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Abstract

We have explored several statistical approaches to impute missing time-to-event data that arise from outcome trials with
relatively long follow-up periods. Aligning with the primary estimand, such analyses evaluate the robustness of results by
imposing an assumption different from censoring at random (CAR). Although there have been debates over which assumption
and which method is more appropriate to be applied to the imputation, we propose to use the collection of retrieved dropouts
as the basis of missing data imputation. As retrieved dropouts share a similar disposition, such as treatment discontinua-
tion, with subjects who have missing data, they can reasonably be assumed to characterize the distribution of time-to-event
among subjects with missing data. In terms of computational intensity and robustness to violation of underlying distribu-
tional assumption, we have compared parametric approaches via MCMC or MLE multivariate sampling procedures to a
non-parametric bootstrap approach with respect to baseline hazard function. Each of these approaches follows a process of
multiple imputation (“proper imputations”), analysis of complete datasets, and final combination. The type-I error, and power
rates are examined under a wide range of scenarios to inform the performance characteristics. A subset of a real unblinded
phase III CVOT is used to demonstrate the application of the proposed approaches, compared to the Cox proportional hazards

model and jump-to-reference multiple imputation.

Keywords Time to event - Missing data - Multiple imputation - Cardiovascular outcome trial - Estimand - Informative

censoring - Proper imputation

Introduction

In the 2008 published regulatory guidance [1] for type 2 dia-
betes medications, cardiovascular outcome trials (CVOTS)
were required to demonstrate that the investigational drug
would not increase the risk of major adverse cardiovascular
events by 30% or more, compared to placebo. All subsequent
CVOTs in this field to date have met this requirement and the
regulatory agency is in the process of rolling out a new guid-
ance [2] to replace the 2008 version, with a new focus on
size of the safety trial and patient population characteristics.
These safety trials feature very large sample size, long dura-
tion and consequently come at very high costs, aiming to
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rule out cardiovascular risk increase and potentially to show
cardiovascular or renal benefits. Beyond diabetes, CVOTs
are also commonly conducted in lipid-lowering therapies
[3, pp. 1713-1722, 4, pp. 2387-2397, 5, pp. 1527-1539].
Powered by even larger sample size and higher number of
events to accrue, CVOTs for lipid-lowering drugs usually
aim to demonstrate cardiovascular benefits.

In most CVOTs, time to event endpoints are primarily
analyzed using a semi-parametric Cox proportional haz-
ards (CPH) model in which discontinued subjects with no
prior events are censored at their study discontinuation date,
assuming non-informative censoring [6, pp. 139—156], usu-
ally justifiable by censoring at random in each treatment
group [7, pp. 1-6, 8]. Although every study aims to keep
all participants in the study, some subjects will prematurely
discontinue study for various reasons including withdrawal
of consent, lost to follow-up, physician/sponsor decision,
subject move, site closure, etc.

Missing data can be generally defined as subjects who
prematurely discontinue the study with no prior events that
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can be counted towards the endpoint of interest. If the end-
point of interest has already been reached, followed by the
subject’s discontinuation from the study, then that would
not be considered missing data according to this definition.
As most CVOTs aim to follow subjects from randomization
until death or end of study, whichever occurs first, deaths
occurring during the study will generally not be considered
as missing data. For example, consider a scenario in which
a subject dies during the study and the endpoint is time to
first occurrence of 3-point MACE (defined as a composite
of non-fatal M1, non-fatal stroke and CV death). If this sub-
ject has died due to CV cause, he/she will not be counted
as missing data because his/her CV death is counted as a
MACE event. In the same example, if he/she dies due to
non-CV cause and he/she has no MACE events prior to
death, he/she will be counted as complete data with no event,
and a time-to-event will not be imputed. Overall, it’s not
trivial to handle death data because death events often come
with limited data on which to adjudicate the cause. Because
missing data censored at random in CPH model can poten-
tially result in a biased estimate [9, p. 4, 10, p. 40], we take
a missing not at random (MNAR) approach to impute the
time to event/censoring based on observed discontinuation
and then present a combined estimate of treatment effect.
Missing data sensitivity analyses have become more
and more essential to support robustness of primary con-
clusions, with regulatory agencies seeking for consistency
with primary conclusions [11]. Overall, a lot of progress
has been made in the past decade on continuous endpoints,
with various methods based on different MNAR assump-
tions proposed. For instance, return to baseline [12, pp.
242-248, 13, pp. 641-653] assumes discontinued subjects
will experience a washout effect and hence eventually return
to their baseline levels. The class of control-based methods
[14, pp. 13521371, 15, pp. 443-463] assumes subjects who
discontinue the test treatment will follow the distribution
of the reference group after discontinuation. Stress testing
strategies such as tipping point analyses [16, pp. 1085-1098]
is another very popular approach that has gained much atten-
tion in recent years. It searches for the breaking point under
which statistical significance will vanish. These sensitivity
analysis approaches can be adapted and readily applied to
binary endpoints due to the connection between linear model
and generalized linear model theory. Sensitivity analyses
for time to event endpoints are, nevertheless, underdevel-
oped. There have been some key contributors in this area
in the past decade. For instance, Jackson et al. [17, pp.
4681-4694] was the pioneer to propose a non-parametric
bootstrap approach for imputation of missing data based on
non-independent censoring (i.e., censoring not at random)
and Ruau et al. implemented his proposed approach in an

