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Abstract
Background In 2016, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human 
Use updated its efficacy guideline for good clinical practice and introduced predefined quality tolerance limits (QTLs) as a 
quality control in clinical trials. QTLs are complementary to Quality by Design (QbD) principles (ICH-E8) and are one of 
the components of the risk-based clinical trial quality management system.
Methods Currently the framework for QTLs process is well established, extensively describing the operational aspects 
of Defining, Monitoring and Reporting, but a single source of commonly used methods to establish QTLs and secondary 
limits is lacking. This paper will primarily focus on closing this gap and include applications of statistical process control 
and Bayesian methods on commonly used study level quality parameters such as premature treatment discontinuation, study 
discontinuation and significant protocol deviations as examples.
Conclusions Application of quality tolerance limits to parameters that correspond to critical to quality factors help identify 
systematic errors. Some situations pose special challenges to implementing QTLs and not all methods are optimal in every 
scenario. Early warning signals, in addition to QTL, are necessary to trigger actions to further minimize the possibility of 
an end-of-study excursion.
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Background

According to ICH E6 R2 [1], the main objective of prede-
fined quality tolerance limits (QTLs) is to establish a proac-
tive process to detect systematic issues that can impact par-
ticipant safety or the reliability of the trial results. The QTL 
process is implemented at trial level focusing on Critical to 
Quality factors (CtQ) that impact trial quality. According to 
TransCelerate, the establishment of QTLs is complemen-
tary to Quality by Design (QbD) principles (ICH-E8) and is 
one of the components of the risk-based clinical trial quality 
management system (Fig. 1). The Clinical Trials Transfor-
mation Initiative (CTTI) Quality by Design Project—Criti-
cal to Quality Factors Principles Document [2] emphasizes 
the importance of QbD by providing guidance on CtQ fac-
tors to consider when designing a protocol. Those are most 
likely to correlate with critical processes and data that are 
essential to ensure participant protection and the reliability 
of trial results.

QTL is a level, threshold or value that defines an accept-
able range which is associated with a parameter that is criti-
cal to quality. A deviation from a threshold, also called an 
“excursion”, during the conduct of the trial may indicate a 
systematic issue that could impact participants’ safety or 
reliability of trial results. TransCelerate has published guid-
ance in “Risk-Based Quality Management: Quality Toler-
ance Limits and Risk Reporting,” [3] which includes refer-
ences to the use of statistical process control (SPC) methods 
to construct QTLs. In SPC as further described below, a 
process is “in control” if, over time, the parameter varies 

due to random noise only. The general aim of QTLs is to set 
upper limit (UL) and lower limit (LL) so that the probability 
of an excursion is low for an in-control process (i.e., false 
alarm probability) and high for an out-of-control process 
(i.e., sensitivity or power).

QTLs are set-up with the following template fields taken 
from the TransCelerate RBQM and Risk Reporting Appen-
dix [3]:

1. Parameter: A critical to quality parameter that is going 
to be monitored.

2. Definition: How will the QTL be measured and calcu-
lated.

3. Justification for the Parameter.
4. Unit of Measure: e.g., number, proportion.
5. Expected Values: What is the expected value based on 

historical data and expert opinion.
6. Justification for Expected Values.
7. Quality Tolerance Limit: What is the limit.
8. Justification for the Quality Tolerance Limit: include 

methodology.
9. Planned Mitigation Actions: What will be done if there 

is a risk of crossing the QTL or if it is crossed.

The selection of methods will depend on the QTL and 
the data being measured such as rates, proportions, or time 
to event. Justification for the QTL will include the reason 
for selecting the method to construct limits and false alarm 
probability (type 1 error) used. Key Risk Indicators (KRIs) 
are often used with QTLs to help control risks. KRIs and 

Figure 1  Risk-Based Quality Management (RBQM) components.
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QTLs differ in that KRIs are typically measured at the site 
level to inform site monitoring activities, while QTLs are a 
higher-level indication of overall quality in a trial. Specific 
methodologies used to construct tolerance limits are dis-
cussed in detail in the sections below.

QTLs may be one-sided as that allows the prespecified 
false alarm probability (α or type 1 error) to be allocated to 
the side of interest.

