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Abstract
Glycycoumarin is a representative coumarin compound with significant pharmacological activities isolated from Glycyr-
rhiza uralensis Fisch., Fabaceae. Studies have shown that glycycoumarin has many biological activities, such as anti-tumor, 
liver protection, antispasmodic, antibacterial, and antivirus. However, the poor solubility of glycycoumarin in water and the 
accompanying reactions of the phase I (hydroxylation) and II (glucuronidation) metabolism limit its druggability, which 
manifests as low absorption in the body after oral administration and low free drug concentration, ultimately leading to low 
bioavailability. Therefore, a comprehensive review of the pharmacological effects and pharmacokinetics of glycycoumarin 
is presented to provide a reference for further research and application as a therapeutic agent.
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Introduction

Chinese licorice (Gan-Cao) is derived from the dried root 
or rhizome of Glycyrrhiza uralensis Fisch., Fabaceae, or its 
congeners G. inflata Batalin and G. glabra L. (Yang et al. 
2019). Licorice is an ancient Chinese ethnomedicine used for 
invigorating the spleen and “qi” or vital energy; heat clear-
ing and detoxifying; eliminating phlegm and relieving cough, 
spasm, and pain; and coordinating the drug actions of a pre-
scription “Guo-Yao” in Chinese (Zeng et al. 1988; Liu et al. 
2014). In modern pharmacological studies, licorice was con-
firmed to have various pharmacological effects including anti-
viral, immunomodulatory, cough expectorant, prevention of 
liver damage, antiarrhythmic, and corticosteroid-like effects 
(Zhang 2019). At present, licorice is widely used in medicine, 
cosmetics, food, and veterinary medicine worldwide, espe-
cially in the medical field for treatment of respiratory diseases, 
digestive diseases, hypotension, rheumatism, malaria, jaun-
dice, bloating due to fluid retention, paralysis, sexual weak-
ness, and certain viral infections (Batiha et al. 2020).

Licorice has numerous chemical constituents, including 
triterpenoids, flavonoids, coumarins, and alkaloids, as well 
as other natural active compounds, among which coumarin 
is one of the most important natural organic compounds 
(Hosseinzadeh and Nassiri-Asl 2015; Yin et  al. 2018). 
Coumarin compounds in licorice have various structures, 
including simple coumarins, 3-arylcoumarins, coumarin-
like, 4-arylcoumarins, and coumestans (Zang 2020). Zhu 
et al. (1984) first isolated glycycoumarin (1), which belongs 
to the 3-aryl-coumarin class (Song 2018). According to pre-
vious studies, 1 is mainly isolated from G. uralensis, with 
very low or undetectable levels in other species of licorice. 
Qiao et al. (2014c) collected different species of licorice in 
different provinces of China and found that the content of 
1 was significantly higher in G. uralensis than in other spe-
cies. Ye et al. (2014) compared the content of 1 and other 
components in various parts of licorice and found that this 
coumarin was not distributed in the stems, but it was found 
in leaves (0.061%), seeds (0.001%), seed coats (0.099%), and 
roots (0.0318–0.1741%).
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It has been found that 1 has good pharmacological activ-
ity in vivo and can exert regulatory effects in the organism 
through various pathways, which mainly include anti-tumor 
(Li et al. 2019), protection against nonalcoholic and aceta-
minophen-induced liver injury (Zhang et al. 2016), antibac-
terial (Tanaka et al. 2001), antiviral (Sekine-Osajima et al. 
2009; Adianti et al. 2014), anti-oxidation, anti-inflamma-
tory (Fu et al. 2013), and antispasmodic (Lee et al. 2013), 
among the most important therapeutical effects. In vivo, it is 
metabolized mainly through hydroxylation and glucuronida-
tion reactions by the cytochrome P450 and UDP-glucuron-
osyltransferase enzymatic system, respectively. Some stud-
ies have reported that 1 does not have significant cytotoxic 
effects at normal concentrations (Cheng et al. 2019), but 
causes cellular damage at concentrations higher than 5 mg/
ml (Kasai et al. 2008). In this paper, the pharmacological 
activity and pharmacokinetics of 1 were summarized to pro-
vide reference for further pharmacological investigation of 1.

Search Strategies

A systematic literature search was performed in PubMed, 
Web of Science, China National Knowledge Infrastructure, 
Scopus, Embase, Google Scholar, and Sci-Finder Scholar 
databases. A search on glycycoumarin was done by using 
combinations of keywords, including “glycycoumarin,” 
“coumarin,” “Glycyrrhiza uralensis Fisch.,” “pharmacologi-
cal activity,” “physicochemical properties,” “pharmacokinet-
ics,” and “toxicity.” Considering the language limitation, this 
review only refers to Chinese and English texts. In the pre-
sent study, the existing literature on the anti-hepatocellular 
cancer and liver damage protection effects of glycycoumarin 
(1) in an-liver disease drugs will be reviewed in addition to 
its possible mechanism.