R package [18]. Because Jackson’s approach used a step
function to estimate the cumulative hazard function H(),
imputed time to event can only take the value of one of the
observed times to event. As a result, his approach is not a
full estimation approach and will not be applicable to a data-
set with very few events due to the nature of the proposed
procedures via step functions. Lipkovich et al. [19], pp.
216-229] treated missing data as non-ignorable and imputed
them under tipping point framework (delta-adjusted), using
piecewise exponential distribution and bootstrap sampling
respectively. However, there have been no rules proposed in
terms of which deltashould be selected for a standalone sen-
sitivity analysis. It’s noteworthy that both Jackson and Lip-
kovich described the application of delta/gamma approach
which serves as the foundation for tipping point sensitivity
analysis. Zhao et al. [20, pp. 229-253] proposed linear inter-
polation to conduct imputation based on bootstrap sampling,
using Kaplan—-Meier (KM) and Cox proportional hazards
model respectively. Because the field lacks a generalizable
overall MNAR (or informative censoring) assumption that
can be directly applied to missing data imputation, all above
approaches use the full dataset as the imputation basis and
heavily rely on a user-specified delta/gamma adjustment to
achieve MAR or MNAR imputation.

In the era of estimands when more and more sponsors
integrate estimands into the protocol framework, it dictates
the need to align proposed sensitivity analyses with primary
analyses on estimands, according to ICH E9 R1 [21]. In
other words, after primary analysis and primary estimand are
pre-specified in the protocol, the proposed sensitivity analy-
ses must target the same estimand so that the results can
be compared side by side. Because analyses of time to first
events in CVOT are usually conducted under the intent to
treat (ITT) principle with no exclusion of data post randomi-
zation, following the treatment policy (TP) strategy [22, pp.
1-19] there is no controversy that all subsequent sensitivity
analyses should target the same TP estimand, in terms of
handling of missing data that arise from intercurrent events.

It’s not always easy to reach common ground between
sponsors and regulators on the choice of sensitivity analy-
ses. When sponsors propose a sensitivity analysis based
on missing at random (MAR), regulatory agencies are
interested in knowing if the primary conclusion will still
hold after imposing some unfavorable assumed condi-
tions. Therefore, it’s critical and urgent to settle on some-
thing that’s relatively acceptable to both parties. Assum-
ing MAR for all discontinued subjects can be criticized,
especially for subjects who discontinued due to reasons
that might be plausibly related to their treatment (e.g., side
effects), but imposing the worst assumptions on all missing
data is also hard to justify, and ultimately, the choice of
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assumptions for imputing missing data should be driven
by the estimand of interest. The approach we propose
can serve as a balance point between sponsor and regula-
tory agencies because its underlying MNAR assumption
is quite neutral. The assumption states that subjects with
missing data will have similar treatment effect compared
to retrieved dropouts (defined as off-treatment subjects that
remain in the study) in the same randomized group. It uses
the subpopulation of “off-treatment” subjects to multiply
impute the missing data.

Recently He et al. published a paper about retrieved
dropout multiple imputation (MI) in CVOT using piece-
wise exponential distribution [22, pp. 1-19]. It was demon-
strated using a lipid-lowering CVOT dataset, with respect
to time to first MACE. Results of the piecewise exponential
model were compared to the regular CPH model and the
jump to reference multiple imputation. However, simula-
tions were not conducted to inform type-I error and power
rates. In our manuscript, we explore the approach in different
ways: parametrically or non-parametrically with respect to
the baseline hazard function. More specifically, we explore
bootstrap, piecewise exponential and Weibull distributions
for the imputation of time to event missing data. Simulation
studies are conducted to help understand the type-I error and
power rates under different clinical trial scenarios. Lastly,
we illustrate these approaches by applying them to a real
unblinded phase 3 CVOT.