ICH guidelines [1, 4] (ICH E6 R2 and E8 R1) state that 
historical data should be used to set QTLs, but obtaining 
such data can be challenging especially for new/novel dis-
ease areas, rare diseases, etc. The framework for establishing 
QTLs in clinical trials has been discussed elsewhere [5–7] 
proposing alternatives for historical data [8, 9] including 
clinical and safety science knowledge or meta-analysis 
of data from external sources such as TransCelerate Pla-
cebo Data sets, FDA and Clinicaltrials.gov websites and 
publications.

Examples of methods being utilized by members of the 
PSI/EFSPI/ASA-BIOP CSM and QTL Special Interest 
Group include Beta-Binomial models, Bayesian hierar-
chical models, Observed–Expected (O–E) control charts, 
Observed/Expected (O/E) control charts; Cumulative pro-
portion charts, CUSUM plots; standard deviations, rates, 
and observation counts.

Commonly Used Methods

If a clinical trial is to meet regulatory requirements, it should 
be conducted through processes that are stable and repeatable. 
More precisely, the processes must be capable of operating 
with little variability around the target of trial quality charac-
teristics. Statistical process control (SPC) is a powerful col-
lection of problem-solving tools useful in achieving process 
stability and improving trial quality through reduction of vari-
ability [10]. In any process, regardless of how well designed 
or carefully maintained it is, a certain amount of inherent or 
natural variability will always exist. This natural variability or 
random error is the cumulative effect of many small un-avoid-
able causes. In the framework of statistical quality control, 
this natural variability is often called “stable system of chance 
causes”. A process that is operating with only chance causes 
of variation or random errors present is said to be in-control. 
Other kinds of variability may occasionally be present in the 
output of a process. This variability in key quality character-
istics of a trial process can arise from improper trial conduct, 
not adhering with protocol or other causes creating system-
atic irregularities. Such variability is large when compared to 

random errors and it usually represents an unacceptable level 
of process performance. We refer to these sources of variation 
that are not random as “assignable causes”. A process that is 
operating in the presence of assignable causes is said to be 
out-of-control.

A major objective of statistical process control is to quickly 
detect the occurrence of assignable cause of process shifts 
so corrective action may be taken before end-of-study qual-
ity breach. Among the major tools in SPC, control charts are 
widely used.

As opposed to frequentist methods, which consider the 
quantity of interest to be fixed but unknown, Bayesian meth-
ods consider the quantity of interest to be a random variable 
with a distribution that reflects the current belief or knowledge 
about that quantity. As such, under the Bayesian paradigm our 
pre-trial evidence about a QTL parameter, e.g., ‘true propor-
tion of participants randomized who prematurely discontinue 
treatment’ can be summarized by a distribution reflecting our 
uncertainty. This pre-trial evidence can be used in various 
ways, for example to derive the distribution of the data we 
expect to observe in the future, based on current evidence, or it 
can be combined with on-trial evidence into post-trial evidence 
in a mathematical fashion based on Bayes’ theorem. Bayes-
ian methods are therefore appealing in the context of QTLs 
where incorporation of historical, i.e., pre-trial information, 
is considered [11].

Two examples of Bayesian methods namely, Beta-Bino-
mial model and Bayesian Hierarchical Model currently used 
in practice for QTL monitoring are described below. For-
mal evaluation of these methods’ operating characteristics is 
beyond the scope of this paper.

Statistical Process Control: Control Charts

Due to control charts being widely used and considered one 
of the more technical statistical process control approaches, 
greater focus has been placed on using control charts in imple-
menting QTLs and monitoring CtQ factors.

A control chart is a graph with control boundaries, and it 
is used to analyze and judge whether a process is in-control. 
There are 3 commonly used control charts used to implement 
quality tolerance limits namely O–E Difference, O/E Ratio, 
and cumulative proportion. QTLs are generally implemented 
as control boundaries or control limits. However, QTLs can 
be implemented with QTL being fixed alongside control 
limits also called secondary limits to provide early signals 
of risk. The latter is the approach described in the sections 
below where control limits and secondary limits are used 
interchangeably.
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Observed Minus Expected Difference Chart 
(O–E Difference)

The O-E difference chart [12] can be applied to the cumu-
lative sum of differences between observed events and 
expected events The X-axis of the O-E chart can be for 
example the cumulative number of participants; the cumula-
tive number of participants visits or the cumulative exposure 
time of treatment. The Y-axis is the number of events of 
interest that occurred minus the expected value.

