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Abstract
In traditional Chinese medicine, liquiritin, an active component of Glycyrrhiza uralensis Fisch., Fabaceae, has several pharma-
cological effects such as anticancer, antioxidant, and neuroprotective properties. The present study aimed to explore the protec-
tive functions and molecular mechanisms underlying the effects of liquiritin on nerve injury induced by cerebral ischemia/
reperfusion. SH-SY5Y cells were incubated with varying concentrations of liquiritin for different periods of time, and 3-(45)-
dimethylthiahiazo(-z-y1)-35-di-phenytetrazoliumromide and lactate dehydrogenase assays were employed to determine the
levels of cell viability and damage. Subsequently, cells were exposed to oxygen and glucose deprivation/reoxygenation to
establish an ischemia/reperfusion injury model. The results revealed that liquiritin protected SH-SY5Y cells from oxygen and
glucose deprivation/reoxygenation-induced damage by improving viability and reducing apoptosis, and oxidative stress.
Liquiritin inhibited activation of the p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling
pathway. In addition, treatment with a p38MAPK-specific agonist reversed the protective effects of liquiritin.
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Introduction

Ischemic stroke is a leading cause of death and disability world-
wide, and the associated clinical prognosis remains poor (He
et al. 2014). Early reperfusion following cerebral ischemia is
key for brain survival and functional recovery (Liao et al.
2020). Prompt restoration of blood circulation following ische-
mic stroke reduces the impact of cerebral ischemia injury; how-
ever, the exposure of ischemic tissue to blood oxygen may result
in cerebral ischemia/reperfusion (I/R) injury (Liu et al. 2020; Xu
et al. 2020). Cerebral I/R injury is associated with high rates of
disability, morbidity, and mortality and remains a complex issue

within stroke therapy (Meng et al. 2019). Previous research has
focused on the mortality of vulnerable neurons in ischemic brain
damage (Liu et al. 2017). Also, several neuroprotective methods
have remained a key focus within the therapy of cerebral I/R
damage (Abdel-Rahman et al. 2020). Results from a previous
study reported that oxidative stress and neuronal apoptosis were
associated with cerebral I/R injury (Zhang and Zhang 2020).
Inflammation is also a key pathogenic characteristic of cerebral
I/R injury, resulting in secondary brain injury and deterioration of
the central nervous system (Geng et al. 2020). Thus, further
investigations are required to identify novel medical treatments
with antioxidant, antiapoptotic, or anti-inflammatory properties
to serve as neuroprotective agents for the treatment of cerebral I/
R injury.

In traditional Chinese medicine (TCM), natural compo-
nents have been tested for their efficacy in the treatment of
several human metabolic diseases. Glycyrrhiza uralensis
Fisch., Fabaceae, also known as Chinese liquorice, is used
as a sweetener and in TCM. Liquorice root, or Glycyrrhiza
radix, is used in Chinese medicine to treat coughs, reduce
phlegm, and relieve depression (Zhou et al. 2020). Liquiritin
(1) is a major flavonoid isolated from this medicinal plant (Li
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et al. 2020a), which corresponds to the 4′-O-glucoside of the
flavanone liquiritigenin, (2S)-4′,7-dihydroxyflavan-4-one.

Results from a previous study reported that liquiritin pos-
sesses a number of pharmacological properties, including anti-
inflammatory, antioxidant, and neuroprotective properties
(Zhang et al. 2016). Moreover, previous research has revealed
that liquiritin may exert antioxidative and antiapoptotic effects
in brain injury caused by cerebral I/R injury (Jia et al. 2016).
Results from a previous study demonstrated that liquiritin im-
proved tissue injury via inhibition of MAPK and toll-like re-
ceptor 4/myeloid differentiation factor 88 signaling pathways,
which reduced the associated inflammatory response (Li et al.
2018). However, the molecular mechanisms underlying the
protective effects of liquiritin in cerebral I/R injury are yet to
be fully investigated.