The CVOT dataset needs to be broken down into 3 non-
overlapping subsets, before the initiation of the analysis.
Similar to the implementations in continuous endpoints [23,
p- 82], retrieved dropouts (RDs) in outcome trials are usually
defined as subjects who have discontinued randomized treat-
ment but continue to stay in the trial. Because they are con-
tinuously followed until the occurrence of death or admin-
istrative censoring datacut, their outcome will be known.
In the proposed analyses, they form the fundamental basis
of missing data imputation, given that they resemble the
missing data subjects in terms of treatment discontinuation
and given the assumption that subjects who discontinued
treatment will have similar outcomes whether they were fol-
lowed up in the study or not. Subjects who have withdrawn
consent or lost to follow-up will not take the assigned study
medication, which is essentially identical to RDs except that
RDs continue to stay in the study so that their outcome will
be known. Completers, on the other hand, are defined as
subjects who have completed the study while on study medi-
cation. Missing data is the remainder of the CVOT dataset,
i.e., subjects who have discontinued from the study with
no prior endpoint events. In the “Statistical Methods” sec-
tion, we will first illustrate these methods with mathemati-
cal notation. Then we will summarize the implementation
into an algorithm format. Next, we will conduct simulation
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studies to understand and compare the performance of each
approach under different clinical trial scenarios. The data
analysis section provides a real application of these analyses
to an unblinded CVOT dataset. Finally, all findings will be
discussed and concluded.

Statistical Methods
The Basis of Time to Event Imputation

Assume in a CVOT 2N subjects are randomized to
two treatment groups in a 1:1 allocation ratio. Let
T=T,(i=1,...,2N) denote the time to first event/censor-
ing of the primary endpoint. Then E; is used to denote the
event status: they are assigned a value of 1 for events and 0
otherwise.

We first model the conditional probability of a subject
with missing data because this will enable the derivation of
imputed time to first event. Let ¢ denote the observed time
to censoring, e.g. from randomization to study discontinua-
tion, ¢ is the unknown time to first event. S(¢) stands for the
survival function of T, then we have the following general
equation:

P(T5t|T>c)=1—P(T>t|T>c)=1—&e(O,1).

S(c)
()

t needs to satisfy the condition thatr > ¢, otherwise the
above equation will reduce to 0. Then based on the above
equation, we can randomly sample a variable from uniform

distribution, i.e. u ~ unif(0, 1) and ¢ can be estimated by
S50
5()
ofS(#), the estimated 7 is ensured to be greater thanc. Simi-

larly this can be applied to all k£ subjects with missing data,

solving the equation=— = u. Due to the monotone property

by drawing k independent variables (u;, ...,u;) from
unif (0, 1), s.t.

S.(t.

]<J> zuj(jzl,_,,,k), )
8;(c))

where S/‘(Cj) = S<Cj|trtj,Xj> = P(T > cj|trtj,Xj) are sur-
vival functions adjusting for treatment and baseline covari-
ates and /t; are the estimates of 7; by solving Eq. (2). For
simplicity with no loss of generalization, let 7r7; = 1 denote
active treatment group and 7r¢; = 0 denote placebo group and
X; is the vector of baseline covariates.

Next, we will describe how we combine this imputation
step with the CPH model when the baseline hazard function
hy(t) is derived using: (1) non-parametric bootstrap sam-
pling, (2) parametric distribution.
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Bootstrap

When an explicit parametric form is not imposed on baseline
hazard function 7,(¢), just like in the semi-parametric Cox
proportional hazards model, we propose to use bootstrap
and interpolation to multiply impute the time to event condi-
tional on observed time to censoring. Let C; denote the indi-
vidual time to study closure from randomization R;. With-
out loss of generalization, assume the study uses a common
study datacut D and C; is defined as C; = D — R; + 1in days.

Assume there are a total of B bootstrap samples which
generate B sets of survival function. Given a bootstrap sam-
ple b, the associated survival function is defined as

s = S(b)<t|trtj,Xj> - P<b>(T > tltrtj,Xj>(b —1,....B).
We first construct a grid with (m+2) grid points as follows:
¢ = t(o) < t(l) < t(z) - < t(’” D < t(’”) < t(’”“) C; Then

S(b)(c) S(b)<t(l)>
NI

dict” function along with “coxph” in R, written as
Sj(.b)(c-) S(b)(C»). Since S@(z-) is derived as
§(b)( 1) = S(b)( )u;® according to Eq. (2), we can identify
interval, say (t(p) t(p+1)) in which #® falls, s.t.
S;b)<](f”+l)) < S(b)( ) < S(b)(rf>).Then 1;is estimated using

linear interpolation, i.e.