Discussion

Physicochemical Properties

Glycycoumarin (1) is a lipophilic compound with strong 
lipid solubility with Log P > 3.2 (Wang et  al. 2016a) 
and with a molecular weight, melting point, and den-
sity of 368.3799 g/mol, 243.5–244.5 °C/231 mmHg, and 
1.3 ± 0.1 g/cm3, respectively. According to the study, 1 has 
good permeability and is transported in vivo mainly by pas-
sive diffusion (Wang et al. 2017), but its water solubility is 
poor and it is almost insoluble in water at room temperature 
as measured by the saturation shaking-ASK method (Ji et al. 
2016). Also, on the chemspider database, the ACD/Labs 
Percepta Platform-PhysChem Module predicted oil–water 
partition coefficients of 5.99 (water), 4.38 (pH 5.5), and 4.25 

(7.4); the water solubility estimate from Log Kow (WSKOW 
v1.41): water solubility at 25 ℃ is 4.11 mg/l, and the water 
solubility estimate from fragments is 3.8961 mg/l. It has 
been shown (Van Breemen et al. 2014) that the content of 1 
in different varieties of licorice was determined by extraction 
by percolation, separation by the counter-current method, 
and UHPLC-MS/MS, where G. uralensis contained 0.13% 
(w/w) of 1, while G. inflata contained only 0.005% (w/w) of 
1, which was not detected in G. glabra. It belongs to the drug 
type II class according to the BCS system classification in 
biopharmacology; its drug-forming properties are not ideal, 
which has a relevant effect on its pharmacokinetic proper-
ties; and its bioavailability in vivo after oral administration 
is not ideal.

Pharmacological Activity

Liver Damage Protection

Glycycoumarin (1) has protective effects against liver injury 
such as acetaminophen-induced acute liver injury, alco-
holic liver disease, and non-alcoholic fatty liver disease. 
Multiple mechanisms have been identified to be involved in 
the protective effect of 1 on liver diseases, such as activat-
ing nuclear factor erythroid 2–related factor 2 (Nrf2) and 
autophagy, and inhibiting the T-lymphokine-activated killer 
cell–originated protein kinase (TOPK) and endoplasmic 
reticulum stress (Zhang et al. 2020a).

Acetaminophen-induced acute liver injury is a common 
cause of acute liver failure in developed countries, and 
N-acetyl cysteine is currently the only antidote approved 
by the FDA for the treatment of this hepatic injury (Pol-
son and Lee 2005), but its therapeutic window is limited 
by the metabolic stage of N-acetyl-para-aminophenol 
(APAP), resulting in less than optimal efficacy (James 
et al. 2003). Yan et al. (2018) found that 1 was able to 
attenuate acetaminophen-induced mitochondrial oxidative 
stress and c-jun N-terminal kinase (JNK) pathway activa-
tion through sustained activation of autophagy, thereby 
avoiding liver injury. Endoplasmic reticulum phagocyto-
sis, which accompanies endoplasmic reticulum stress, is 
activated when APAP is overdosed, and treatment with 
1 enhances TEX264-mediated endoplasmic reticulum 
phagocytosis, thereby inhibiting endoplasmic reticulum 
stress and promoting liver regeneration, significantly 
reducing liver injury and, thus, its mortality (Yan et al. 
2021). Glycycoumarin (1) is a potential replacement for 
N-acetyl cysteine as a therapeutic agent for patients with 
advanced acetaminophen-induced acute liver injury. 
Studies have found (Song et al. 2015) that 1 can effec-
tively prevent alcohol-induced hepatic steatosis and can 
exert hepatoprotective effects in both chronic and acute 
alcoholic liver injury models. Glycycoumarin treatment 
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activated Nrf2 at the transcriptional level and led to the 
upregulation of Nrf2 downstream target genes, heme oxy-
genase 1 (HO-1), and glutamate-cysteine ligase catalytic 
subunit, thereby reducing ethanol-induced cytotoxicity. 
At the same time, it leads to transcriptional upregula-
tion of P62, which in turn promotes 1-induced activa-
tion of Nrf2 by inhibiting Keap1, thus forming a positive 
feedback loop of Nrf2 activation and exerting a protec-
tive effect. In addition, 1 also degraded P62-mediated 
Keap1 by activating autophagy, thereby reducing alcohol-
induced hepatotoxicity.

Non-alcoholic fatty liver disease is a highly prevalent 
disease worldwide and is the more common type of liver 
disease. It has been shown that steatosis alone does not 
cause complications, but some patients develop severe 
liver damage such as steatohepatitis, liver fibrosis, and 
cirrhosis (Ratziu and Poynard 2010), which can lead to 
liver cancer in more severe cases. Zhang et  al. (2016, 
2017a, b) used a cell culture model of palmitate-induced 
hepatocyte apoptosis and a methionine/choline-deficient 
diet–induced non-alcoholic steatohepatitis mouse model 
to demonstrate that 1 protects against non-alcoholic fatty 
liver disease both in vitro and in vivo. In vitro, 1 signifi-
cantly attenuated palmitic acid (PA)–mediated activation 
of JNK and C/EBP-homologous protein (CHOP); expres-
sion of the pro-apoptotic proteins Bax, Bak, PUMA, and 
Bim; and PA-reduced expression of the anti-apoptotic 
protein BCL2, thereby inhibiting adipocyte apoptosis. 1 
inhibited phosphorylation of two substrates of m-TOR, 
S6K, and 4EBP1, and enhanced ULK1 phosphorylation 
and BTG1 expression to activate autophagy and play a 
preventive role against lipid accumulation. In vivo, GCM 
inhibits PA-mediated ER stress and autophagic response 
by attenuating the protein abundance of ER chaperone 
Bip, increased phosphorylation levels of PERK-EIF2α 
and IRE1α, and enhanced GSK-3 activation in the liver 
of NASH model mice, which contributes to the inhibi-
tion of JNK and CHOP activation. In addition, enhanced 
expression of the pro-apoptotic BCL2 family of proteins 
and decreased expression of the anti-apoptotic BCL2 fam-
ily could be inhibited to suppress mitochondrial activation 
and regulate hepatic lipid metabolism.

