Collection (ATCC) 
and maintained in DMEM supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin/streptomycin at 37 °C 
under a humid condition of 5% CO2. Cells were set as con-
trol group, LPS group, and drug groups. The LPS group was 
exposed to 0.1 mg/ml LPS in DMEM for 24 h. In addition to 
100 μg/ml LPS, the drug groups were incubated with certain 
SYA or SFN for 24 h. The cells in the control group were 
cultivated in normal DMEM.

Cell Viability

Beas-2B cells were seeded in 96-well culture microplates at 
the density of 5 × 103 cells per well. After treated as above 
20 μl MTT solution (5 mg/ml) were added and incubated 
for 4 h. Then, the medium was removed and 200 μl DMSO 
was added to dissolve the formazan crystals. The absorbance 
was determined on a microplate reader (BioTek, Winooski, 
VT) at 570 nm. To present the trends of cell viability, the 
concentrations of SYA were expressed as logarithm.
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ROS Production

To detect the ROS level in Beas-2B cells, DCFH-DA in 
the assay kit was employed. In brief, the cells were treated 
as above and then exposed to DCFH-DA (0.5 mg/ml) for 
20 min. The fluorescence intensity was read on a fluores-
cence microplate (Molecular Devices, San Jose, CA) with 
the excitation wavelength of 488 nm and emission wave-
length of 525 nm.

MDA Content

The MDA content in Beas-2B cells was detected using a 
commercially available assay kit. According to the supplier’s 
instruction, the cells were treated as above and lysed on ice. 
After centrifugation at 1600 × g, the supernatant was col-
lected and exposed to the working solution in the assay kit. 
Then the sample was boiled for 15 min and cooled to room 
temperature. The absorbance was recorded on a microplate 
reader at 532 nm.

SOD, CAT, and GSH Px Activity

To detect the activity of SOD, CAT, and GSH Px in Beas-2B 
cells, the colorimetric method was employed using the com-
mercially available assay kits. In brief, the treated cells were 
homogenized at 4 °C and the supernatant was collected as 
samples for further analysis after centrifugation at 12,000 × g 
and 4 °C for 10 min. Then the protein concentration was 
quantified using a BCA assay kit, and enzyme activity was 
determined according to the supplier’s protocols on a micro-
plate reader.

Immunofluorescence Staining

To reveal the location of intracellular Nrf2 in Beas-2B cells, 
immunofluorescence staining was performed. The cells were 
seeded in 12-well microplates with a coverslip in each well 
and treated as above indication. Then the cells were fixed 
with 4% paraformaldehyde and permeated with PBS con-
taining 0.1% Triton X-100. Then the cells were exposed to 
the primary antibody of Nrf2 (1:200) overnight. DyLight594 
conjugated secondary antibody was used to detect the pro-
tein. After staining with DAPI in the dark, the images were 
captured using a Nikon fluorescence microscope (Tokyo, 
Japan).

ELISA

To uncover the levels of TNF-α, IL-1, IL-6, HO-1, and 
NQO1 in Beas-2B cells, ELISA was implemented using the 
assay kits. For the secretion of pro-inflammatory cytokines, 
the treated cells were centrifuged at 500 × g for 5 min and 

the supernatant was collected for further analysis. For the 
intracellular enzymes, the treated cells were lysed at 4 °C 
and then the supernatant was also collected following cen-
trifugation at 1000 × g for 20 min. Then the samples were 
handled in light of the suppliers’ protocols, and the absorb-
ance was recorded on a microplate reader at 450 nm.