S(b)(C ) can be derived using “pre-

J

fPrD
/t;b) - tf('p) * b (pj+1) ’j\(b) (Sl(b)( ) - Sfb)<tf>>
3 <tj ) -5 (z”)

3

If tj(b) falls outside the grids, then tj(”) is estimated as
i T
Parametric

Using parametric distribution to model /(7), estimates of 7; can
be derived in closed form. In the following sections, we dem-
onstrate how to use piecewise exponential and Weibull distri-
butions respectively to model the distribution of 4 (¢) because
they are able to represent distribution of most baseline hazard
functions for time to event endpoints [24, pp. 682-701, 25, p.
873, 26, pp. 59-73, 27, pp. 10-11, 28, p. 152].

2,50
tog (1, ) eGP 4 ¥ Oz, =1,y )

T™M-1 T ®
2B
'l{.h) = _ l‘)g(”/’*(h))" i” +ZC=1}‘V(Z))(T»'_TV71)
J Tp-1 3,0
(b)
—log (u;, ®))e™ Kl

P (b)

1.0 € (57(5,),5” (5,1) ]2 <p < 1= 1.

Piecewise Exponential

When baseline hazard function follows a piecewise expo-
nential distribution, the proportional hazards model is writ-
ten as h(t|Z;:0) = ho(z)ezfﬂ where hy(f) = 4, for ¢ in
[7,_1,7,), With 0 =7, < 7} < --+ < T); = o0 as partitioning

points to be estimated as well and Z; is the full design vector
denoted as Z; = (1rt;, X ) Its correspondmg survival function

is written as

exp(—lltezjﬂ) te[0, ;)
)+ A (-1 D) elr, ) - (4)
— T )+ Ay(t— TM,I))erﬂ) te[Ty_y, )

8(11Z;:0) = exp(~(TZ 4,7,

exp(— (ZC/I 11’1\/

A total of B imputations are planned. To make sure the
imputation follows the “proper” principle [29, pp. 202-243,
30, pp. 473-489], different sets of coefficients and variance
estimates have to be generated and applied to each imputa-
tion. The following two methods can fulfill this goal because
they are asymptotically equivalent [31, pp. 593-607]. For SAS
users, the most convenient way is to use “MCMC sampling”
to draw Bayesian posterior samples for parameter coefficients
B and scale parameters A, (u = 1, ..., M). The alternative is to
draw from a multivariate normal distribution with the MLE
estimates as the mean and the estimated variance matrix of
the MLE estimates as the variance (i.e., “MLE multivariate
sampling”). Both approaches start from fitting a CPH model
based on a piecewise exponential distribution using data of
all RD subjects, with parameter estimates and estimate of the
covariance matrix denoted as 6 = (/i, 3) and v/a\r(@).

For each imputation (b =1,...,B), parameters
oY) = (,l(b),ﬂ(b)) = (/11("), cees AM(b),ﬁ(b)) can be randomly
sampled using either approach:

e MCMC sampling: ~P(,1m|,11(t+l)

A(m—l),(t+1)(b)’ /1(m+l),(t)(b)’ Ay, (,)(b) ﬂ(;)(b))
m=1,...,M and continue through f until iteration 7 is
large enough and chain convergence is achieved.

o MLE multivariate sampling: sample 6 ~ MVN(@,

\iz\r(a)).
Then by combining the above survival function formula (4)
with (2) and by letting Sj(,h)(t) be defined as

S;b)(t) = S(t|Zj;0(b)), the estimated time to first event is
expressed as

)‘m (l+1)
for

0, ® = S([’)( Ju® € (0 S(b)(TM 1)]

®

uj*a’) S (Sj(.b)(‘rl), 1]
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Weibull

We first introduce accelerated failure time (AFT) [32, pp.
31-51, 33, pp. 1871-1879] model because the following AFT
model is directly linked to Weibull regression. AFT model is
very frequently used in real applications with statistical pack-
ages and software readily available [34, pp. 583-592].

logTj =y, + ij + o€,

where o is scale parameter and ¢; follows a Gumbel distribu-
tion (also known as extreme-value distribution).

