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Abstract
Background Central monitoring aims at improving the quality of clinical research by pro-actively identifying risks and 
remediating emerging issues in the conduct of a clinical trial that may have an adverse impact on patient safety and/or the 
reliability of trial results. This paper, focusing on statistical data monitoring (SDM), is the second of a series that attempts 
to quantify the impact of central monitoring in clinical trials.
Material and Methods Quality improvement was assessed in studies using SDM from a single large central monitoring 
platform. The analysis focused on a total of 1111 sites that were identified as at-risk by the SDM tests and for which the 
study teams conducted a follow-up investigation. These sites were taken from 159 studies conducted by 23 different clinical 
development organizations (including both sponsor companies and contract research organizations). Two quality improve-
ment metrics were assessed for each selected site, one based on a site data inconsistency score (DIS, overall -log10 P-value 
of the site compared with all other sites) and the other based on the observed metric value associated with each risk signal.
Results The SDM quality metrics showed improvement in 83% (95% CI, 80–85%) of the sites across therapeutic areas and 
study phases (primarily phases 2 and 3). In contrast, only 56% (95% CI, 41–70%) of sites showed improvement in 2 historical 
studies that did not use SDM during study conduct.
Conclusion The results of this analysis provide clear quantitative evidence supporting the hypothesis that the use of SDM 
in central monitoring is leading to improved quality in clinical trial conduct and associated data across participating sites.

Keywords Statistical monitoring · Central monitoring · Risk-based quality management · Risk-based monitoring · RBM · 
RBQM · Clinical trial quality · Data quality assessment · Site performance

Introduction

For years, regulatory agencies such as FDA and EMA have 
required that the conduct and the progress of clinical trials 
be monitored to ensure patient protection and the reliability 
of trial results [1, 2]. Until recently, the primary approach 
to meeting this requirement included frequent visits to each 

investigative site by designated site monitors who manually 
reviewed all of the patient source data to ensure it was reli-
ably reported to the trial sponsor—a practice known as 100% 
source data verification (SDV) [3–7]. However, a major revi-
sion to the ICH GCP guidance was published in 2016 which 
encouraged the use of central monitoring to support a more 
effective and efficient approach to monitoring trial conduct 
across all sites [8].

Central monitoring, which is a component of risk-based 
quality management (RBQM), aims to detect emerging 
quality-related risks (either pre-identified or unanticipated 
risks) proactively during a clinical trial, resulting in study 
team mitigating risks and addressing any confirmed issues 
and therefore drive higher-quality outcomes [1]. By doing 
so, central monitoring limits the amount of data impacted 
by confirmed issues and prevents these issues from affecting 
future data.
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The term “quality” as used here and throughout this paper 
is intended to refer to the extent to which the observed con-
duct of a study is contributing to the GCP imperative of 
“human subject protection and reliability of trial results.” 
[8].

A variety of tools may be applied to support central moni-
toring, but the following two methods are most commonly 
used [9]:

(a) Statistical Data Monitoring (SDM)—The execution of 
a number of statistical tests against some or all of the 
patient data in a study, which are designed to identify 
highly atypical data patterns at sites that may represent 
various systemic issues in the conduct of the study. The 
types of issues identified may include fraud, inaccurate 
data recording, training issues, and study equipment 
malfunction or miscalibration [1, 3, 10–15].

(b) Key Risk Indicators (KRIs)—Metrics that serve as 
indicators of risk in specific targeted areas of study 
conduct. Sites that deviate from an expected range of 
values (i.e., risk thresholds) for a given KRI are flagged 
as “at risk.” The risk thresholds can be discrete values 
(e.g., procedure compliance rate < 10%) or statistically 
determined (e.g., P-value < 0.05) based on a compari-
son of data between the site and the trend across all 
sites in the study [1, 10–13, 16]. Note that quality tol-
erance limits (QTLs) as referenced in ICH E6 (R2) are 
quite similar in concept to KRIs and may be considered 
a designated type of study-level KRI [17].

Few analyses to date have assessed the impact and the 
performance of central monitoring for a large pool of stud-
ies. There are examples of analyses focusing on the quan-
titative performance of central monitoring but they have 
typically analyzed one or only a few datasets or studies ret-
rospectively and generally used simulated data [6, 18, 19]. 
Papers analyzing ongoing studies have more often explored 
the adoption of central monitoring rather than its impact on 
quality [9]. Hence, efforts are still required to quantify the 
impact of central monitoring on improving quality in clini-
cal trials.