O–E chart is appropriate when the total number of par-
ticipants is known in advance before clinical trial com-
mencement, when the event of interest for each participant 
is binary (i.e., Success/Failure, Yes/No), and when the 
expected probability of the event of interest is constant for 
each participant in line with participants enrolled in clinical 
trial sharing similar baseline characteristics following the 
same protocol. QTLs are set based on expectations from 
historical data or expert knowledge.

The contribution of each participant to the total number 
of events of interest is identical and therefore, for each par-
ticipant, the occurrence of the event can be regarded as a 
Bernoulli event. Moreover, since participants are independ-
ent of each other, the theoretical distribution of the occur-
rence of the event in a trial is Binomial. At each monitoring 

occasion, if the process is experiencing more events than 
expected the line will jump upward, whilst if no event 
occurs, the line will trend downward (since expected events 
continue to accumulate). A process in line with expectations 
will have a stable line with natural fluctuations around zero. 
When calculating quality tolerance limit or secondary limit, 
one can use exact control intervals based on the binomial 
distribution or their asymptotic counterparts.

For example, a phase III clinical trial plans to enroll 300 
participants, and one of the target QTL parameters for the 
trial is the proportion of participants who discontinue the 
study drug prematurely. The expected value based on his-
torical data shows an average discontinuation rate of 4% 
and it is decided that the parameter’s QTL is set at 12% the 
maximum (fixed) limit throughout the conduct of trial which 
corresponds to a difference of 24 events. An O–E chart is 
shown in Fig. 2. Only the upper limits are plotted because 
an excess number of events are of concern.

The secondary limits are set corresponding to the upper 
95th quantile (1-sided α = 0.05) of a normal approximation 
to the binomial distribution (henceforth termed binomial-
asymptotic method) with n cumulative number of observa-
tions minus the expected value. This example uses an in-
control process where the actual discontinuation rate and the 
expected rate are the same. The binomial-asymptotic method 

Figure 2  O–E chart of premature treatment discontinuation.
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assumes that the sample size is large enough, otherwise, for 
smaller sample size trials, exact control limits are considered 
more appropriate to achieve tradeoff between sensitivity and 
specificity.

If the actual probability of early termination per par-
ticipant is 0.2 (much greater than 0.12), without immedi-
ate actions in place, as the rate of participants enrollment 
increases, the process can spiral out-of-control (Fig. 3).

Observed/Expected Chart (O/E Ratio)

O/E chart [12] can be applied to the ratio of the observed 
value to the expected value. The X-axis of the O/E chart is 
usually the cumulative count of units in the trial, such as the 
cumulative number of enrolled participants or cumulative 
study or treatment exposure. The Y-axis corresponds to the 
ratio of the number of events of interest that occurred to the 
expected value.

An example is significant protocol deviations. A Poisson 
distribution can be used to calculate the control limit [12] as 
the enrolled participants are independent of each other and 
the focus for the clinical study team is the cumulative count 
of significant deviations that accumulate over time. Consider 
an example clinical trial with a planned sample size of 300 

and 0.1 expected significant deviation count per participant 
or a cumulative total of 30 significant deviations among 300 
participants with a tolerance limit set at 45 significant devia-
tions. An O/E chart can be constructed with the tolerance 
limit for O/E ratio fixed at 1.5 (i.e., 45/30) and the secondary 
limits are calculated using 95th quantile (1-sided α = 0.05) 
of the Poisson distribution (Fig. 4). This example uses an 
in-control process where actual protocol deviation rate in 
the trial is equal to the expected deviation rate.

As seen in Fig. 4, the secondary limits exceed QTL dur-
ing the earlier period in the study and based on the fixed 
QTL, an out-of-control process is detected initially which 
subsequently returns into control with increasing number of 
participants. Hence, it may be more appropriate to monitor 
parameters using O/E charts after the number of participants 
exceed 30.