Using the notations of Weibull AFT model, the hazard
function based on Weibull distribution can be written as

1 —(Z;y+ry)/c
h(t1z;) = Leo"'e " = hy(H)e%P where

p=-1,

o

11

L_. ©)

e

ho() = é

Therefore, the baseline hazard function follows a Weibull
distribution with é as the shape parameter and e'o as the scale
parameter. Because the above AFT model is readily imple-
mented in statistical software, e.g., “proc lifereg” in SAS
software and “SurvRegCensCov” package in R, we will use
notations of AFT model to derive imputed time to event as
follows. To start with, we use = (o-, Y0 y) to denote the
vector of parameters.

For each imputation (b=1,...,B), 0P is sampled
from either MCMC or MLE sampling. Then using

1
S(tle) = ¢~P/9)7 with linear predictor n =2y +7vin
conjunction with (2), time to first event is derived as

~) &
Ab) _ = j b
i = (G —exp| =5 log (u;”)) (7

where nA(jb) = Zj?(b) +7?.

Algorithm

We summarize the general framework of implementation
in this section.

A total of B multiple imputations/bootstrap samples are
planned for imputation of missing data.

1. A Cox proportional hazards model is fit to the dataset

comprised RDs (“RD dataset”) adjusting for treatment
group and other pre-specified baseline covariates.

@ Springer

e Bootstrap: B different input datasets are created, by
sampling from RD dataset with replacements. Then B
different CPH models are fit, and each model will serve
as the basis of the imputation.

e  Parametric: One CPH model is fit, using the RD dataset.
Then B different sets of parameters are sampled using
either Bayesian MCMC sampling or MLE multivariate
sampling (i.e., “proper imputation”).

For each imputation (b = 1,..., B), proceed to step 2—4
sequentially.

2. Missing data of time to first event will be estimated
using

e Bootstrap: Use formula (3) in conjunction with (2)
with pre-specified grid points.

e Parametric: Use formula (5)/(7) in conjunction
with (2).

3. Then imputed time to first event will be added to the
randomization date to derive the imputed outcome.

e [f the value is greater than the censoring data cut,
then the imputed outcome will be deemed as a cen-
sored and his time to censoring will be derived as
censoring data cut—randomization date + 1 in days.

e Otherwise, the imputed outcome will be deemed as
an event and the imputed value will be used as the
time to first event. For studies that conduct vital
search on subjects that are lost to follow up or have
withdrawn consent, additional steps can be consid-
ered. For instance, if final vital status is death, the
imputed event date also needs to be compared to
death date. More specifically,

e [t will be imputed as an event if and only if the
imputed event date 4+ randomization date doesn’t
exceed the earlier of death date and study data cut.

e Otherwise, it will be treated as censored and time
to censoring will be derived as the earlier of death
date and study data cut-randomization date + 1.

4. All imputed outcomes will be analyzed together with
RDs and completers using the regular CPH model. Coef-
ficient estimates of treatment effect and standard error
(SE) will be generated.

5. Repeat step 2—4 for all B imputations. Coefficient esti-
mates and SE are pooled and combined into a single
estimate following Rubin’s rules [29, pp. 202-243].

Simulation Studies

Simulation studies are conducted to evaluate the validity
of the proposed approaches with respect to different clini-
cal trial scenarios. Starting from type-I error simulations
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we will first present and compare type-I error rate of the
three proposed methods, under the null hypothesis that
there is no difference of treatment effect between the two
randomized groups, i.e. H, : HR = 1 and with respect to
different combinations of sample size, discontinuation rate
and retrieved dropout rate, then we move to power simula-
tions to evaluate how powerful these approaches are when
the alternative hypothesis that the drug is superior to pla-
cebois true,i.e. H; : HR < L.

Type-I Error

Five thousand datasets are simulated under the null hypoth-
esis H, : HR = 1. Under each replicate, the trial is simulated
as a two-arm randomized clinical trial with a 1:1 allocation
ratio, assuming an overall event rate of 2% per person-year
according to a few completed CVOT studies of 5-6 year
duration [3, pp. 1713-1722, 5, pp. 1527-1539], a 1-year
enrollment, a fixed duration of 5.5 years (i.e. a common
censoring data cut of 5.5 years from the first randomization
is applied). The following 27 scenarios with respect to dif-
ferent sample size, proportion of RDs and missing rate are
explored:

e Sample size: 1000, 5000, 10,000;

e RDs: 5%, 20%, 40%;

e Overall discontinuation from the study, by EOS: 5%,
15%, 30%.