This paper is the second of a series that aims to quantify 
the impact of central monitoring on quality in clinical stud-
ies. The first paper focused on KRIs and found that the use of 
KRIs is leading to quality improvement in the majority of at-
risk study sites (83%) [16]. This paper presents the results of 
an analysis of quality improvement metrics associated with 
the use of SDM as part of central monitoring. Specifically, 
our hypothesis is that the detection of risks (i.e., potential 
issues) identified through the use of SDM and acted upon 
by study teams result in higher levels of quality as measured 
by two metrics that are described in the ‘Quality Improve-
ment Analysis’ section of this article. To assess whether the 

obtained results might be due to random play of chance, we 
further applied the same methods to two studies available 
to us that did not use central monitoring—neither SDM nor 
KRIs—during the conduct phase of the studies. While the 
number of studies available for comparison was small, it 
provided an interesting set of data and results for comparison 
with the primary analysis.

Materials and Methods

Central Monitoring Solution

A central monitoring software built on statistical algorithms 
[3–7] was used to generate the data for this analysis. The 
platform was launched in 2015 to support various RBQM 
processes, including central monitoring and SDM [14, 16].

Central monitoring including SDM typically involves the 
analysis of data at regular intervals (e.g., monthly) during 
the conduct of a study. SDM analyzes clinical data collected 
from various sources, including electronic Case Report 
Forms (eCRFs), central laboratories, electronic Patient-
Reported Outcome (ePRO) and electronic Clinical Outcome 
Assessment (eCOA) systems, and wearable technologies. 
When SDM identifies a site that has exceeded a risk alert 
threshold (e.g., P-value < 0.05) for a specific statistical test, 
the system triggers the creation of a risk signal for review 
and follow-up by members of the study team. Based on an 
initial review of the risk signal, the study team decides to 
close it directly if they conclude that it does not represent 
an actual issue or to open it if further investigation and/or 
remediation is needed. A risk signal typically remains open 
until the study team determines that it is either resolved or 
no longer applicable (e.g., site or study closure and inability 
to remediate) [16]. All risk signals are closed by the end of 
the study.

The SDM tool referenced in this analysis applies a battery 
of standard statistical tests that detect sites with atypical data 
patterns compared to all study sites [3–7]. The approach is 
considered “unsupervised” since the same set of standard 
tests run against all of the clinical data for each study and 
not pre-directed by a study-specific assessment of risk. Addi-
tionally, the tool computes a “Data Inconsistency Score” 
(DIS) for each site summarizing all statistical test results, 
which is used to rank sites from the most atypical to the 
least atypical [6]. The approach is based on the following 
principles:

(a) data coming from the various sites participating in a 
clinical trial should be largely similar, within normal vari-
ability limits (e.g., in multi-regional clinical trials) [15];

(b) a battery of standard statistical tests are applied to the 
patient data, where each test compares the distribution of 
the data in one site (“observed value”) with all study sites 
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(“expected value”) (e.g., compare the mean systolic blood 
pressure of patients in one site to the mean across all study 
sites) [4];

(c) tests that are relevant given the type of each variable 
(continuous, categorical, or date variable) are systematically 
applied to all patient-level data in a completely unsuper-
vised manner, regardless of their clinical importance, mean-
ing or potential impact on the outcome of the trial [6]. For 
each variable in a trial between 1 and 8 statistical tests are 
applied;

(d) mixed-effects models (including both fixed and ran-
dom effects) are used to allow for the natural variations 
between the sites, as data coming from all sites should be 
comparable and statistically consistent [5, 7, 14]; and.

(e) an overall “Data Inconsistency Score” (DIS) is com-
puted for each site across all statistical tests performed on 
each clinical variable collected in the trial (at least 500 dif-
ferent P-values are typically computed for each site) to pro-
vide a summary metric at the site level. It is computed as 
the mean, on a log scale, of the P-values of all statistical 
tests performed. For each site, a weighted geometric mean 
is calculated with down-weighting of highly correlated tests 
and a resampling procedure is used to assign a P-value to the 
weighted geometric mean as described by Trotta et al. [6]. 
The DIS is the −log10[P-value] transformation. A DIS of 1.3 
or larger corresponds to an overall P-value less than 0.05 and 
as such it flags a site whose data significantly differ from the 
data of all study sites. Note that the DIS is not adjusted for 
multiplicity, so it may flag more than 5% of the sites even 
if none are truly atypical. This feature of the SDM tool is 

considered desirable to err on the side of conservatism (i.e., 
flagging of too many sites for further inspection).

Selection of Data

The analysis was performed using data collected in the plat-
form from September 1st, 2015 up to February 1st, 2023. 
The scope of the analysis included sites meeting the follow-
ing criteria (Figs. 1 and 2):

1. Site belongs to a study that is completed and for which 
all risk signals were closed.

2. One or more risk signals were created for the site based 
on the SDM test results and were investigated (signal 
opened) and eventually closed by the study team.