NF-κB, a key transcriptional activator in inflammation,
activates pro-inflammatory cytokines following nuclear trans-
location. Notably, I/R injury induces NF-κB activation (Xie
et al. 2019). NF-κB is closely associated with MAPK, and
NF-κB activation may be mediated by MAPK in cerebral I/
R injury (Li et al. 2020b). Thus, it was hypothesized that
liquiritin may exert protective effects in cerebral I/R injury
via the p38MAPK/NF-κB signaling pathway.

In the present study, an in vitro oxygen and glucose
deprivation/reoxygenation (OGD/R) model was established
to determine the protective effects of liquiritin (1) on cell vi-
ability, apoptosis, and antioxidant enzyme activities. In addi-
tion, the role of the p38MAPK/NF-κB pathway was also in-
vestigated in cerebral I/R injury.

Materials and Methods

Cell Cultures

Human neuronal SH-SY5Y cells were purchased from the
American Type Culture Collection. Cells were cultured in
Dulbecco’s modified Eagle medium (DMEM) (HyClone;
Cytiva) containing 10% FBS (Gibco; Thermo Fisher Scientific,
Inc., Waltham, MA, USA) and 1% penicillin/streptomycin
(Thermo Fisher Scientific, Inc.), and maintained at 37 °C with
5% CO2. The cell culture medium was changed regularly. The

toxic effects of liquiritin (1) (Chengdu Conbon Biotech Co. Ltd.,
Chengdu, China) on the SH-SY5Y cell were testedwith different
concentrations of liquiritin (0, 1.25, 2.5, 5, 10, 20, 40, 80, and
160 μM) at 37 °C for 24 h.

OGD/R Establishment

Briefly, SH-SY5Y cells were plated into 96-well plates and cul-
tured for 24 h. Subsequently, cells were cultured in glucose-free
DMEM with 94% N2, 5% CO2, and 1% O2, and incubated for
3 h at 37 °C. In addition, cells were reoxygenated for 24 h in
DMEM in a normoxic incubation chamber at 37 °C. Control
cells were cultured at 37 °C with 5% CO2. To study the effect
of liquiritin on OGD/R-induced SH-SY5Y cell damage, SH-
SY5Y cells were incubated in an anaerobic gas mixture (1%
O2, 5% CO2, and 94% N2) at 37 °C in the presence or absence
of liquiritin (20, 40, 80 μM) and p38/MAPK agonist (P79350;
50 μM). After 3 h, the cells were restored from the anaerobic
chamber to a normoxic environment, and then oxygenated for 24
h. Subsequently, the following experiments were performed.

Cell Viability

Briefly, 25 μl of MTT reagent was added to cells and cultured
for 3 h at 37 °C. Subsequently, the supernatant was removed,
and 200 μl dimethyl sulfoxide was added to solubilize the
formazan crystals. The optical density was measured at
570 nm using a VersaMax ELISA microplate reader.

Lactate Dehydrogenase Leakage

Lactate dehydrogenase (LDH) leakage was detected using the
cytotoxicity assay. A total of 1 × 104 cells were seeded into
96-well plates and incubated with different conditions. After
treatment, the LDH release reagent was added to cells and
incubated for 1 h at 37 °C. The absorbance was measured
using a microplate reader at 490 nm.

ELISA

The enzyme-linked immunosorbent assay (ELISA) was per-
formed to examine the expression levels of TNF-α, IL-1β,
and IL-6 in cell supernatants using a specific ELISA kit
(Beyotime Institute of Biotechnology Co., Ltd., Nantong,
Jiangsu, China), according to the manufacturer’s protocol.

Flow Cytometry

To determine the levels of cell apoptosis, an Annexin V-FITC/
PI kit (BD Biosciences) was used. Briefly, cells were washed
twice with cold PBS. Subsequently, a total of 1 × 105 cells
were collected in 200 μl binding buffer, 5 μl PI, and 10 μl
Annexin V-FITC, and incubated in the dark for 15 min. After
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staining, FACSCalibur was used to detect the fluorescence
intensity.