Glycycoumarin (1) was also reported to activate aden-
osine 5′-monophosphate (AMP)-activated protein kinase 
(AMPK), enhance the inhibitory phosphorylation of acetyl 
CoA carboxylase (ACC), and enhance the activity of car-
nitine/palmitoyl-transferase 1A (CPT1A) to induce fatty 
acid oxidation. Glycycoumarin can increase the activa-
tion of PLIN5-Sirt1 axis in vitro and in vivo; regulate 
PA-induced endoplasmic reticulum stress and phospho-
rylation of IL-6, IRE1, and c-JNK; and exert protective 
effects against apoptosis, hepatocyte inflammation, and 
lipotoxicity (Fig. 1).

Anti‑cancer

Anti‑hepatocellular Carcinoma China is a country with 
a high incidence of liver cancer, and the mortality rate is 
second only to lung cancer. Hepatocellular carcinoma can 
be divided into two categories: primary hepatocellular car-
cinoma refers to carcinomas that occur in hepatocytes or 
intrahepatic bile duct cells; secondary hepatocellular carci-
noma (metastatic hepatocellular carcinoma) refers to malig-
nant tumors of multiple organ origins throughout the body 
that invade the liver (Wang 2018). The incidence of primary 
hepatocellular carcinoma has been increasing worldwide in 
recent years, ranking 5th among malignant tumors and 3rd 
in mortality, and it is valuable to find new drug candidates to 
treat hepatocellular carcinoma. Song et al. (2016) first exam-
ined the anti-hepatocellular carcinoma activity of 1 in vitro 
and in vivo models and found that it activates P53 by directly 
inactivating TOPK, thereby causing cell cycle arrest, induc-
ing cell death and tumor reduction in vivo. Glycycoumarin 
can exert a good anti-hepatoma effect in cell culture and 
the HepG2 xenograft model, and play a preventive effect on 
cancers induced by HepG2, Huh7, and human prostate can-
cer DU-145, and other human hepatoma cells (Hasan et al. 
2021). The BH3 mimetic drug ABT-737 is a representative 
of good molecularly targeted therapeutic agents; Zhang et al. 
(2018) found that 1 significantly enhanced the antihepato-
cellular carcinoma efficacy of ABT-737 and reduced ABT-
737–mediated platelet toxicity in both cell culture and tumor 
xenograft animal models. Its efficacy is enhanced mainly 
through two pathways: 1 inactivates the TOPK-survivin axis 
as well as inhibits de novo adipogenesis, while ABT-737 
induces cell death by targeting anti-apoptotic BCL2 family 
proteins. Both pathways can be performed simultaneously; 
in addition, it did not have an enhanced effect on normal 
hepatocytes, which could avoid some adverse effects and has 
the potential to be a BH3-like drug sensitizer, facilitating the 
use of BH3-mimetic drugs as a new clinical option (Fig. 1).

Anti‑bladder and Breast Cancer Carcinogenesis is a multi-
step process involving numerous genetic alterations, and 
single-drug intervention strategies often fail to lead to 
effective efficacy in clinical trials (Shaffer et al. 2012). The 
glycyrol/butyrate combination showed significant inhibition 
of HT29 and HCT116 cells, and it was found that glycy-
coumarin (1) alone did not show significant differences, but 
also showed significant inhibition when used in combination 
with butyrate, with a lower intensity of action than glycyrol/
butyrate combination (Lu et al. 2020).

Bladder cancer is a malignant tumor occurring on the 
bladder mucosa. It is the ninth most common malignancy 
worldwide and a more common cause of cancer death 
(Dobruch et al. 2016). The incidence of bladder cancer is 
much higher in men than in women, with a global annual 
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statistical report of 9.6/100,000 in men and 2.4/100,000 
in women for 2019, and its incidence is positively corre-
lated with increasing age (Richters et al. 2020). Yang et al. 
(2007) determined the effect of 11 coumarins including 1 
on the proliferation of human bladder cancer cell line E-J 
by sulforhodamine B assay method, and it was found that 
the inhibition rate of E-J cell line proliferation increased 
slowly with the increase of 1 concentration and showed a 
concentration-effect-dependent relationship with an  IC50 
value of 1.90 ×  10−5 mol/l. The inhibition rate was up to 90% 
when the 1 concentration was  10−4 mol/l, but the mechanism 
of action has not been reported yet and further studies are 
needed for follow-up.