Western Blot Analysis

The total proteins were extracted using RIPA lysis buffer 
while the nuclear proteins were obtained using the nuclear 
and cytosolic protein extraction kit according to the sup-
plier’s instructions. The protein concentrations were deter-
mined using BCA protein assay kit, and the proteins were 
separated on 10% SDS-PAGE and transferred to PVDF 
membranes. After blocking with non-fat milk, the mem-
branes were incubated with primary antibodies including 
cleaved caspase-3 (1:1000), caspase-3 (1:1000), Bcl-2 
(1:1000), Bax (1:1000), p-IκBα (1:10,000), IκBα (1:1000), 
p-NF-κB p65 (1:1000), NF-κB p65 (1:1000), Nrf2 (1:1000), 
GAPDH (1:2500), and lamin B1 (1:1000) at 4 °C overnight. 
After being rinsed with TBST buffer, the membranes were 
cultured with horseradish peroxidase conjugated secondary 
antibodies at room temperature for 1 h. The bands were visu-
alized using an ECL substrate on a Bio-Rad imaging system 
(Hercules, CA). GAPDH and lamin B1 were used as internal 
controls. ImageJ software (NIH, Bethesda, MD) was used 
for densitometric analysis.

Molecular Docking

To elucidate the effect of safflor yellow A on Keap1-Nrf2 
interaction, molecular docking was performed as our previ-
ous description (Zheng and Chen 2017). In brief, the 3D 
structure of safflor yellow A was established on SYBYL 
sketch and optimized by Tripos force field and Gasteiger-
Huckel charges. The crystal structure of Keap1 Kelch 
domain was obtained from RSCB Protein Data Bank (PDB 
code: 4IQK). The protomol file was generated to produce the 
docking envelope and Surflex-Dock program with default 
parameters was operated for docking calculations.

Statistical Analysis

The data was provided as mean ± standard deviation and 
analyzed by GraphPad Prism 8.0 (San Diego, CA). The dif-
ferences among groups were assessed using one-way analy-
sis of variance (one-way ANOVA) followed by the Tukey 
test for multiple comparisons and Student’s t test for sin-
gle comparisons. A p < 0.05 was considered significant in 
statistics.
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Results

Safflor Yellow A Improves the Survival of Beas‑2B 
Cells Injured by LPS

As shown in Fig. 1A, safflor yellow A cannot affect the sur-
vival of normal Beas-2B cells even at 100 μM. After treat-
ment with LPS (0.1 mg/ml), the cell viability was decreased 
sharply (p < 0.01) while in the presence of safflor yellow A 
from 1 μM (expressed as logarithm), the poor cell viability 
was improved significantly (p < 0.05) (Fig. 1B), which gave 
the indication for the following exploration.

Safflor Yellow A Attenuates Oxidative Stress Induced 
by LPS in Beas‑2B Cells

To elucidate the protective effects of safflor yellow A against 
the injury induced by LPS, we have detected the oxidative 
stress in Beas-2B cells. Compared to control group, LPS has 
caused the overproduction of ROS (231.8 ± 11.9%) and MDA 
(289.6 ± 13.3%). However, safflor yellow A at 5 μM could 
reduce both ROS (140.4 ± 7.4%) and MDA (166.8 ± 11.4%), 
respectively. At the same time, ML385, the specific Nrf2 
inhibitor, can block the effects of safflor yellow A and result in 
the decreasing ROS (218.7 ± 7.4%) and MDA (279.6 ± 7.8%) 
(Fig. 2A and B). In addition, the activity of antioxidant 
enzymes including SOD, CAT, and GSH Px in Beas-2B 
cells was measured herein. After exposure to LPS, the activ-
ity of SOD, CAT, and GSH Px was inhibited as 52.1 ± 6.8%, 
61.5 ± 6.1%, and 50.8 ± 7.7%, respectively. Following the 
addition of safflor yellow A at 5 μM, it was observed that 
the activity of SOD, CAT, and GSH Px was elevated as 
88.7 ± 6.4%, 86.3 ± 5.5%, and 87.7 ± 6.9%, respectively, 
whereas ML385 could prevent the effects of safflor yellow 
A and lead to the decreasing activity of SOD (59.6 ± 9.4%), 
CAT (67.4 ± 5.4%), and GSH Px (61.7 ± 6.0%) (Fig. 2C–E).