Antioxidant Enzymatic Activities

Briefly, SH-SY5Y cells were treated with different conditions.
Following treatment, indicators of antioxidant enzyme activi-
ty, including superoxide dismutase (SOD), catalase (CAT),

glutathione peroxidase (GSH-Px), and MDA, were detected
by using commercially available kits (Sigma-Aldrich; Merck
KGaA), according to the manufacturer’s protocol.

Western Blot Analysis

Total protein was extracted from SH-SY5Y cells using RIPA
lysis buffer (Beyotime Institute of Biotechnology) on ice for 30

Fig. 1 Effects of liquiritin (1) on
the viability of SH-SY5Y cells.
SH-SY5Y cells were treated with
varying concentrations of
liquiritin (0, 1.25, 2.5, 5, 10, 20,
40, 80, and 160μM) for 24 h. Cell
viability (A) and LDH activity (B)
were investigated using MTT and
LDH assays, respectively. Data
are presented as the mean ± SD.
Abbreviation: LDH, lactate
dehydrogenase

Fig. 2 Liquiritin (1) increases survival and reduces apoptosis of OGD/R-
induced SH-SY5Y cells. SH-SY5Y cells were treated with varying con-
centrations of liquiritin (0, 20, 40, and 80 μM), followed by OGD/R
treatment. Cell viability (A) and LDH activity (B) were investigated using
MTT and LDH assays, respectively. (C and D) Cell apoptosis was deter-
mined using flow cytometry assays. (E) Western blot analyses were used

to detect the protein expression levels of Bax andBcl-2. (F andG) mRNA
expression levels of Bax and Bcl-2. Data are presented as the mean ± SD.
**p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. OGD/R. Abbreviations:
OGD/R, oxygen and glucose deprivation/reoxygenation; LDH, lactate
dehydrogenase
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min. Subsequently, total protein was quantified using a BCA
protein assay kit (Beyotime Institute of Biotechnology).
Proteins were boiled at 95 °C for 10 min, and a total of
20 μg protein was separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) on a 10%
gel. The separated proteins were subsequently transferred to
polyvinylidene fluoride (PVDF) membranes and blocked for
1 h at room temperature with 5% non-fat milk. The membranes

were incubated with primary antibodies against Bcl-2 (CST
Biological Reagents Co., Ltd.; 1:1,000), Bax (CST Biological
Reagents Co., Ltd.; 1:1,000), phosphorylated (p)-p65 (CST
Biological Reagents Co., Ltd.; 1:1,000), p65 (CST Biological
Reagents Co., Ltd.; 1:1,000), p-p38 (CST Biological Reagents
Co., Ltd.; 1:1,000), p38 (CST Biological Reagents Co., Ltd.;
1:1,000), and GAPDH (Santa Cruz Biotechnology, Inc.;
1:1,000) at 4 °C overnight. Following primary incubation,

Fig. 3 Liquiritin (1) inhibits
OGD/R-induced oxidative stress
in SH-SY5Y cells. (A–D)
Indicators of antioxidant enzyme
activity, such as SOD, CAT, and
GSH-Px, and MDA expression
levels were detected using com-
mercially available kits. Data are
presented as the mean ± SD. **p <
0.01 vs. control; #p < 0.05, ##p <
0.01 vs. OGD/R. Abbreviations:
OGD/R, oxygen and glucose
deprivation/reoxygenation; SOD,
superoxide dismutase; CAT, cat-
alase; GSH-Px, glutathione per-
oxidase; MDA, malondialdehyde

Fig. 4 Liquiritin decreases the expression levels of inflammatory factors
in SH-SY5Y cells induced by OGD/R. ELISA was used to detect the
expression levels of (A) TNF-α, (B) IL-1β, and (C) IL-6 in OGD/R-

induced SH-SY5Y cells in different groups. Data are presented as the
mean ± SD. **p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. OGD/R.
Abbreviation: OGD/R, oxygen and glucose deprivation/reoxygenation
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membranes were incubated with HRP-conjugated secondary
antibodies (1:1,000) for 1 h. Protein bands were visualized
using the enhanced chemiluminescence (ECL) detection
system.