During the evaluation of the activity of licorice compo-
nents for estrogen-responsive gene expression regulation in 

MCF7 breast cancer cells, it was found that 1 was effective 
in increasing the expression of PgR and GREB1 and had 
intrinsic activity comparable to that of E2 ubiquitin-conju-
gating enzymes in the activation of estrogen-regulated genes 
and stimulating proliferation with significant agonist activity 
(Boonmuen et al. 2016). According to an in vitro activity 
assessment, 1 was found to have no anti-non-small-cell lung 
cancer activity (Lu et al. 2019).

Antibacterial

Minimum inhibitory concentration (MIC) is an index to 
measure the magnitude of antibacterial activity of anti-
bacterial drugs and can be used to measure the ability of 

Fig. 1  The mechanism of glycycoumarin (1) for hepatocarcinoma inhibition and liver protection
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anti-infective drugs to resist pathogenic microorganisms, 
which is the lowest concentration that can inhibit the growth 
of bacteria in the culture medium. Demizu et al. (1988) 
studied the growth inhibition of various microorganisms, 
including bacteria, fungi, and yeast, by glycycoumarin (1), 
using MIC as a judgment indicator. The inhibitory effect of 
1 on gram-positive bacteria was similar to that of strepto-
mycin, where the inhibition of Staphylococcus aureus was 
extremely strong, and yeast, which was inactive against 
streptomycin, also showed significant activity, and showed 
inhibitory activity against fungi, such as Rhizopus formos-
aensis, but the inhibition of gram-negative bacteria was not 
obvious. Hee et al. (2011) studied the antifungal activity 
of 1 and found that it had a significant effect on Candida 
albicans, an opportunistic pathogenic yeast that is a com-
mon member of the human gut flora. The yeast form of C. 
albicans treated with 1 at 20 or 40 µg/ml resulted in 57% and 
92% of hyphal production, respectively, as compared with 
the untreated control. Fungal growth was almost completely 
inhibited at a concentration of 320 µg/ml, comparable to the 
same dose of fluconazole. In addition, in a mouse model of 
disseminated candidiasis, the resistance of mice to dissemi-
nated disease was enhanced, and the protection of 1 against 
the disease was 60% during the observation period. Gly-
cycoumarin (1) showed antibacterial activity against upper 
respiratory tract bacteria such as Streptococcus pyogenes 
ATCC 12,344 and Haemophilus influenzae ATCC 33,391 
and Moraxella catarrhalis (Tanaka et al. 2001), Staphylo-
coccus aureus ATCC 6538 (Kırmızıbekmez et al. 2015), 
and Enterococcus faecalis FN-1 (Eerdunbayaer et al. 2014), 
among others. The study found that the antibacterial activ-
ity of 1 against methicillin-resistant Staphylococcus aureus 
and methicillin-sensitive Staphylococcus aureus was higher 
than that of griseofulvin (Hatano et al. 2000), and the anti-
bacterial activity was affected by the number of phenolic 
hydroxyl groups in the structure and the effect of methyla-
tion degree (Hatano et al. 2017). Combined with the results 
of 1 antimicrobial activity (Table S2), it can be speculated 
that this coumarin has the potential to develop antimicrobial 
active agents.

Antiviral

As a traditional Chinese herbal medicine, licorice itself has 
many pharmacological effects, among which antiviral effects 
have been confirmed. Glycycoumarin (1), glycyrrhizic acid, 
and glycyrol and other compounds isolated from licorice also 
have antiviral activity. Studies have reported their antiviral 
activity against hepatitis C virus (HCV), influenza virus, 
and human immunodeficiency virus (HIV), among others. 
It was found (Uchiumi et al. 2003) that 1 has antiviral effects 
against HIV, inhibits 12-O-tetradecanoylphorbol-13-acetate 
(TPA)-induced anti-HIV promoter activity in Jurkat cells 

(Hatano et al. 2017), and has inhibitory effects on giant 
cell formation in HIV-infected cell lines. The study found 
that isoliquiritigenin and 1 isolated from licorice extracts 
specifically inhibited HCV replication in vitro, at different 
concentrations in culture with the Huh7/Rep-Feo cell line. 
Glycycoumarin (1) and isoliquiritigenin inhibited HCV 
replicon in a dose-dependent and time-dependent manner 
and were able to significantly inhibit intracellular HCV core 
protein expression with therapeutic index  EC50 values of 
15.5 ± 0.8 and 6.2 ± 1 mg/ml, respectively (Sekine-Osajima 
et al. 2009). The study found that compounds from Glycyr-
rhiza species could exert anti-HCV activity after cell infec-
tion. HCV was inoculated in Huh7.5 cells and then treated 
with 1, compared to the blank; the treated group was able 
to inhibit HCV RNA replication, and hepatitis virus protein 
was significantly reduced. 1 was able to inhibit the produc-
tion of HCV infectious particles from 1 to 2 days of infection 
with an  IC50 value of 8.8 µg/ml, and the cytotoxic  CC50 was 
69 µg/ml (Adianti et al. 2014; Wahyuni et al. 2014).