3. The site’s DIS was > 1.3 at the time of risk signal(s) 
creation.

These criteria were defined to ensure availability of evi-
dence covering the full history of each SDM risk signal pro-
cessed by the study team from initiation through closure and 
where remediation of site issues and subsequent improve-
ment of data quality would be an expected outcome.

Quality Improvement Analysis

The first step in the analysis was to compute the following 
two quality improvement metrics for the selected sites:

Fig. 1  Illustration of site selec-
tion for the quality improvement 
analysis. Blue and Magenta 
DIS line: The line is magenta 
during the period of time that 
the study team is investigating 
and remediating issues at the 
site. The line is blue when no 
risk signals are being processed 
by the study team. Dotted Line: 
represents the 1.3 DIS threshold 
(representing a P-value of 0.05). 
Lines starting with a diamond 
and finishing with a circle: The 
diamond represents a signal 
being opened and the circle a 
signal being closed. DIS Data 
Inconsistency Score; DISO 
Opening DIS; DISC Closing 
DIS
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Site DIS Improvement Rate: The total percent change 
in the site’s DIS from the time the site was first detected 
at risk (snapshot of data when the first risk signal was 
opened) until all risk signals at the site were closed by the 
study team (snapshot of data when the last risk signal is 
closed). The following formula was applied:

where:  DISO—Site’s DIS score when it exceeded 1.3 and 
at least one risk signal was open (“opening DIS”).  DISC—
Site’s DIS score when all risk signals at the site were closed 
(“closing DIS”).

Figure  1 illustrates this formula with an example, 
where at month 8 a site was detected with a DIS over 1.3 
 (DISO = 1.57) and 3 signals were opened. Six months later, 
all risk signals for the site were closed  (DISC = 1.04). The 
site DIS improvement rate in this example is −(1.04−1.57)

1.57
 

−
(
DIS

C
− DIS

O

)
DIS

O

which is equal to 34%. Note that in cases where a site’s 
DIS increases over this period of time  (DISC >  DISO), 
the site DIS improvement rate will take on a negative 
value indicating a degradation in quality rather than an 
improvement.

Observed Value Improvement Rate: For each statisti-
cal test linked to a risk signal for a given selected site, the 
percent change of the observed value relative to the overall 
study estimate (i.e., expected value), from the time the risk 
signal was first opened until it was closed by the study team. 
The following formula is applied:

where:  OO—The site’s observed value when the risk signal 
was opened.  EO—The expected value when the risk signal 
was opened.  OC—The site’s observed value when the risk 
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Studies and Sites using Statistical Data Monitoring
(NStudies = 482; NSites = 35,726)

Studies and Sites Selected (NStudies = 159; NSites = 1,111) a

Studies and Sites excluded
•Sites without all risk signals being closed
(NStudies = 216; NSites = 1,105)
•Site DIS ≤ 1.3 (NStudies = 325; NSites = 2,849)
•No risk signal score significant when open and
subsequently closed (NStudies = 482; NSites = 30,661)

Risk Signals and scores excluded
•Risk signal not being open and closed on a further
snapshot (NRisk Signals = 2,926; NScores = 5,973)
•Score not being significant when risk signal was
open (NRisk Signals = 812; NScores = 2,032)

Risk Signals and Scores Selected
(NRisk Signals = 3,651; NScores = 7,576)

Risk Signals and Scores belonging to the selected sites
(NRisk Signals = 6,577; NScores = 15,581)

Fig. 2  Study, Sites, Risk Signals and Scores Inclusion Flowchart. aSome sites are selected in multiple analyses. There are 1111 distinct sites and 
1264 distinct site analyses. DIS Data Inconsistency Score
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signal was closed.  EC—The expected value when the risk 
signal was closed.

Figure 3 illustrates the formula with an example of one 
observed value linked to a risk signal for a site. In particu-
lar, at month 8 the site was detected to have a low mean 
patient temperature (OO = 35.5 °C) for their patients com-
pared to the study average (EO = 36.9 °C). Based on that 
finding, the study team opened a risk signal to investigate 
and remediate with the site as needed. The risk signal 
was closed six months later and the mean patient tem-
perature at closure was significantly closer to the study 
average (OC = 36.3 °C vs. EC = 37.0 °C). The observed 
value improvement rate in this is example is

which is equal to 50%, meaning that the site’s observed 
value was 50% closer to the expected value than when the 
risk signal was first opened. Note that in cases where a 
site’s observed value moves further away from the study 
average over this period of time, the site observed value 
improvement rate will take on a negative value indicat-
ing a degradation in quality rather than an improvement.