RT-qPCR Analysis

To isolate RNA from SH-SY5Y cells, a TRIzol reagent
(Thermo Fisher Scientific, Inc.) was used according to
the manufacturer’s instructions. To transcribe total RNA
into cDNA, a PrimeScript RT kit (Takara Bio, Inc.) was
used. The temperature protocol for the reverse transcrip-
tion reaction was as follows: 25 °C for 5 min, 42 °C for 60
min, and 80 °C for 2 min. To examine the mRNA expres-
sion levels of Bcl-2 and Bax, qPCR amplification was then
applied with SYBR Premix Ex-Taq (Takara Bio, Inc.) ac-
cording to the manufacturer’s instructions. The thermocyc-
ling conditions were as follows: Initial denaturation at 95
°C for 5 min, followed by 40 cycles of denaturation at 95
°C for 15 s and annealing/elongation at 60 °C for 30 s. β-
Actin was used as the internal control. Primers were listed
as follows: β-actin-forward, 5′-GAGCACAGAGCCTC
GCCTTT-3 ′ and reverse, 5 ′-GCCCACATAGGAAT
CCTTCTG-3′; Bcl-2 forward, 5′-AGGATTGTGGCCTT
CTTTGAG-3′ and reverse, 5′-AGCCAGGAGAAATC
AAACAGAG - 3 ′ a n d B a x f o rw a r d , 5 ′ - TCTG
AGCAGATCATGAAGACAGG-3′ and reverse, 5′-ATCC
TCTGCAGCTCCATGTTAC-3′. To calculate the gene ex-
pression, the 2−ΔΔCq method (Livak and Schmittgen 2001)
was performed.

Statistical Analysis

All data are presented as the mean ± standard deviation. Data
were analyzed using SPSS 17.0 software (SPSS, Inc.).
Statistical differences between two groups were measured

with Student’s t-tests, and differences between multiple
groups were measured by application of one-way ANOVA;
p < 0.05 was considered to indicate a statistically significant
difference.

Results and Discussion

Effects on Cell Viability

As shown in Fig. 1A and B, the results of the MTT and LDH
assays demonstrated that there was no significant difference
between the liquiritin (1) treatment and control groups at dif-
ferent time points. Thus, 0-, 20-, 40-, and 80-μM liquiritin
concentrations were used for subsequent experiments.

Survival and Apoptosis of OGD/R-Induced SH-SY5Y
Cells

We then explored the functions of liquiritin (1) in an OGD/R
model of SH-SY5Y cells. Results of the present study demon-
strated that cell viability was reduced, and the levels of LDH
activity and cell apoptosis were upregulated in the OGD/R treat-
ment group, compared with the control group (Fig. 2A–D). In
addition, the expression levels of Bax were upregulated, and the
expression levels of Bcl-2were downregulated inOGD/R-treated
cells compared with the control group (Fig. 2E, F). The afore-
mentioned findings were reversed following treatment with
liquiritin in a dose-dependent manner. Collectively, these results
demonstrated that liquiritin promoted the viability and reduced
the apoptosis of OGD/R-treated SH-SY5Y cells.