The 3C-like protease (3CLPro) is the main protease pro-
duced by the novel coronavirus (coronavirus disease 2019, 
COVID-19) (Bhati et al. 2021), and inhibition of 3CLpro 
can effectively inhibit virus infection and replication. The 
predicted results of the latest study showed (Abdizadeh et al. 
2021) that 1 shows a better binding affinity to 3CLpro, with 
an optimal negative energy fraction, and interacts with one 
or two catalytic residues of 3CLpro (His41 and Cys145) 
through hydrophilic and hydrophobic bonds. The 3CLpro-
GCM complex is highly stable with low conformational fluc-
tuations and similar tightness. In addition, molecular kinetic 
simulations showed that the 3CLpro active site correspond-
ing to 1 in COVID-19 was stable and had a significant bind-
ing free energy of − 60.31 kJ/mol, while pharmacokinetic 
and ADMET assessments also indicated their effectiveness 
as drug molecules. One study found (Abdelmohsen et al. 
2021) that when screening coumarins to dock viral methyl-
transferases, among them, 1 docked with the best docking 
fractions of 9.2 kcal/mol. Therefore, 1 has the potential to be 
designed as an effective antiviral drug against COVID-19.

Antispasmodic

During the process of elucidating the antispasmodic effects 
of licorice by assaying its inhibitory effect on carbachol-
induced jejunal contractions in mice, it was discovered that 
glycycoumarin (1) acts as an effective antispasmodic agent 
by inhibiting phosphodiesterase. In the process of exploring 
the contractile response of 1 on mouse jejunum, it was found 
that it had a significant inhibitory effect on the contraction of 
the jejunum, ileum, and colon induced by carbamylcholine. 
In addition, 1 was able to attenuate the sustained contractile 
response induced by carbachol, KCl,  BaCl2, calcium car-
rier III, and acetylcholine, with  IC50 values of 1.08 ± 0.35, 
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0.95 ± 0.29, 1.51 ± 0.67, and 2.72 ± 1.91 µg/ml, respectively. 
The anti-smooth muscle mechanism of action of 1 was 
similar to the inhibitory effect of the antispasmodic drug 
papaverine, which included inhibition of carbachol-induced 
contractions, showing a concentration-dependent manner to 
completely inhibit contractions induced by various stimu-
lants, with an  IC50 value of 2.93 ± 0.94 mmol/l. Inhibition of 
phosphodiesterase inhibitors, especially through intracellular 
accumulation of cAMP by isozyme 3, resulted in the inhi-
bition of smooth muscle contractions induced by different 
types of stimulants, with an  IC50 value of 0.11 ± 0.04 µmol/l 
(Sato et al. 2007). The study (Nagai et al. 2006) found that 
although 1 is one of the components of licorice extracts with 
a low content, it is an important bioactive chemical marker 
to G. uralensis. The relaxant activity of licorice and culti-
vated roots directly depends on their 1 content, and the relax-
ant effect is significantly and positively correlated with the 
1 content. It was found that 1 inhibited intestinal tube con-
traction activity more strongly than isoliquiritigenin, and the 
 IC50 of both was 3.6 ×  10−6 and 2.7 ×  10−6 mol/l for contrac-
tion induced by CCh (1 ×  10−6 mol/l) and KCl (60 mmol/l) 
stimulation, respectively, and inhibited the intestinal tube 
contraction effect of trichothecene through cAMP phos-
phodiesterase, thereby inhibiting intestinal smooth mus-
cle spasm. 1 exhibited calcium activating chloride channel 
inhibitory activity thereby decreasing the level of intestinal 
fluid secretion and relieving diarrhea in rats (Harada et al. 
2021). The findings suggest that 1 is a very promising anti-
spasmodic drug.

Antioxidant and Anti‑inflammatory

Vitamin C, also known as ascorbic acid, is a highly effective 
antioxidant in the body and is commonly used to reduce the 
oxidative stress of the ascorbate peroxidase substrate. It was 
reported (Fu et al. 2013) that glycycoumarin (1) exhibited 
antioxidant activity, where ABTS ~  + free radical scavenging 
activity was higher than that of ascorbic acid, with an  EC50 
of 4.32 ± 0.13 µmol/l. It inhibited non-enzymatically induced 
lipid peroxidation in rat liver microsomes, demonstrating 
antioxidant activity with an  EC50 of 11.9 ± 0.05 µmol/l. In 
addition, 1 significantly inhibited the secretion of prosta-
glandin E2 in a dose-dependent manner with an  IC50 value 
of 30.5 ± 1.1 µmol/l. The inhibition rate reached more than 
80% when 1 reached 10 µmol/l, and compared with indo-
methacin, 1 showed a higher inhibition rate of NO produc-
tion (Wang et al. 2016b; Bai et al. 2020), demonstrating a 
good anti-inflammatory activity. Some studies reported that 
1 is slightly superior to sulfonamide and antibiotics in terms 
of anti-inflammatory and anti-metamorphic activities (Yang 
et al. 2007), with subsequent in-depth studies on antioxidant 
and anti-inflammatory activities pending.