Time to event is simulated under exponential distribution.
To test how robust the conclusions will hold, an additional
distributional assumption is used. Time to discontinuation
is simulated independently of events to avoid bias. RDs are
randomly selected from the population set excluding study
discontinuations to meet the definition and therefore there’s
no overlap between RDs and Overall discontinuation from
the study. Empirical type-I error is defined as proportion of
simulations significant at a significance level of two-sided
0.05. Results of type-I error are summarized in Table 2 and
Supplementary Table 1.

Power

A thousand datasets are simulated under the alternative
hypothesis that the drug is superior to placebo with a 20%
risk reduction, i.e. H; : HR = 0.8. The event rate in the pla-
cebo group is simulated as 2% per person-year, and the event
rate in the active treatment group is modeled as 2% X HR
accordingly, with the exception that RDs in the active group
is simulated as 2% X HR* (HR < HR* < 1) assuming RDs

in the active group will have a slightly reduced risk reduc-
tion due to off-treatment periods. HR*=0.9 is used in this
instance. The placebo discontinuation rate is simulated in the
same way as in type-I error simulations. Whereas, the active
group discontinuation rate is assumed to be lower by 2%,
compared to placebo. Scenarios with sample size of 1000 is
removed because a CVOT with 1000 subjects is very under-
powered. The other parameters used in simulations remain
the same as type-I error simulations.

Empirical power rate is defined as proportion of simula-
tions significant at a significance level of two-sided 0.05.
In addition, power calculation based on the log-rank test is
provided as a comparison reference which will help inform
the conclusions. Results are summarized in Fig. 1.

Data Analysis

We take a subset of a completed and unblinded phase
III CVOT dataset to demonstrate applications of these 3
approaches. The subset is defined by restricting to sub-
jects who have been randomized no later than year 4 (i.e.,
4 years from the first randomization) and by shortening
the study duration to 4 years (i.e., by applying a common
censoring data cut of 4 years from the first randomization).
In addition to the 3 approaches, we further explore jump to
reference (j2r) imputation, and a regular CPH model and
use them as comparison basis.

Within this snapshot there are a total of 7740 subjects
(5143 on the active treatment group and 1998 on pla-
cebo) in this dataset, among which 1362 are RDs, 776
are premature discontinuations and 466 are considered
as missing data. These characteristics are summarized
in Table 1. The primary endpoint is time to first occur-
rence of 3-point MACE defined as a composite endpoint
of non-fatal stroke, non-fatal MI and CV death. There
are 599 first MACE events (379 in active vs 220 in pla-
cebo) without imputation. We summarize the n(%) of
events and censored prior to imputation by treatment
group in Table 1. Missing data, RDs and completers are
three mutually exclusive components of the dataset, add-
ing up to 100%. For subjects in the category of “Have
events prior to discontinuation”, if they are completely
on-treatment leading to the first occurrence of MACE,
they are considered completers; otherwise, they are con-
sidered RDs.

J2r approach assumes the survival function of the
active group will follow the distribution of the placebo
group (coded as 0 without loss of generality) following
study discontinuation. In other words, formula (1) will be
adapted to reflect the distribution switch for missing data
in active treatment group (coded as 1), written as (where
t>c)
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Figure 1 Compare the Power Rate of Three MIRD Approaches Under Different Clinical Scenarios
Plec<T<Ltltrt=1,X) PT>cltrt=1,X)—PT >t|ltrt=0,X S(t|trt =0,X
PUT < T > ot = 1.3 = PE<T <1 ) _ P(T>c| )= P(T > 1| ) _ sl )
P(T > cl|trt = 1,X) P(T > cl|trt = 1,X) S(eltrt =1,X)
Then the estimate 7 will be derived by solving the equa- ®
tion % =u ~ U(0, 1). In the multiple imputation set- Table 1 Disposition of Subjects in the CVOT Snapshot
; ) 5 S(lr=0.X:6") : Active Placebo
ting 6% in Selm1x0™) = u can be sampled using MCMC
or MLE sampling using approximation or interpolation. In ~ Randomized 5143 2598
this case, we implement the J2R approach based on Weibull ~ Discontinued the study 501 (9.7%) 275 (10.6%)
regression by means of MLE sampling because Weibull ~ Missing data 306 (5.9%) 160 (6.2%)
regression is considered as a substantive model [35, pp. ~ Have events prior to discon- 195 (3.8%) 115 (4.4%)
645-658]. The associated imputation formula is written as tinuation
’ p RDs 835 (16.2%) 527 (20.3%)
A < 5" Completers* 4002 (77.8%) 1911 (73.6%)
7® — max exp o — " c,ﬁ —exp 0 log( u'(b)) ,C; *Still in the study being followed by the snapshot date or have discon-
J c® / o® / / tinued the study due to death