Additionally, 95% Wilson score confidence intervals 
were used to estimate the rate of sites DIS improvement 
and observed value improvement [20].

−

[ (36.3−37.0)

37.0
−

(35.5−36.9)

36.9

(35.5−36.9)

36.9

]

Comparison to Studies with No SDM

Data from two historical studies were available to us for 
which no central monitoring (i.e., SDM or KRIs) was per-
formed during the conduct of the studies. These two studies 
were used for a comparison analysis to assess the difference 
in rate of site DIS improvement between studies using SDM 
and those not using SDM. Study 1 was a neurological study 
that included 60 sites and 7000 patients. Study 2 was a study 
in endocrinology that included 370 sites and 3500 patients.

A post-hoc SDM analysis was performed on the final 
completed study database for each of the two comparison 
studies, and then iteratively re-executed (retrospectively) on 
3 versions of the trial database representing progressively 
earlier timepoints in the progression of each study. The 
calendar date by which a specified percentage of the total 
patient visits had been conducted was used as the cut-off 
date for each earlier version, and only patient data gener-
ated up to this calendar date were included in the analysis 
of that version.

For each of the two studies, we calculated the Site DIS 
improvement rate using the same formula as in the main 
analysis, with slight adaptations of  DISO and  DISC defini-
tions (Fig. 4):

DISO—Site’s DIS score when it first exceeded 1.3; i.e., 
the earliest database iteration at which this was observed. 
This represents the point in time when a study team would 
have typically opened risk signals for the site if central 
monitoring and SDM had been employed.
DISC—Site’s DIS score on the final completed study 
database. Since no risk signals were opened or closed for 

Fig. 3  Illustration of Site Observed Value Improvement Rate Calcula-
tion. Magenta line represents the trend of the mean patient tempera-
ture in the site of interest (Observed value). The Blue line represents 
the expected value (overall study average) trend. The  OO represents 
the observed value of the site when the risk signal was created and 

the  OC the observed value of the site when the risk signal was closed. 
 EO and  EC represent the expected value (study overall average) when 
respectively the risk signal was opened and closed. OO Opening 
Observed Value; OC Closing Observed Value; EO Opening Expected 
Value; EC Closing Expected Value
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sites on these two studies, there is no meaningful mile-
stone earlier than the end of the study at which to assess 
a site’s “closing” DIS. The DIS observed at the end of 
the study is used instead, which enables an assessment 
of the natural evolution of an “at-risk” site’s DIS in the 
absence of SDM.

Additionally, 95% Wilson score confidence intervals were 
used to estimate the DIS improvement in both studies [20].

Results

In total, 1111 sites across 159 studies using SDM were 
selected (from 23 different sponsor and contract research 
organizations) (Table 1).

The overall landscape of clinical trials was fairly repre-
sented, with studies selected from a broad range of thera-
peutic areas and study sizes (number of patients and sites). 
Infectious disease was the highest represented therapeutic 
area with 45 studies (28%), which included a median of 
1,440 patients and 48 sites. Additionally, all clinical phases 
were represented in the 159 studies selected from phase 1 
(N = 13, 8.2%) to phase 3 (N = 98, 62%) (Table 1).

Quality Improvement Analysis

Overall, a lower DIS (i.e., quality improvement) was 
observed in 83% of the sites (95% CI, 80–85%). Addition-
ally, 64% of the sites had a closing DIS lower than 1.3. 
Across all sites, the site DIS improvement rate was 46% on 
average. Those results remained very similar across thera-
peutic areas and study phases (Table 2).

For the two comparison studies (for which central moni-
toring including SDM had never been used), a lower DIS 
was observed in 56% of the sites (95% CI, 41–70%) and the 
site DIS improvement rate was 17% (Table 2).

For the sites with improving DIS, 71% of the observed 
values moved closer to the expected values and 51% of them 
were no longer statistically significant when the risk signal 
was closed. Note that 20% of the observed values had no 
change in the number of records from risk signal open to 
close. Hence, in these cases there was no opportunity for 
the observed values to improve except for the possibility of 
data entry corrections to existing data records. Addition-
ally, the observed values were on average 45% closer to the 
expected values when the risk signal was closed. The rate 
of improving observed values remained very similar across 
the different statistical tests and dataset domains (Table 3).