Cumulative Proportion Chart

The cumulative proportion chart is applied to a cumu-
lative or rolling proportion of events (ignoring expo-
sure) that are expected to be constant throughout a trial, 
whether the final size is known or not. Considering the 
example of premature treatment discontinuations due to 

Figure 3  O–E chart showing early crossing of secondary limits when the actual proportion of event is higher than expected.
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reasons unrelated to safety or pharmacologic outcomes, 
several methods have been used to construct control limits 
as secondary limits or QTLs for a cumulative proportion 
with similar assumptions indicated above for O–E with 
the contribution of each participant to the total number 
of events of interest being identical and hence the occur-
rence of the event can be regarded as a Bernoulli event. 
As seen in the O-E Chart or the O/E chart, the control 
limits can be considered secondary limits with a maxi-
mum fixed limit specified as the QTL.

Secondary Limits Using the Binomial Quantile 
method

The upper and lower control limits can be determined using 
the 5th and 95th quantiles (2-sided false alarm probabil-
ity, α = 0.1) of the underlying binomial distribution using 
the pre-specified expected (historical) proportion and the 
observed sample size at that point. The binomial quantiles 
[13] indicate that if the ongoing data follow the expected 
binomial distribution, the probability of false alarm should 
be controlled at 1 − P(LCL < X < UCL) = 𝛼.

Binomial Exact Secondary Limits

To set-up secondary control limits based on an exact con-
fidence interval, the estimated probability of event for the 
ongoing study is set to the historical rate or proportion 
assuming they are the same. The exact control limits are 
based on the relationship between the binomial and F fami-
lies of distributions [14, 15].

Asymptotic Secondary Limits

Asymptotic secondary control limits, based on asymptotic 
normal distribution are calculated under the assumption that 
the cumulative proportion for the study is known and equal 
to the historical proportion.

The binomial quantile and asymptotic methods tend to 
produce an upper limit lower than that from the binomial 
exact method earlier in the trial resulting in potentially more 
breaches that will need investigation. Cumulative proportion 
charts don’t account for treatment or study exposure. Quan-
tile and asymptotic control limits rely on large sample size. 
Hence, it may be more appropriate to monitor parameters 

Figure 4  O/E chart on significant protocol deviations.
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using cumulative proportion charts after the number of par-
ticipants exceeds 30.

Figure 5A–C show a cumulative proportion chart on mon-
itoring premature treatment discontinuation for an example 
clinical trial with a sample size of 300 using Quantile, Exact 
and Asymptotic methods for a process that is in-control. The 
historical expectation is set at 0.04 with the actual premature 
treatment discontinuation rate being equal to the expectation.

Figure 6A–C show a cumulative proportion chart on 
monitoring premature treatment discontinuation for the 
same example clinical trial using Binomial Quantile, Exact 
and Asymptotic methods for a process that is out-of-control 
where the actual premature treatment discontinuation rate 
is 0.2, which is much larger than the expectation. The maxi-
mum quality tolerance limit is set at 0.12.

Beta‑Binomial Model

For events of binary type, the total number of events 
observed in the trial follows B(n, p) distribution, where  
n is the number of the samples and p is an unknown 
parameter. From the Bayes point of view, the historical 

data can be used for the prior distribution of the unknown 
parameter p . Since the total number of an event follows 
the binomial distribution, a beta distribution is used as the 
prior distribution of p.

The prior information on p from n0 Bernoulli events 
can be denoted by a Beta distribution whose mean is P0 , 
i.e., Beta(n0p0, n0(1 − p0)) . If nc future Bernoulli events 
are observed and Tc of them are success events, letting 
p1 = (n0p0 + Tc)∕n1 and n1 = n0 + nc , according to the like-
lihood of the observed data, the posterior distribution of p is 
also beta distribution [16, 17]: Beta(n1p1, n1(1 − p1)).