Neuroprotective Effects

Glycycoumarin (1) has a significant inhibitory effect on 
amyloid-β (Aβ) oligomer–induced neuronal death, sig-
nificantly reducing and attenuating Aβ oligomer–induced 
activation of cysteine protease-3 and neuronal death at 
10–50 mmol/l, producing a neuroprotective effect in a dose-
dependent manner, but increasing neurotoxicity at concen-
trations up to 100 mmol/l (Kanno et al. 2015; Ikarashi and 
Mizoguchi 2016; Batiha et al. 2020). And the activity of 1 
for the treatment of Alzheimer’s disease needs to be further 
explored.

Anorexia Nervosa

Glycycoumarin (1) effectively inhibited the serotonin 
receptors 5-HT2B receptor, 5-HT2C receptor, and 5-HT4 
receptor, binding with Ki values of 2.4 ± 1.4, 8.2 ± 1.8, 
and 4.1 ± 0.5 µmol/l, respectively, and inhibited anorexia 
and enhanced acyl growth hormone by inhibiting the 
reduction of food intake after 3 h of novel stress after oral 
administration (Takeda et al. 2008; Saegusa et al. 2011; 
Hattori 2016). In addition, studies have shown that 1 has 
antagonist effects with the α2-adrenergic receptor (Takeda 
et al. 2012), with  IC50 values of 5.2 ± 0.7, 39.4 ± 3.3, and 
14.5 ± 0.3 µmol/l for transfected cells of human AR sub-
types, α2-ARA, α2-ARB, and α2-ARC, respectively (Yak-
abi et al. 2014), and has potential to be developed as a 
5-HT receptor antagonist for the prevention and treatment 
of vomiting.

Cardioprotective Effects

Cyclic adenosine monophosphate (cAMP) phosphodies-
terases are enzymes that catabolize cyclic adenosine acids 
under the activation of calmodulin bound to  Ca2+. cAMP 
phosphodiesterase inhibitors inhibit type III phosphodi-
esterase activity in cardiac muscle and vascular smooth 
muscle cells, increasing intracellular cAMP content, which 
enhances myocardial contraction, dilates peripheral blood 
vessels, and improves hemodynamics in patients with heart 
failure. Compounds with inhibitory effects on cAMP phos-
phodiesterase activity have potential cardiotonic effects and 
can be developed as cardiotonic agents. 1, as an ingre-
dient in Tongmai Yangxin pills, has been reported in a 
study (Tao et al. 2015) to possess myocardial protective 
activity. In exploring the effects of compounds in licorice 
root on cAMP phosphodiesterase activity (Kusano et al. 
1991), glycycoumarin (1) was found to significantly inhibit 
the activity of this enzyme and has a potential cardiac-
strengthening effect.
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Other Effects

Glycycoumarin (1) directly increases glutathione levels 
without inducing xCT or 4F2hc gene expression to protect 
against glutamate-induced neuronal cell or PC12 cell death 
showing potent cytoprotective effects (Mizoguchi and Ikar-
ashi 2017). Glycycoumarin (1) has a strong competitive 
inhibitory effect on butyrylcholinesterase (BuChE) activity 
and can act as a competitive inhibitor of BuChE (Sadakane 
et al. 2011). In addition, 1 exhibits a weak inhibitory activity 
against PD-1/PD-L1 (Bao et al. 2021), and can slow down 
the formation of gout by inhibiting xanthine oxidase activ-
ity (Mali and Joshi 2006). Glycycoumarin (1) promotes the 
proliferation and angiogenesis of zebrafish umbilical vein 
endothelial cells (Shen et al. 2018) and inhibits glutamate-
induced neuronal and PC12 cell death (Ji and Kawakami 
2013), among other effects.

Studies have reported that carboxylesterase (CES) inhibi-
tors can ameliorate the intestinal toxicity of CES2A sub-
strates (Fukami et al. 2015). Licorice has a strong inhibitory 
effect on CES2A and a relatively weak inhibitory effect on 
CES1A. further studies have found that GCM has a moder-
ate inhibitory effect on CES2A in human liver microsomes 
with an  IC50 value of 6.75 ± 0.88 µmol/l (Song et al. 2021), 
contributing to the development of novel CES2A inhibi-
tors to reduce hCES2A-related drug toxicity. It  has been 
reported that (Sanechika et al. 2021) 1 is effective in allevi-
ating poor circulation via enhancement of TRPA1 induced 
CGRP release, and cold allodynia, migraine head-ache 
(Gavva et al. 2019), menopausal vasomotor symptoms and 
bladder pain (Mukerji et al. 2006) via TRPM8 inhibition, 
and with up to 97% inhibition of 5.4 nmol/l icilin and an IC 
value of 3.5 ± 0.4 μmol/l. 