Safflor Yellow A Ameliorates Inflammation Induced 
by LPS in Beas‑2B Cells via Blocking NF‑κB Signaling 
Pathway

To explore the inflammation in Beas-2B cells, pro-
inflammatory cytokines such as TNF-α, IL-1β, and IL-6 
were measured. The results showed LPS induced the 
excessive secretion of TNF-α (607.5 ± 17.3%), IL-1β 
(676.6 ± 12.6%), and IL-6 (443.1 ± 10.1%) compared with 
the control group. Safflor yellow A could reduce the syn-
thesis of TNF-α (182.2 ± 13.9%), IL-1β (192.2 ± 17.6%), 
and IL-6 (175.7 ± 8.4%) significantly. But ML385 has 
resulted in the decreasing effects of safflor yellow A on 
TNF-α (573.3 ± 14.9%), IL-1β (650.4 ± 11.2%), and IL-6 
(430.3 ± 7.9%) (Fig.  3A–C). Meanwhile, western blot 
analysis has revealed LPS promoted the phosphorylation 
of both IκBα and NF-κB while safflor yellow A could 
suppress this phosphorylation, which can be reversed by 
ML385 (Fig. 3D). The densitometric analysis also unrave-
led these results accordingly (Fig. 3E and F).

Safflor Yellow A Inhibits Apopotosis of Beas‑2B Cells 
Induced by LPS

The apoptosis of Beas-2B cells induced by LPS was 
detected herein. As shown in Fig. 4A, the expression of 
cleaved caspase-3 was upregulated by LPS together with 
pro-apoptotic Bax, while the anti-apoptotic Bcl-2 was 
downregulated. In the presence of safflor yellow A, it was 
observed both cleaved caspase-3 and Bax were down-
regulated markedly, but Bcl-2 was upregulated. However, 
after exposure to ML385, the effects of safflor yellow A on 
cleaved caspase-3, Bcl-2, and Bax were repressed remark-
ably. Further densitometric analysis has also validated the 
results quantitatively (Fig. 4B–D).

Fig. 1   Effects of safflor yel-
low A (1) on the viability of 
Beas-2B cells with or without 
LPS. A Viability of normal 
Beas-2B cell with different 
concentrations of safflor yellow 
A. B Viability of Beas-2B cell 
induced by LPS with different 
concentrations of safflor yellow 
A. n = 3, *p < 0.05 vs LPS group
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Safflor Yellow A Activates Nrf2 in Beas‑2B Cells 
Injured by LPS in a Keap1‑Dependent Manner

To reveal the mechanisms of safflor yellow A, Nrf2 in Beas-
2B cells was investigated herein. As shown in Fig. 5A as 
the arrow indicated, immunofluorescence assay has indi-
cated safflor yellow A enhanced the translocation of Nrf2 
into nuclei from cytosol. Meanwhile, western blot analysis 
together with densitometric analysis for nuclear and total 
Nrf2 has implied safflor yellow A elevated their levels in 
Beas-2B cells treated with LPS (Fig. 5B–D), which impli-
cated the activation of Nrf2. To further confirm the tran-
scription capacity of activated Nrf2, NOQ1 and HO-1 were 
explored. As a result, LPS lessened NOQ1 and HO-1 lev-
els which were reversed by safflor yellow A similar to sul-
foraphane, which suggested the activation of Nrf2. To visu-
alize the Nrf2 activation in detail, molecular docking was 
performed. The results showed safflor yellow A could enter 

the Nrf2 binding pocket of Keap1 Kelch domain (Fig. 6A), 
and the formation of safflor yellow A-Keap1 complex was 
driven by hydrogen bonds with the amino acid residues 
of Keap1 including LEU365 (2.2 Å), ASN382 (2.1 Å), 
ASN414 (1.9 Å), ARG415 (2.0, 2.3 and 2.3 Å), ILE416 
(2.5 Å), ALA510 (2.1 Å), and SER602 (2.6 Å) (Fig. 6B). 
In addition, a 2D diagram also presented Van der Waals 
force and electrostatic interaction involved in the interaction 
between Keap1 and safflor yellow A (Fig. 6C).