Oxidative Stress

Oxidative stress is a key pathological marker for several
neurological diseases, including Alzheimer’s disease

Fig. 5 Liquiritin inhibits activation of the p38MAPK/NF-κB signaling
pathway in SH-SY5Y cells induced by OGD/R. (A–C) Expression levels
of p-p38 and p-p65, and the ratios of p-p38/p38 and p-p65/p65 were
determined using western blot analyses. Data are presented as the mean

± SD. **p < 0.01 vs. control; #p < 0.05, ##p < 0.01 vs. OGD/R.
Abbreviations: OGD/R, oxygen and glucose deprivation/reoxygenation;
p, phosphorylated
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(Chen et al. 2012). It has previously been established that a
redox imbalance is also a key characteristic associated with
OGD/R injury. The results of the present study demonstrat-
ed that the levels of SOD, CAT, and GSH-Px were de-
creased, and the levels of MDA were increased in OGD/
R-treated cells, compared with the control. However, treat-
ment with liquiritin (1) increased the levels of SOD, CAT,
and GSH-Px, and reduced the levels of MDA in a dose-
dependent manner compared with the OGD/R group (Fig.
3A–D). Collectively, these results revealed that treatment
with liquiritin promoted the antioxidant activity of OGD/

R-treated SH-SY5Y cells, and further reduced oxidative
damage. Collectively, the findings of the present study,
and those of previous studies (Cai et al. 2020), revealed
that liquiritin may restore oxidant/antioxidant balance and
inhibit injury caused by I/R damage.

Inhibition of Inflammatory Response

Previously, it has been reported that activation of NF-κB is as-
sociated with increased levels of IL-1β and TNF-α following
cerebral I/R injury, and suppression of NF-κBmay contribute to

Fig. 6 Treatment with a p38/MAPK agonist reverses the liquiritin-
induced effects on the viability and apoptosis of SH-SY5Y cells induced
by OGD/R. SH-SY5Y cells were divided into two groups: (i) OGD/R +
liquiritin (80 μM) and (ii) OGD/R + liquiritin (80 μM) + p38/MAPK
agonist (P79350; 50 μM) groups. (A and B) Cell viability and LDH
activity were investigated using MTT and LDH assays, respectively. (C

and D) Cell apoptosis was determined using flow cytometry assays. (E)
Western blot analysis was used to detect the expression levels of Bax and
Bcl-2. (F and G) mRNA expression levels of Bax and Bcl-2. Data are
presented as the mean ± SD. **p < 0.01 vs. OGD/R + liquiritin.
Abbreviations: OGD/R, oxygen and glucose deprivation/reoxygenation;
LDH, lactate dehydrogenase
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Fig. 7 Treatment with a p38/MAPK agonist reverses the inhibitory ef-
fects of liquiritin on OGD/R-induced oxidative stress and inflammatory
responses in SH-SY5Y cells. (A–D) Indicators of antioxidant enzyme
activity, such as SOD, CAT, and GSH-Px, and MDA expression levels
were detected using commercially available kits. ELISA was used to
detect the expression levels of (E) TNF-α, (F) IL-1β, and (G) IL-6 in

OGD/R-induced SH-SY5Y cells in different groups. Data are presented
as the mean ± SD. **p < 0.01 vs. OGD/R + liquiritin. Abbreviations:
OGD/R, oxygen and glucose deprivation/reoxygenation; SOD, superox-
ide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; MDA,
malondialdehyde

Fig. 8 Treatment with a p38/MAPK agonist reverses the inhibitory ef-
fects of liquiritin on the p38MAPK/NF-κB signaling pathway in OGD/R-
induced SH-SY5Y cells. Protein expression levels of (A) p-p38 and p-
p65, and the (B) p-p38/p38 and (C) p-p65/p65 ratios were determined

using western blot analyses. Data are presented as the mean ± SD. **p <
0.01 vs. OGD/R + liquiritin. Abbreviations: OGD/R, oxygen and glucose
deprivation/reoxygenation; p, phosphorylated
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the protection of the heart from ischemic damage (Li et al. 2014).
In the present study, ELISA results demonstrated that levels of
TNF-α, IL-1β, and IL-6 were significantly increased in the cell
supernatant for the OGD/R group as compared with the control
group. In addition, levels of TNF-α, IL-1β, and IL-6 were de-
creased following treatment with liquiritin (1) in a dose-
dependent manner (Fig. 4A–C).