Based on this, the control limits for a future sample of n 
Bernoulli events with T  successes can be deduced. Given n 
and p , the distribution of T  is binomial, and the posterior 
predictive distribution of T can be derived as a beta-binomial 
distribution. That is, for future samples D =

{
xi
}
, i = 1, .., n , 

the posterior predictive distribution of T(
∑

ixi) can be 
expressed as:

(1)

f
(
T|D, Tc

)
= CT

n

(
B
(
T + n1p1, n − T + n1

(
1 − p1

)))

/(
B
(
n1p1, n1

(
1 − p1

)))
, 0 ≤ T ≤ n

(
B
(
n1p1, n1

(
1 − p1

)))
, 0 ≤ T ≤ n

Figure 5  A Cumulative proportion chart using a binomial quantile method for an in-control process, B Cumulative proportion chart using an 
exact method for an in-control process, C Cumulative proportion chart using asymptotic method for an in-control process.

Figure 6  A Cumulative proportion chart using a binomial quantile method for an out-of-control process, B Cumulative proportion chart using 
exact method for an out-of-control process, C Cumulative proportion chart using asymptotic method for an out-of-control process.
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The median of the posterior predictive distribution of T  
can be calculated easily through the derivation above. The 
median is used as a measurement to assess whether the cur-
rent observation exceeds the QTL threshold, provided that 
the general performance of current data can be expressed by 
the median of the posterior predictive distribution.

Using an example of proportion of participants with pro-
tocol deviations (PDs) of special interest in a trial, historical 
data shows that the average proportion and 95th quantile of 
participants with PDs of interest are 17.95% and 27.17%, 
respectively. The prior distribution of p based on historical 
data was deduced as Beta(13.6, 58.5).

Assuming that this QTL parameter was monitored in a 
trial with 300 enrolled participants and the expected propor-
tion of participants with PDs is 17.95% (i.e., generating a 
sample of size 300 from the Bernoulli (0.1795)), based on 
the above derivation, the prior and posterior predictive prob-
ability density diagram of T  (number of participants with 
PDs) in this process can be obtained, as shown in Fig. 7.

The quality tolerance limit uses the 95th quantile 
(27.17%) of historical data with the 80th quantile of the 
prior predictive distribution specified as the secondary limit 
(rendering sufficient time for actions) in the QTL monitor-
ing process. The control chart using median of the posterior 

prediction distribution as the measurement to assess future 
data are shown in Fig. 8.

As previously mentioned, monitoring QTL parameters 
starts when the sample size is large enough, in this example, 
monitoring begins when the number of enrolled participants 
is 30, hence the above figure only shows the results when 
the number of participants ≥ 30. As can be seen from Fig. 8, 
the median of the posterior distribution doesn’t breach QTL 
threshold, which indicates an in-control process.

Figure 9 shows an out-of-control process on monitor-
ing proportion of participants with interested PDs for the 
example of Bernoulli (0.30) event, the median of posterior 
predictive distribution of PD proportion breach both toler-
ance limits successively.

This method is generally applicable to large sample size 
trials. Moreover, since the trial-specific assessment (median 
from the posterior predictive distribution) uses both histori-
cal and current data with thresholds established using his-
torical data, it is important that the historical data are suf-
ficiently homogeneous and similar in indication and ideally 
with a similar compound under investigation.

In practice, differences between trial data and historical 
data may be found as clinical trials are not like manufactur-
ing. For example, there may be none, or insufficient histori-
cal data available for new clinical trials for new compounds 

Figure 7  Predictive density of T.
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Figure 8  In-control process for proportion of participants with PDs of interest.

Figure 9  Out-of-control process for proportion of participants with PDs of interest.
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or new indications or rare diseases. Should the historical 
data be inconsistent with current data, there is a potential for 
an inflated false alarm probability and may cause excursions 
on each run. One can use the minimal sufficient statistic 
method by Evans and Moshonov[18] to check for prior-data 
conflict.

When prior-data conflicts exist, one can consider adjust-
ing the threshold or using power priors to update the poste-
rior predictive distribution to prolong the run length of the 
process [19].

Bayesian Hierarchical Model

This method is based on a Bayesian meta-analysis of clini-
cal trials data presented by Berry et al. [20]. Technically, 
the QTL is defined in terms of the quantiles of the poste-
rior distribution of the metric of interest M but understand-
ing at this level is not required to interpret its output.