Two Sample Sites

Figure 5 displays the evolution of the DIS and risk signal 
scores for two sample sites from this analysis. The first 
site shows a DIS improvement and the second one a wors-
ening DIS. Figure 5.A shows a site with improving DIS 
and risk signal scores in a dermatology study. The site 
was first flagged with a DIS of 1.45 (P = 0.035). Two risk 
signals were created and both risk signals were no longer 
significant at the time of risk signal closure. Additionally, 
when the risk signals were closed, the DIS was no longer 
statistically significant  (DISC = 0.75, P = 0.18). The first 
risk signal represented a very high disease response rate. 
After investigation, it appears that it was due to a data 
entry error. The error was corrected and at the time of the 
risk signal closure 39 additional disease response scores 

Fig. 4  Illustration of site selection for the 2 studies with no SDM. 
Blue and Magenta DIS line: The line changes in magenta as from the 
first time the site has a DIS over 1.3 and up to the study completion. 

Line is Blue before the DIS becomes significant. Dotted Line: It rep-
resents the 1.3 DIS threshold (representing a P-value of 0.05). DIS 
Data Inconsistency Score; DISO Opening DIS; DISC Closing DIS
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were added. The second risk signal flagged a low vol-
ume of drug dispensation among the different patients of 
the site. The Clinical Research Associate (CRA) checked 
weighing techniques and the calibration of the tool. After 
investigation, the issue was due to a misunderstanding 
of the reporting requirements. At risk signal closure, no 
additional erroneous results were reported.

Figure 5.B shows a site in a gastroenterology study 
with a DIS that did not improve  (DISO = 1.6, P = 0.025; 
 DISC = 3.31, P = 0.0005). In that site, a total of 19 
risk signals were created. Fifteen risk signals were not 
selected in the current analysis as they were all immedi-
ately closed (i.e., not investigated as they do not represent 
quality risk for the study team). Those risk signals clearly 
described a site with an atypically unhealthy population. 
Additionally, the site belonged to a country with specific 
protocol requirements in which some assessments were 
not applicable. Neither of these explanations represented 
data quality issues and therefore, as expected, most of the 
15 risk signals did not show improvement at closure. The 
remaining 4 risk signals were investigated by the study 
team (i.e., opened) and 3 of them improved at closure. 
Those risk signals flagged missing data along with AEs 
that were not reported when expected. At the time of risk 
signal closure, the AE reporting rate increased and the 
missing data were provided.

Discussion

Central monitoring, including the use of SDM software, 
is generally designed for the purpose of continually iden-
tifying sites that are deviating from an expected pattern 
of quality behavior, so that study teams can intervene at 
those sites and address any confirmed issues [1, 2, 10]. 
The results of the current analysis provide clear evidence 
that a majority of the sites flagged by this approach show 
a significant level of quality improvement, across all thera-
peutic areas and study phases.

This conclusion relies on the premise that the two met-
rics used in this analysis are valid indicators of quality 
improvement. Site DIS provides a measure of the overall 
level of atypicality of the patient data (i.e., risk data qual-
ity issue) reported from each site, which is not by itself 
a conclusive indicator of poor quality. Indeed, as shown 
in the second example (Fig. 5.B), some sites will have 
a high DIS because they enrolled an atypical group of 
patients (e.g., older and more severe condition or dis-
ease at baseline) which the study team determines does 
not represent an actual quality issue. Nevertheless, when 
investigation of atypical data patterns leads to the con-
firmation of quality issues at a site, those atypical data 
patterns become a definitive indicator of poor quality. It 

Table 1  Characteristics of the 
included studies

a Group therapeutic areas in which less than 10 sites have been selected. It includes Mental Health and 
Addiction, Ophthalmology, Immunology, and Hematology
b Group study phases in which less than 10 sites have been selected. It includes Phase 4, Pre-Market 
Approval, and epidemiological studies

Studies Number of Patients Number of Sites
N (%) Median [Interquartile range] Median [Interquartile range]

Therapeutic Area
 Cardiovascular 7 (4.4) 869 [468–1,563] 87 [57–127]
 Dermatology 22 (13.8) 391 [215–811] 88 [41–122]
 Endocrinology 12 (7.6) 410 [195–783] 55 [35–76]
 Gastroenterology 8 (5.0) 220 [142–633] 66 [31–121]
 Infectious Disease 45 (28.3) 1,440 [630–2,428] 48 [25–93]
 Musculoskeletal 6 (3.8) 191 [140–251] 59 [44–61]
 Neurology 7 (4.4) 156 [130–191] 50 [31–55]
 Oncology 31 (19.5) 279[135–610] 77 [28–135]
 Respiratory 8 (5.0) 526 [310–628] 52 [34–133]
  Othera 13 (8.2) 327 [210–509] 53 [39–63]