Discussion

Acute lung injury/acute respiratory distress syndrome is 
characterized as pulmonary edema and acute inflammation, 
and recent COVID-19 pandemic has resulted in the increas-
ing occurrence of ALI/ARDS rapidly (Habashi et al. 2021). 
LPS, a major component in Gram-negative bacteria, has 

Fig. 2   Effects of safflor yellow A (1) on oxidative stress caused 
by LPS in Beas-2B cells. A Intracellular ROS level. B MDA con-
tent. C–E Activity of SOD, CAT, and GSH Px. n = 3, ##p < 0.01 and 

###p < 0.001 vs control group, **p < 0.01 and ***p < 0.001 vs LPS 
group, Δp < 0.05, ΔΔp < 0.01, and ΔΔΔp < 0.001 vs SYA group
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been used to induce ALI/ARDS (Chen et al. 2010). Herein, 
we have found LPS reduced the viability of Beas-2B cells 
via induction of apoptosis. Safflor yellow A can significantly 
improve the poor cell viability.

In the pathogenesis of ALI/ARDS, inflammation plays 
the pivotal role (Butt et al. 2016). It was found that some 
pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 
have been elevated in patients with ALI/ARDS (Janz and 
Ware 2013). Herein, we found LPS can promote the secre-
tion of TNF-α, IL-1β, and IL-6 while safflor yellow A could 
mitigate the excessive synthesis of these cytokines, which 
indicated its anti-inflammatory effects in Beas-2B cells. 
More experimental evidences have disclosed activation of 
NF-κB signaling pathway was involved in ALI/ARDS (Cao 
et al. 2018; An et al. 2021), which could regulate the secre-
tion of these pro-inflammatory cytokines in transcription 
(Hayden and Ghosh 2011). Under unstressed conditions, 
NF-κB dimers are bound to IκBα to form the complex and 

sequestered in cytosol (Oeckinghaus et al. 2011). In stimu-
lated cells, IκBα is degraded through phosphorylation and 
following ubiquitination, which results in the phosphoryla-
tion of NF-κB dimers. Then the phosphorylated NF-κB will 
translocate into the nucleus and regulate the transcription 
of target genes (Yi et al. 2013). In the present investigation, 
it was observed safflor yellow A reduced the active IκBα 
and NF-κB, which indicated NF-κB signaling pathway was 
inhibited herein.

Oxidative stress occurs in humans during the progres-
sion of ALI/ARDS and aggravates pulmonary injury (Ward 
2010). ROS can upregulate the expression of pro-inflamma-
tory cytokines and mediate the inflammatory injury (Kellner 
et al. 2017). Meanwhile, excessive ROS can induce apopto-
sis (Simon et al. 2000). However, there are some antioxidant 
enzymes that can attenuate oxidative stress. For instance, 
SOD can catalyze superoxide as one of ROS to be hydrogen 
peroxide, which is decomposed to water by CAT or GSH Px 

Fig. 3   Effects of safflor yellow A (1) on inflammation resulted from 
LPS in Beas-2B cells. A–C ELISA for the levels of TNF-α, IL-1β, 
and IL-6. D Western blot analysis for p-IκBα and p-NF-κB. E, F 

Densitometric analysis for p-IκBα and p-NF-κB. n = 3, ###p < 0.001 
vs control group, ***p < 0.001 vs LPS group, ΔΔΔp < 0.001 vs SYA 
group
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Fig. 4   Effects of safflor yellow 
A (1) on apoptosis of Beas-2B 
cells induced by LPS. A West-
ern blot analysis for cleaved 
caspase-3, Bcl-2, and Bax. 
B–D Densitometric analysis 
for cleaved caspase-3, Bcl-2, 
and Bax. n = 3, ###p < 0.001 vs 
control group, ***p < 0.001 vs 
LPS group, ΔΔΔp < 0.001 vs 
SYA group

Fig. 5   Safflor yellow A (1) activated Nrf2 in Beas-2B cells injured by 
LPS. A Immunofluorescence assay for Nrf2. B Western blot analysis 
for nuclear and total Nrf2. C, D Denstitometric analysis for nuclear 

and total Nrf2. E, F ELISA for HO-1 and NQO1. n = 3, ##p < 0.01 and 
###p < 0.001 vs control group, ***p < 0.001 vs LPS group
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(Dröge 2002). Herein, it was observed safflor yellow A sup-
pressed the overproduction of ROS and MDA, the product of 
lipid peroxidation in LPS-stimulated Beas-2B cells. At the 
same time, the decreased activity of SOD, CAT, and GSH Px 
resulting from LPS stimulation has been improved in the pres-
ence of safflor yellow A. These results manifest safflor yellow 
A inhibits oxidative stress induced by LPS in Beas-2B cells.