Acute lung injury (ALI) is damage to alveolar epithelial 
cells and capillary endothelial cells caused by various direct 
and indirect injury–causing factors (Wang and Tang 2021), 
and pulmonary edema and inflammatory cell infiltration 
of lung tissue due to pulmonary vascular injury are patho-
logical features (Yasmeen et al. 2016). Patients clinically 
diagnosed with ALI present chest pain, chest tightness, and 
shortness of breath (Lin 2021). One study found (Ren 2016) 
that the traditional medicine prescription Dayuanyin made 
up of the seeds of Areca catechu L., Arecaceae; the cortex of 
Magnolia officinalis Rehder & E.H.Wilson, Magnoliaceae; 
the fruits of black cardamom, Amomum subulatum Roxb., 
Zingiberaceae; the rhizoma of Anemarrhena asphodeloides 
Bunge, Asparagaceae; the roots of Scutellaria baicalensis 
Georgi, Lamiaceae; the root of Paeonia lactiflora Pall., 
Paeoniaceae; and the root of G. uralensis has a therapeu-
tic effect on lipopolysaccharide-induced acute lung injury 
in mice, which was associated with the reduction of pro-
inflammatory factors, upregulation of the content of anti-
inflammatory factors, and reduction of complement levels. It 

was identified that Dayuanyin contained various components 
such as 1, isoliquiritigenin, and glycyrol, from which it can 
be speculated that 1 may have protective effects against acute 
lung injury in mice, but further confirmation is needed.

Pharmacokinetics

A recent study reported (Kuang et al. 2021) that glycycou-
marin (1) can be used as a UGT1A9 inhibitor with glabrone 
as a probe substrate, and when combined with the oral hypo-
glycemic drug class dapagliflozin, plasma concentrations 
of dagliflozin-O-glucuronide were found to be significantly 
reduced, while plasma free dapagliflozin was significantly 
increased after administration. Therefore, there may be a risk 
of drug interactions when 1 is used with drugs that require 
UDP-glucuronosyltransferase 1–9 (UGT1A9) metabolism, 
such as hypoglycemic agents during drug administration. 
In addition, some studies have found (Ko et al. 2007; Gou 
et al. 2016; Fan et al. 2020) that 1 has inhibitory effects 
on α-glucosidase, perhaps related to the antidiabetic 
effects of licorice, one of the pathways of which may be 
the activation of peroxisome proliferator-activated receptor 
gamma (PPAR-γ), also known as as the glitazone reverse 
insulin resistance receptor. Glycycoumarin (1) can inhibit 
cytochrome P450 (CYP) enzyme systems, and it has been 
shown that 1 can inhibit CYP1A2, CYP2B6, CYP2C, and 
CYP2C9 (Van Breemen et al. 2014) multiple CYP enzyme 
systems. In addition, 1 significantly inhibits CYP2D6 activ-
ity, which mediates the metabolism of approximately 30% 
of the drugs on the market, and is one of the components in 
licorice extracts that play a major role in inhibiting the over-
all activity of CYP450 enzyme systems (Qiao et al. 2014b). 
However, because of the low concentration of 1 in licorice 
extracts, licochalcone A remains a significant contributor 
to CYP enzyme inhibition. In addition, glycycoumarin has 
inhibitory activity against growth hormone–releasing pep-
tide deacylase and butyrylcholinesterase (Mogami and Hat-
tori 2014). Therefore, drug interactions may occur when 1 
is co-administered with drugs metabolized by these afore-
mentioned enzymes.

It was reported that the bioavailability of orally purified 
1 in rats was only 13.82%, which was rapidly converted into 
conjugates after entering the body. Only a small portion 
was excreted through bile and urine, its half-life was short, 
and its Cmax appeared at 0.79 ± 0.64 h. Almost no free drug 
was detected in plasma 2 h after administration; in addition, 
the drug was widely distributed in tissues after administra-
tion, with a predominance in the liver, but did not cross the 
blood–brain barrier, showing potential liver targeting. Wang 
et al. (2014) used the HPLC–MS-coupled technique as well 
as NMR to identify the metabolites after oral administra-
tion of 1 to rats. The results of the study revealed that 1 
was orally absorbed into the body circulation, where it was 
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still mainly present in plasma and urine in unchanged form, 
and its main metabolic reactions in vivo were hydroxylation 
(phase I metabolites: M1, M2, and M9) and glucuronidation 
(phase II metabolites: M6, M7, and M8) reactions, followed 
by a small proportion of dehydrogenation (M3) and hydro-
genation (M4 and M5) metabolic products (Fig. 2). Ji et al. 
(2016) first found that the isopentenyl O-hydroxyl group pre-
sent on 1 can effectively undergo glycosylation reactions, 
and 7-O-glucoside is the main product. Combined with 
the pharmacokinetic studies, it is evident that 1 is poorly 
absorbed in vivo, and strategies to improve its absorption 
need to be further explored.

Qiao et al. (2012) compared the pharmacokinetic dif-
ferences between multicomponent herbs and single com-
pounds and the metabolic interactions between compounds 
by LC–MS-MS assay of licorice extract and single com-
pounds in rats and found that the absorption and distribution 
of 1 were faster in rats with Tmax and t1/2 less than 1 h and 
4 h, respectively, while the Cmax of glycyrrhetinic acid (GA) 
appeared at 13.6 ± 5.72 h. It was found that there were sig-
nificant differences in pharmacokinetic parameters between 
licorice extracts and single compounds, where the area under 