Study Phase
 Phase 1 13 (8.2) 744 [127–2,291] 29 [15–100]
 Phase 2 37 (23.3) 238 [136–520] 39 [24–58]
 Phase 3 98 (61.6) 611 [281–1,218] 75 [41–133]
  Otherb 11 (6.9) 281 [150–1,563] 31 [19–91]
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is then clearly expected that remediation of the identified 
issues should result in generation of less atypical data at 
the site and a correspondingly lower site DIS. The same 
expectation follows for the site’s observed values on which 
the data atypicality is measured; i.e., those values should 
move closer to the expected estimate across all sites in the 
study. For example, if the rate of patient adverse events 
(AEs) reported at a site was atypically low and confirmed 
to be an issue (e.g., site mistakenly thought that they were 
only supposed to report serious AEs), re-training of the 
site should result in a subsequent increase in the observed 
AE reporting rate bringing it closer to the average rate 
across the study.

A theoretical concern exists that sites observed with 
a high DIS at one timepoint will naturally tend toward a 
lower DIS subsequently due to a regression-to-the-mean 
effect [21]. Indeed, selecting sites with a high DIS means 
by definition that we are selecting sites at the tail of the 

distribution. Therefore, by play of chance, there is a high 
probability that the DIS of the same site becomes less 
extreme in subsequent timepoints, resulting in an improv-
ing DIS for the site Without taking into account the regres-
sion-to-the-mean effect, the baseline assumption (i.e., if 
central monitoring had not been used) is that a site DIS has 
a 50% chance on average to improve, as a coin flip prob-
ability. The results of the analysis on two historical studies 
not using SDM showed that only slightly more than half 
of the sites (56%, 95% CI 41–70%) with an initially high 
DIS were observed to have a lower DIS at study closure, 
which points to a dominant effect of regression-to-the-
mean. However in studies using SDM, this rate increased 
to 83% (95% CI 80–85%). The confidence intervals from 
studies not using SDM and those using SDM do not over-
lap, which suggests that DIS improvements are seen as a 
result of the SDM approach. However, the non-randomized 
nature of this comparison, and the limited evidence from 

Table 2  Rate of sites with improved DIS and site DIS Improvement rate

a Negative value indicating a degradation in quality rather than an improvement
b Group of therapeutic areas in which less than 10 sites have been selected. It includes Mental Health and Addiction, Ophthalmology, Immunol-
ogy, and Hematology
c Group of study phases in which less than 10 sites have been selected. It includes Phase 4, Pre-Market Approval, and epidemiological studies
DIS Data Inconsistency Score, 95% CI 95% Wilson Score Confidence interval

DIS Open DIS Close
Sites with improved DIS

Sites with final 
DIS below 1.3

Site DIS Improvement 
rate (%)a

Median [Interquartile 
range]

Median [Interquartile 
range] N % [95% CI] N (%)

Median [Interquartile 
range]

Main analysis—studies using SDM
Overall 1.74 [1.47–2.33] 1.00 [0.45–1.63] 1,044 82.6 [80.4, 84.6] 805 (63.7) 46.0 [11.5–75.3]
Therapeutic Area
 Respiratory 1.61 [1.44–2.01] 0.92 [0.45–1.96] 24 72.7 [55.8, 84.9] 21 (63.6) 52.8 [−2.2–77.7]
 Infectious Disease 1.69 [1.47–2.23] 0.88 [0.39–1.50] 509 85.7 [82.6, 88.5] 403 (67.8) 50.4 [17.8–78.9]
  Otherb 1.65 [1.44–2.10] 0.87 [0.51–1.39] 76 84.4 [75.6, 90.5] 63 (70.0) 47.4 [12.3–68.8]
 Dermatology 1.94 [1.58–2.78] 1.13 [0.45–1.92] 148 78.7 [72.3, 84.0] 105 (55.9) 47.2 [9.7–76.5]
 Neurology 1.61 [1.41–1.85] 1.12 [0.46–1.46] 10 83.3 [55.2, 95.3] 8 (66.7) 46.7 [32.4–71.7]
 Cardiovascular 1.59 [1.37–1.99] 0.95 [0.52–1.50] 13 81.2 [57.0, 93.4] 9 (56.3) 41.6 [0.7–71.9]
 Gastroenterology 1.78 [1.49–2.49] 1.09 [0.58–1.67] 41 89.1 [77.0, 95.3] 28 (60.9) 43.8 [16.5–69.4]
 Musculoskeletal 1.84 [1.48–2.23] 1.04 [0.54–1.62] 27 79.4 [63.2, 89.7] 21 (61.8) 42.2 [8.4–69.1]
 Oncology 1.85 [1.50–2.44] 1.14 [0.61–1.70] 106 80.9 [73.3, 86.7] 81 (61.8) 37.3 [7.2–72.6]
 Endocrinology 1.77 [1.47–2.23] 1.18 [0.68–2.00] 90 75.0 [66.6, 81.9] 66 (55.0) 33.9 [0.5–61.5]