Apoptosis is observed during ALI/ARDS as a response to 
inflammation (Chopra et al. 2009). In apoptosis, caspase-3 is 
an executioner enzyme affording the morphological changes 
of apoptotic cells, which is activated through cleavage at 
aspartic acid and serine residues (Budihardjo et al. 1999). As 
the members of Bcl-2 family, Bcl-2 is anti-apoptotic while 
Bax is pro-apoptotic (Youle and Strasser 2008). Bax can 
promote apoptosis via the formation of homodimers but it 
can bind to Bax to inhibit apoptosis (Tsujimoto 2003). In our 
investigation, though LPS resulted in the caspase-3 activation, 
upregulation of Bax, and downregulation of Bcl-2, safflor 

yellow A could inactivate caspase-3, upregulate Bcl-2, and 
downregulate Bax. These observations indicated safflor yel-
low A inhibited apoptosis of Beas-2B cells induced by LPS.

As the transcription factor, Nrf2 can enhance the expres-
sion of antioxidant enzymes in transcription to defend oxida-
tive stress (Bellezza et al. 2018). At the same time, activated 
Nrf2 can attenuate inflammation via increasing HO-1, ele-
vating oxidative defense, and decreasing IκBα degradation 
(Madden and Itzhaki 2020). Without Nrf2 activators, two 
Keap1 monomers will form homodimer and bind to Nrf2 
using their DLG and ETGE motifs in the Kelch domains, 
respectively (Ahmed et al. 2017). Since the affinity of DLG 
is lower than ETGE, it is easier for Nrf2 activators to inter-
act with Keap1 at DLE motif than ETGE, which makes up 
the “hinge and latch” model (Tong et al. 2007). Therefore, 
oxidants or electrophiles will occupy the binding sites of 
DLE in Kelch domains and hinder the Nrf2-Keap1 interac-
tion, which results in that de novo translated Nrf2 will not 

Fig. 6   Binding mode of safflor yellow A (1) with Keap1. A Bind-
ing pose of safflor yellow A (in cyan) in the Nrf2 binding cavity of 
Keap1. B 3D diagram for the interaction between amino acid residues 

(in magenta) and safflor yellow A (in cyan) via hydrogen bonds (yel-
low dashes). C 2D diagram for the interaction between Keap1 and 
safflor yellow A



810	 Revista Brasileira de Farmacognosia (2023) 33:802–811

1 3

undergo ubiquitination and degradation facilitated by Keap1, 
and freely translocate into nuclei. Herein we have found Nrf2 
activation in Beas-2B cells induced by LPS in the presence 
of safflor yellow A. The protective effects of safflor yellow 
A against oxidative stress, inflammatory response, and apop-
tosis were closely associated whit Nrf2 activation, which 
was validated when introducing ML385, a Nrf2 inhibitor. 
The detailed interaction between safflor yellow A and Keap1 
was revealed by molecular docking. Hydrogen bonds, Van 
der Waals force, and electrostatic interaction were the major 
forces to contribute the formation of complex. In addition, 
electrophiles can interact with the critical cysteine thiolate 
(soft base) groups in Keap1 and consequently suppress the 
ubiquitination of Nrf2 (Magesh et al. 2012). As soft Lewis 
acids, Michael acceptors are typical electrophiles. From the 
structure of safflor yellow A, there is an α,β-unsaturated car-
bonyl moiety as the classical Michael acceptor, which may 
also contribute to the activation of Nrf2 through disrupting 
the Nrf2-Keap1 interaction.

Conclusion

Collectively, we have evaluated the protective effects of safflor 
yellow A and explored the underlying mechanisms. Safflor 
yellow A can attenuate oxidative stress, ameliorate inflamma-
tion, and inhibit apoptosis in Beas-2B cells injured by LPS. 
Further investigations unraveled these effects were closely 
associated with Nrf2 activation via interaction with Keap1.
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