p38MAPK/NF-κB Signaling Pathway

To verify the molecular mechanisms for liquiritin (1) action in
OGD/R-induced injury, markers associated with the p38MAPK/
NF-κB signaling pathway were detected. Following cerebral I/R
injury, activation of the p38/MAPK signaling pathway is in-
creased, and inhibition of p38/MAPKmay protect neurons from
injury (Zhen et al. 2016). Results from a previous study reported
that liquiritin protected high-fructose-inducedmyocardial fibrosis
by suppressing the NF-κB/MAPK signaling pathway (Zhang
et al. 2016). Treatment with liquiritin also reduced rheumatoid
arthritis by reducing inflammation, inhibiting angiogenesis, and
suppressing the MAPK signaling pathway (Zhai et al. 2019). In
the present investigation, the results of the western blot analysis
demonstrated that the expression levels of p-p65 and p-p38, and
the ratios of p-p65/p65 and p-p38/p38 were markedly increased
in theOGD/R group compared with the control group. However,
the expression levels of p-p38 and p-p65, and the p-p38/p38 and
p-p65/p65 ratios were markedly decreased following treatment
with liquiritin in a dose-dependent manner, compared with the
OGD/R group (Fig. 5A–C). Collectively, these findings demon-
strated that theMAPK/NF-κB signaling pathway played a role in
OGD/R-treated SH-SY5Y cells.

The association between liquiritin and the MAPK/NF-κB
signaling pathway in OGD/R-induced SH-SY5Y cell injury
was analyzed. The results of the present study demonstrated
that cell viability was reduced, LDH activity was increased,
and cell apoptosis was enhanced in the OGD/R + liquiritin +
p38/MAPK agonist group, compared with the OGD/R +
liquiritin group (Fig. 6A–D). Moreover, the levels of Bcl-2
were reduced, and the levels of Bax were increased in the
OGD/R + liquiritin + p38/MAPK agonist group, compared
with those in the OGD/R + liquiritin group (Fig. 6E–G).

To further determine the association between liquiritin and the
MAPK/NF-κB signaling pathway in OGD/R-induced oxidative
stress, key indicators of oxidative stress were detected. The levels
of SOD, CAT, and GSH-Px were increased, and the levels of
MDA were decreased in the OGD/R + liquiritin + p38/MAPK
agonist group, compared with those in the OGD/R + liquiritin
group (Fig. 7A–D). Moreover, the levels of TNF-α, IL-1β, and
IL-6 were significantly increased in the cell supernatant of the
OGD/R group, compared with the OGD/R + liquiritin treatment
group (Fig. 7E–G). Collectively, these results demonstrated that
treatment with the p38/MAPK agonist reversed the inhibitory

effects of liquiritin on OGD/R-induced oxidative stress and the
inflammatory response in SH-SY5Y cells.

Subsequently, the association between liquiritin and the
p38/MAPK agonist was investigated in OGD/R-induced
SH-SY5Y cells. Compared with the OGD/R + liquiritin
group, the expression levels of p-p38 and p-p65, and the p-
p38/p38 and p-p65/p65 ratios were significantly increased in
the OGD/R + liquiritin + p38/MAPK agonist group (Fig. 8A–
C). Collectively, these results demonstrated that treatment
with liquiritin reduced neuronal injury induced by OGD/R
via repression of the MAPK/NF-κB signaling pathway.

Conclusion

In conclusion, this study demonstrated that treatment with
liquiritin relieved OGD/R-induced neuronal damage via sup-
pression of the p38MAPK/NF-κB signaling pathway. Thus,
the findings of the present study highlighted that liquiritin may
serve as a novel agent for the treatment of cerebral I/R injury.
This research provides additional basis for a novel strategy in
the clinical treatment of cerebral I/R injury.
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