Study Phase
 Phase 3 1.78 [1.48–2.45] 0.93 [0.42–1.67] 691 82.8 [80.0, 85.2] 530 (63.5) 49.4 [11.8–78.0]
 Phase 1 1.67 [1.46–2.12] 1.01 [0.47–1.62] 134 85.9 [79.6, 90.5] 101 (64.7) 43.7 [12.5–72.6]
  Otherc 1.69 [1.52–1.92] 0.93 [0.46–1.17] 19 86.4 [66.7, 95.3] 17 (77.3) 42.2 [31.4–76.1]
 Phase 2 1.66 [1.45–2.02] 1.07 [0.54–1.56] 200 79.7 [74.3, 84.2] 157 (62.5) 40.7 [9.1–69.6]

Comparison—studies not using SDM
Overall 1.77 [1.45–2.45] 1.46 [0.30–3.75] 24 55.8 [41.1, 69.6] 21 (48.8) 16.7 [−40.7–77.7]
 Study 1 1.46 [1.38–1.66] 1.48 [1.20–2.20] 3 37.5 [13.7, 69.4] 2 (25.0) 50.6 [−43.8–82.0]
 Study 2 1.96 [1.49–2.81] 0.91 [0.25–3.85] 21 60.0 [43.6, 74.4] 19 (54.3) 2.7 [−7.5–12.0]
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studies not using SDM, both call for caution in interpreting 
this observed difference.

While the results of the current analysis are quite posi-
tive—83% of sites with improved DIS and 71% of observed 
values improving—one might ask why the level of improve-
ment was not even better than this? In particular, 17% of the 
flagged sites did not end up with an improved DIS and 29% 
of the observed values did not improve. There are actually 
multiple factors that explain why some sites do not show 
improvement. First, as previously mentioned, data atypical-
ity is not a definitive indicator of poor quality and in some 
cases, the observed atypicality is found to be explainable 

and simply does not reflect a quality issue. In these cases 
we would not expect the observed atypicalities to moderate 
on average following study team review. This is illustrated 
in a study in which a site recruited mostly older (though 
still eligible) patients who accordingly had a higher number 
of medical histories and higher rate of safety and efficacy 
findings [3].

A second reason for lack of observed improvement is 
in situations where, by the time the data atypicalities at a 
site are investigated and issues confirmed, all patients at 
that site have completed their participation in the study. In 
such cases there is no further patient data to be generated 

Table 3  Rate of observed values that improved and observed value improvement rate among sites with an improved DIS

a Improvement measured by comparing the gap between observed and expected at open and at close. Only gap reduction is considered as an 
improvement
b Group dataset domains in which less than 50 observed values have been selected
c Data reporting tests include tests for missing data and reporting rates by patients and visits (count of records per patients or patient-visits)
95% CI 95% Wilson Score Confidence interval

Obs. values where 
N did not change

Observed values that 
 improveda

Observed values that 
improved below 1.3

Observed Value Improvement Rate 
(%)a

N (%) N % [95% CI] N (%) Median [Interquartile range]

Overall 1,137 (20.0) 4,036 71.1 [69.9, 72.3] 2,884 (50.8) 44.5 [4.7–94.6]
Dataset Domain
 Disposition 43 (26.7) 122 75.8 [68.6, 81.7] 106 (65.8) 85.2 [32.5–100.6]
 Immunogenicity Specimen Assess-

ments
12 (17.9) 56 83.6 [72.9, 90.6] 41 (61.2) 73.5 [42.5–100.0]