Suppose we have n independent observations of a met-
ric m , d = {m1,m2,… ,mn} . We assume that d is a random 
sample from a population with distribution f  , which is itself 
random and defined by a set of parameters θ. The value of θ 
is unknown, so we define a prior distribution �(θ | ψ), where 
ψ is a set of hyper parameters with distribution h(ψ). This is 
a standard hierarchical Bayes model, so that,

For binary data, we suppose ri of ki participants at site i 
experience at least one event, i = 1,… , n and that probability 
that a particular participant experiences the event is inde-
pendent of whether any other participant does so. Clearly, 
Ri ∼ Bin(pi, ki) , so here �� =

{
p1,… , pn

}
 , where pi = ri∕ki . 

We set π (θ | ψ) ~ Beta(a, b), so ψ’ = {a b}. h(.) ~ U(0, 10) 
as used by Berry et al. which is an empirically reasonable 
choice of hyperprior for both a and b, though other choices 
are perfectly possible. The rbqmR package that performs 
this analysis can be found at https:// github. com/ openp harma/ 
rbqmR.

Whether or not reference information is available for m , 
QTLs are based on the quantiles of the posterior distribution 
of p(d). In the simplest case, when reference information is 
not available, the quantiles themselves can be used as the 
QTLs.

For example, suppose that {mL,mU} is a (1 − �) % poste-
rior credible interval for M. It does not matter whether the 
credible interval is one or two-sided. We calculate the pro-
portion of sites p∗ whose observed metric  mi lies outside the 
interval and compare this figure to a pre-specified multiple 
of � , �∗ = Z� for some Z > 0 . If p∗ > 𝛼∗ the QTL has been 

(2)p(d) =
p(d|�)
p(d)

=
∫ f (�)�(�) h(�) d�

∬ f (�)�(�) h(�) d�d�

exceeded. For example, in a study of 20 sites, we might set 
Z to 2 and α to 0.1. Then if 5 or more sites have a value of 
 mi that lies outside the range {mL,mU} , the QTL has been 
exceeded, since 20 × 0.1 × 2 = 4.

The side of the interval can depend on the metric being 
monitored. For example, on the assumption that the ideal 
rate of baseline protocol deviations is 0, then a one-sided 
lower credible interval would be appropriate. On the other 
hand, if a treatment has known incidence of adverse events, 
then a two-sided interval would be appropriate for monitor-
ing the proportion of participants reporting AEs associated 
with the treatment.

If some knowledge of the expected range of the metric 
is known, either from reference data or by other means, the 
QTLs can be based on some summary of the posterior dis-
tribution of the metric. Examples include:

– The mean posterior probability of a baseline protocol 
deviation should be less than 0.05.

– The chance of a treatment-related SAE should lie in the 
range [3%, 8%] with probability greater than 0.6.

The use of a Bayesian hierarchical model removes the 
need for reference data and allows each study to act as its 
own control. This both reduces the burden of RBQM on 
study teams and reduces the risk that QTLs are inappropri-
ately regarded as targets.

A fully worked example of this methodology can be 
found along with the required code in the rbqmR package 
on GitHub open pharma.

Discussion

This paper described a range of statistical methods to 
establish control limits as QTLs, secondary limits or 
both, consistent with the objectives outlined in ICH E6 
R2. In addition, these methods can be implemented for 
early warning systems, to further minimize the possibility 
of end-of-study breach on quality. This paper summarizes 
currently available methods but is not exhaustive. For 
example, there are many other types of control chart avail-
able depending on the outcome parameter, such as X-bar- 
R chart (continuous), p-chart (proportion or count) and 
np-charts (attribute as nonconforming or conforming), etc.

The methods outlined have their pros and cons. In gen-
eral, O-E difference, O/E ratio and cumulative proportion 
control charts that use binomial quantile or asymptotic 
methods are effective in detecting an out-of-control pro-
cess especially if the expectations are well-defined, justi-
fied and the trial sample size is large enough. The general 
rule of thumb is to implement these methods in trials with 
a sample size of 50 participants or more. The Binomial 

https://github.com/openpharma/rbqmR
https://github.com/openpharma/rbqmR
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exact control limits can somewhat overcome the sample 
size limitations and can be run when sample size is small.