®
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The 3 categories (Missing data, RDs and Completers) add up to the
randomized population
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Table 2 Type-I Error Results for Different Scenarios, Evaluated at a Two-Sided Alpha=0.05

Different Piecewise Exponential Bootstrap Weibull
Proportion of  Proportion of
N RDs Discontinuation” Type-I Error Avg Bias* Type-I Error Avg Bias* Type-I Error Avg Bias*
1000 0.05 0.05 0.0494 0.005 0.0518 —0.003 0.0352 —0.002
0.2 0.05 0.0532 —-0.001 0.0526 —0.003 0.0518 —0.003
0.4 0.05 0.0528 —0.002 0.0524 —0.003 0.0524 0.002
0.05 0.15 0.0386 0.018 0.0568 —0.003 0.0128 —0.005
0.2 0.15 0.0532 0.003 0.0540 —-0.004 0.0506 —0.004
0.4 0.15 0.054 —-0.001 0.0550 —-0.004 0.0532 —0.004
0.05 0.3 0.0254 0.037 0.0526 —-0.005 0.0567 —0.0002
0.2 0.3 0.0529 0.010 0.0542 —-0.003 0.0464 —0.003
0.4 0.3 0.0551 0.003 0.0554 —-0.004 0.0534 —0.004
5000 0.05 0.05 0.0538 0.002 0.0528 <0.001 0.0526 <0.001
0.2 0.05 0.0514 0.001 0.0510 <0.001 0.0506 <0.001
0.4 0.05 0.0526 <0.001 0.0526 <0.001 0.0528 <0.001
0.05 0.15 0.0488 0.005 0.0528 <0.001 0.047 <0.001
0.2 0.15 0.0514 0.002 0.0514 <0.001 0.0492 <0.001
0.4 0.15 0.0534 0.001 0.0520 <0.001 0.0518 <0.001
0.05 0.3 0.0420 0.010 0.0492 —0.0002 0.0356 <0.001
0.2 0.3 0.0516 0.002 0.0500 —0.0003 0.0500 —0.0002
0.4 0.3 0.0514 0.001 0.0523 —0.0004 0.0516 <0.001
10,000 0.05 0.05 0.0536 0.002 0.0524 0.0015 0.0526 0.0015
0.2 0.05 0.0516 0.002 0.0514 0.0015 0.0508 0.0015
0.4 0.05 0.0510 0.002 0.0525 0.001 0.0514 0.0015
0.05 0.15 0.0484 0.005 0.0482 0.002 0.0468 0.0020
0.2 0.15 0.0506 0.002 0.0485 0.001 0.0490 0.0019
0.4 0.15 0.0510 0.002 0.0510 0.0026 0.0504 0.0019
0.05 0.3 0.0456 0.007 0.0470 0.0019 0.0424 0.0025
0.2 0.3 0.0488 0.004 0.0478 0.0029 0.0496 0.0025
0.4 0.3 0.0488 0.003 0.0470 0.0019 0.0492 0.0025

#Missing rate is lower than proportion of study discontinuation because subjects with events prior to study discontinuation are not counted as

missing data
*On log(HR) scale

Results
Type-I Error

As shown in Table 2, all three approaches well control the
type-I error rate and the bias relative to O is negligible (in log
scale, 0 corresponding to HR =1). It’s noteworthy in small
sample size scenarios where the RDs and missing data are
very imbalanced, the type-I error of piecewise exponential
distribution seems a little deflated. For instance, when there
are 5% RDs and 30% missing data in a study with a total
of 1000 subjects, piecewise exponential distribution returns
slightly deflated type-I error rate while the type-I error rate
of the other two is close to 0.05 (Table 2).

Power Rate

All three approaches have very similar power rate, with the
bootstrap approach slightly more powerful than the other
two (Fig. 1). Furthermore, all three approaches follow simi-
lar patterns: (1) given a sample size and an RD rate, more
missing data will lead to some power loss; (2) When sample
size is large and given a study discontinuation rate, higher
proportion of RDs results in a slightly higher power com-
pared to studies with a lower proportion. (3) When sample
size is small to medium, given a study discontinuation rate,
low RD rates lead to higher power rates. It’s very noteworthy
in some scenarios the proposed approaches are more power-
ful than log-rank test assuming no RDs in the study. Differ-
ent competing forces that contribute to these phenomena will
be discussed in the “Discussion” section.
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Figure 2 Compare the HR of Three MIRD Approaches Under Different Clinical Scenarios

From the perspective of hazard ratio, all three approaches
lead to slightly reduced risk reduction (i.e. larger HR) after
adjusting for diluted treatment effect contributed by RDs
(Fig. 2). Within the same sub plot, more RDs lead to a more
reduced risk reduction (i.e., a larger HR); for instance, the
HR corresponding to 20% RDs is larger than the one with
5% RDs.