 Procedures 23 (18.5) 105 84.7 [77.3, 90.0] 89 (71.8) 66.8 [30.4–101.1]
 Exposure 51 (17.6) 209 72.3 [66.9, 77.2] 167 (57.8) 66.6 [11.9–101.2]
 Demographics 25 (26.9) 59 63.4 [53.3, 72.5] 45 (48.4) 66.5 [0.0–101.2]
 Subject Visits 6 (6.0) 67 67.0 [57.3, 75.4] 53 (53.0) 66.5 [8.4–96.7]
 Healthcare Encounters 19 (32.2) 37 62.7 [50.0, 73.9] 32 (54.2) 59.9 [7.3–94.1]
 Physical Examination 22 (9.5) 189 81.5 [76.0, 85.9] 124 (53.4) 59.0 [11.7–101.3]
 Concomitant Medications 68 (19.0) 249 69.7 [64.8, 74.3] 184 (51.5) 54.1 [1.9–101.1]
 Adverse Events 64 (17.8) 262 72.6 [67.8, 76.9] 206 (57.1) 56.4 [11.6–101.7]
 Concomitant Medications 68 (19.0) 249 69.7 [64.8, 74.3] 184 (51.5) 54.1 [1.9–101.1]
  Otherb 86 (18.7) 317 68.9 [64.5, 73.0] 235 (51.1) 51.4 [2.6–96.0]
 Medical History 81 (32.3) 171 68.1 [62.1, 73.6] 135 (53.8) 48.3 [0.2–100.3]
 Clinical Events 52 (22.0) 160 67.8 [61.6, 73.4] 119 (50.4) 48.1 [3.3–88.0]
 Laboratory Test Results 132 (19.7) 459 68.4 [64.8, 71.8] 335 (49.9) 45.7 [3.1–96.9]
 ECG Test Results 65 (35.5) 132 72.1 [65.2, 78.1] 99 (54.1) 41.8 [9.0–91.9]
 Vital Signs 159 (19.3) 600 72.8 [69.7, 75.7] 393 (47.7) 34.8 [2.9–76.2]
 Inclusion/Exclusion Criteria 22 (43.1) 28 54.9 [41.4, 67.7] 21 (41.2) 34.4 [0.4–98.8]
 Questionaires 136 (18.5) 528 71.6 [68.3, 74.8] 339 (46.0) 30.9 [3.3–74.2]
 Disease Response 71 (16.9) 286 68.3 [64.4, 73.2] 161 (38.4) 21.0 [4.0–47.7]

Statistical Test
 Count 36 (9.1) 345 87.1 [83.5, 90.1] 307 (77.5) 94.9 [50.7–101.1]
 Data  Reportingc 413 (18.8) 1,631 74.3 [72.4, 76.1] 1,281 (58.4) 68.0 [12.6–101.3]
 Categorical 306 (21.3) 904 62.9 [60.4, 65.4] 605 (42.1) 33.4 [0.8–77.4]
 Continuous 382 (23.2) 1,156 70.2 [67.9, 72.3] 691 (42.0) 23.7 [1.6–60.1]
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and/or reported from the site and therefore no opportunity 
to observe improvement in the data. While we could not 
quantify the contribution of these two factors on the overall 
results of our study, it can be hypothesized that they explain 
some of the observed non-improvement and that the actual 
rate of improvement is higher than that observed.

We observed no marked difference in the rate of improv-
ing sites or the size of improvement across the different 

therapeutic areas or study phases. This supports a conclu-
sion that SDM is beneficial in a broad range of clinical trials, 
which is consistent with FDA and EMA recommendations 
[1, 2]. All data collected during a clinical trial are at risk of 
data quality issues [4, 14, 15]. However, some factors may 
increase those risks, including the following: complex study 
protocols, complicated eCRF and database designs, and poor 
site training [22, 23]. This is why identifying and controlling 

Fig. 5  A Improving and B Non-improving Site Examples. Circles on the selected signals score lines represent the analysis of a new increment of 
study data. The same increment were used for the DIS calculation
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risks related to a clinical trial both prior to and during the 
trial is essential.

A limitation of the current analysis is that we assessed 
metrics of improved quality only for risks that were identi-
fied by the SDM solution and subsequently acted upon by 
the study team. Therefore, the analysis did not assess how 
effective SDM is at identifying all of the relevant issues in a 
clinical trial. Instead, it assesses to what extent study team 
follow-up on identified risks is resulting in improved quality.

A second limitation is related to the comparison with 
studies that did not use SDM, for which data from only two 
studies were available. Although the comparison is based on 
a more limited volume of data, the results do suggest that the 
significant level of improvement observed for SDM studies 
is not due to the play of chance.

This paper complements a previous paper showing that 
the use of KRIs was effective at improving quality in clini-
cal trials. As mentioned in that paper, "it is important to 
recognize that improved quality does not come automatically 
through implementation of central monitoring. The degree 
of success achieved is highly dependent on the thoughtful 
design and implementation of all central monitoring tools 
(including KRIs) and risk follow-up processes.” [16].

Conclusion

These results provide quantitative evidence that central mon-
itoring including SDM, which is recommended by regula-
tory agencies [1, 2], is resulting in improved quality. When 
properly implemented, managed and followed-up, SDM 
enables a targeted approach to identifying and addressing 
emerging quality-related risks during a study.
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