the curve (AUC) of 1 increased and t1/2 was prolonged. The 
findings suggest that the multi-component system of licorice 
can improve the bioavailability of the compounds in vivo. 
Sadakane et al. (2015) determined the blood concentration 
of each component by HPLC–MS/MS in healthy adult vol-
unteers after oral administration of peony licorice soup, in 
which 1 was 118 µg/g and GA was 5.29 µg/g in the soup, 
and found that the maximum blood concentration of GA 
after the soup was higher than that of 1. The concentration 
of 1 in plasma showed a bimodal curve, in which 1 was 
absorbed rapidly after administration. The maximum blood 
concentration of 1 was reached at 30 min, and the second 
concentration peak appeared at 2–3 h of administration, but 
the bimodal phenomenon did not appear in animals when 
administered intravenously (Qiao et al. 2014a), thus exclud-
ing the enterohepatic circulation. The study found that the 
herbal combination was able to improve the permeability 
of compounds in Ge Gen Scutellaria soup, which increased 
the transport of 1 by 30%, and the herbal combination was 
able to significantly alter the intestinal transport of the com-
pounds (Wang et al. 2017). It is hypothesized that licorice 
as a multi-component system, when comparing the in vivo 

Fig. 2  Metabolic pathways and metabolites of glycycoumarin (1) in vivo. GluA: glucuronic acid
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pharmacokinetic differences with each component alone, is 
able to alter the pharmacokinetic behavior of its compounds 
in different ways (Qiao et al. 2014b). Combined with the 
pharmacokinetic differences of the herbal extracts, it was 
found that the pharmacokinetics of the isolated compounds 
were greatly influenced when the herbs were combined.

Perspectives and Future Directions

Licorice is known as a herbal compounding and blending 
agent with many valuable and important pharmacological 
activities, mainly because it is a combination of several 
natural active compounds and therefore has a good clinical 
effect and is widely used (Yang et al. 2015). Glycycoumarin 
(1) is a representative coumarin-like compound in licorice 
with many potential pharmacological activities. Current 
anti-cancer strategies are not ideal, and the current situation 
of high cancer morbidity and mortality requires researchers 
to investigate preventive methods and alternative therapies 
(Zhang et al. 2017b). Glycycoumarin plays an active role in 
human cancers, such as liver, breast, bladder, and colon can-
cers. In this paper, the mechanism of action of GCM with 
anti-hepatocellular carcinoma and protection against liver 
injury in vitro and in vivo was summarized and confirmed 
the good activity of 1 in the treatment of hepatocellular 
carcinoma and protection against liver injury. In addition, 
1 has many activities such as antibacterial, antiviral, anti-
inflammatory, and antioxidant, as well as neuroprotective 
and cardioprotective, which have the potential to promote 
the future of human medicine. However, there are gaps in 
the pharmacological screening of 1. Specifically, the in vivo 
activities need to be further investigated.

The metabolism of 1 in vivo is complicated, and a variety 
of enzymes such as CYP450 enzymes are involved in its 
metabolic activation process, which may lead to drug inter-
actions and toxic effects in vivo when combined with drugs. 
According to the study reports, it can be speculated that the 
low bioavailability of 1 may be related to its low solubility, 
hepatic first-pass effect, and phase II reaction, which affects 
the absorption into the body and reduces the drug efficacy.

For these reasons, as a lead compound with developmen-
tal value, improving the solubility of 1 as well as enhancing 
its bioavailability is a research gap that needs to be filled 
in the future. Currently, common methods to improve drug 
solubility and bioavailability include structural modifica-
tion of compounds and pharmacological methods (Wang 
2016), e.g., cyclodextrin encapsulation, addition of solu-
bilizers or co-solvents and latent solvents, and preparation 
of solid dispersions, nanocrystals, microemulsions, and 
liposomes, among others, as well as the change of drug 
delivery routes. It has been reported that the structure of 

1 as part of a 7-O-β-D-glucoside was able to significantly 
improve water solubility, promotes intestinal absorption, 
and increases drug-forming properties (Ji et  al. 2016). 
In addition, the glycosylated compounds exhibited good 
Nrf2 activation activity (Liang et al. 2015), which shows 
that changing the structure of the compounds is a way to 
improve the solubility of 1. Since 1 belongs to the BCS 
II class of drugs, the absorption of the drug depends on 
the solubility, and its pharmacokinetics are easily affected 
by the particle size, dissolution rate, or excipients. To 
improve the bioavailability of BCS II drugs and increase 
their solubility and formulation dissolution thus improving 
oral absorption, the following methods are usually adopted: 
making soluble salts and amorphous drugs, adding appro-
priate amounts of surfactants, making inclusion compounds 
from hydrophilic inclusion materials, increasing the reten-
tion time of the drug in the gastrointestinal tract, increas-
ing the specific surface area of the drug, and inhibiting the 
efflux transport and metabolism of the drug in the intestinal 
wall (Cao et al. 2021).

Conclusion
Although licorice is a relatively traditional Chinese herbal 
medicine, glycycoumarin (1), as one of its representative 
coumarins, is currently in a blank stage in the field of chemi-
cal synthesis as well as a drug formulation in pharmaceutical 
technology. The studies summarized in this review confirm 
the potential of 1 for drug development. Further systematic 
and comprehensive studies on the chemical synthesis, phar-
macological effects, and in vivo metabolic processes of 1 
should be carried out to promote the development of this 
bioactive coumarin as a new lead drug for clinical use.
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