One of the key advantages of using the Beta-Binomial 
model is its non-reliance on well-defined expectations as 
required by control charts. However, the methodology relies 
on use of similar historical studies to generate the prior pre-
dictive probability distribution and tends to perform bet-
ter after accrual of sufficient participants. Inconsistencies 
between current study and historical studies can create prior-
data conflict and render the approach less desirable.

The key advantages of the Bayesian Hierarchical Model 
are that it takes account of possible variability between 
sites and, by defining action and warning limits in terms 
of the posterior, also allows a study to act as its own con-
trol. This both reduces the workload on study teams by 
removing the need to find and summarize relevant his-
torical data and reduces the risk of false alarm caused by 
inaccurate expectation.

O–E and cumulative proportion charts and beta-binomial 
methods are applied to proportions. The O/E ratio chart can 
be extended to rates accounting for exposure.

A general rule of thumb advocates running the approaches 
described in this paper for the first monitoring review after 
30 participants to minimize risk of false alarm.

Formal evaluation of the methods, including best prac-
tices will be the subject of a subsequent paper.

Small, complex designs, phase 1 studies, or platform 
studies, or Basket Designs or early parts of a seamless 
design may not be appropriate for complex statistical meth-
ods of early warning system using QTLs if the trial set-up, 
complexity, or duration does not allow for a close follow-
up of risk. Many robust statistical approaches may not be 
appropriate in small trials, and it should be acknowledged 
that not all situations can benefit from implementing QTLs 
via complex analytics and careful consideration needs to be 
given to identify the optimal methodology for the scenario. 
For example, for some smaller trials a simple count of events 
may be sufficient to establish whether a QTL excursion has 
occurred, e.g., no more than 2 participants with missing 
pharmacokinetics (PK) assessments in a 20-participants 
Phase 1 cohort.

Multiplicity should be considered depending on the num-
ber of parameters and frequency which they are monitored, 
but it is important to consider this within the context of 
RBQM. In general, the goal of QTLs is to trigger an inves-
tigation into the root cause and potential mitigation if issues 
are observed for parameters critical to the success of a study, 
so the impact of a false positive is of far less concern than 
it would be for an assessment of treatment efficacy. How-
ever, longitudinal QTL assessment may result in many cor-
related analyses throughout the course of a study targeting 
the same pre-specified variable/parameter as a QTL target, 

so an appropriate False Discovery Rate correction could be 
considered. Additionally, an excursion on one QTL target 
does not preclude investigating other targets (regardless of 
whether they encountered excursions). Like situations in 
which several safety analyses are performed, where typi-
cally multiplicity adjustment is not of concern and overall 
safety profile is deemed more important, a breach encoun-
tered through QTLs is relative to all pertinent risks which 
determine the best course of corrective action.

Although two-sided limits are recommended in most 
applications for quality control, one-sided control limits may 
be more appropriate in clinical trials so that the prespecified 
false alarm probability (α or type 1 error) can be allotted to 
the side of interest (lower or upper), which would provide 
greater power for identifying noteworthy signals in the direc-
tion of interest. The decision to use one-sided or two-sided 
control limits is generally based on the variable of interest 
and whether there is a strong indication to focus on signals 
in a single direction.

Selection of appropriate denominators for proportions 
requires consideration. Dependent upon the QTL param-
eter an adjustment may be necessary for study or treatment 
exposure (through annualized events over time) to ensure 
appropriate weight is given to each observation.

ICH E6 (R2) requires that QTLs be prespecified before 
a protocol is implemented. When there is a significant 
difference between current data and historical data, QTL 
parameters will encounter an excursion based on threshold 
determined by historical data at the early stage of a trial. 
With diligent application of RBQM principles, QTLs can 
help detect, at the earliest possible opportunity, potential 
issues in the critical data being captured. Early detection 
of issues should allow sufficient time for study teams to 
implement mitigation activities which ultimately result in 
the issue being resolved prior to the end of a study. This in 
turn results in clinical trials which maximize the chance of 
providing clear and robust interpretation of the trial’s pri-
mary objectives.

In conclusion, application of quality tolerance limits to 
parameters that are associated with critical to quality fac-
tors help identify systematic errors that compromise study 
integrity. A suite of tools has been described, to aid with 
the implementation of QTLs using appropriate statistical 
methodology.
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