@ Springer

Data Analysis

All imputation approaches lead to an increase in num-
ber of events, compared to the regular CPH. Among all
approaches, J2R leads to the highest increase in number
of events, especially in the active group which explains
why its estimated risk reduction (=1 —HR) is the small-
est of all. All three approaches yield very similar results
consistently, with risk reduction all larger than J2R but
slightly smaller than CPH. For the bootstrap version,
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Ta.ble 3 Resu.lts.of Using HR (95% CT)

Different S.tansnca? Methods to Method Events in placebo Events in Active vs Placebo p-Value

Analyze Time to First MACE
cph 220 379 0.86 (0.73,1.02)  0.08
j2r 224.2 392.8 0.87(0.74,1.03)  0.11
MIRD_weibull 222.5 385.8 0.86 (0.73,1.02)  0.09
MIRD_pwe* 222.4 386.9 0.87 (0.73,1.02)  0.09
MIRD_bootstrap (grid width=60 days) 222.5 385.4 0.86 (0.73,1.02)  0.08
MIRD_bootstrap (grid width=90 days) 222.4 386.9 0.87 (0.73, 1.02) 0.09

*4 piecewise exponential hazards are used with cut points generated using cuts <-c(0, quantile(A$t2e)
[2:4], max(A$t2e)+ 1) before passed to the piecewise function

using more refined grids will lead to an estimated risk
reduction very similar to the CPH, according to Table 3.

Software Implementation

SAS is recommended for implementation of MCMC sam-
pling because Bayesian sampling is readily embedded in
several relevant SAS procedures such as Proc Lifereg, Proc
MCMC. In combination with these SAS procedures, it’s
adequate to use SAS for imputation and data analyses.
For example, users can firstly use Proc lifereg to generate
the Bayesian sampling of the model parameters, and then
perform matrix manipulation through Proc IML for time
to events imputation, followed by Proc Phreg for the final
analysis by imputation. Nevertheless, overall, it still poses
some computing challenges for simulations, especially for
approaches involving intensive interpolations and sam-
pling. R is used in all simulations of this manuscript with
the use of MLE sampling, due to the asymptotic equiv-
alence [36, pp. 473—483]. The only limitation exists in
piecewise exponential imputation because the current R
package “eha” only provides a partial covariance matrix
estimate, restricting to regression coefficients only (i.e.
without piecewise baseline hazards). All R functions and
SAS macros are provided in the supplementary files for
reference.

Discussion

Cox proportional hazards model has long been regarded as
the gold standard to analyze time to first event endpoints in
cardiovascular and renal outcome trials [37, pp. 1425-1435,
38, pp.- 896-907, 39, pp. 1436-1446, 40, pp. 841-851,
41, pp. 2295-2306, 5, pp. 1527-1539, 42, pp. 347-357,
43, pp. 2117-2128]. On one hand, it’s still frequently
used as primary analysis as a well-established model. On
the other hand, it has been noted that censoring for pre-
mature study discontinuation, known as presumed “non-
informative censoring” can result in potential bias in the

treatment effect estimate across different therapeutic areas
[44, pp. 2001-2009, 10, p. 40, 45, p. 101865, 9, p. 4, 46,
pp. 327-328, 47, pp. 1433-1440]. In our proposed analy-
ses, subjects censored due to non-administrative reasons are
treated as missing data if they don’t have relevant events
prior to the discontinuation, and the potential for informative
censoring is allowed by imputing their outcome assuming
they follow the distribution of RDs in the same randomized
group. Generally, they are not considered as missing due to
random reasons, and we aim to impute their outcome after
their study discontinuation, based on the assumption that
their time to event distribution will approximately follow
the distribution of RDs in the same randomized group. As a
MNAR assumption, this serves as the foundation for imple-
mentation of the imputation. The subsequent analysis and
combining steps are common to almost all MI approaches.

Multiple imputation is favored over single imputation
because it allows uncertainty by means of multiple sampling,
regardless of whether the sampling is parametric or not. Fur-
thermore, it leads to non-biased estimates by using Rubin’s rule
which combines within and between imputation variability [29,
pp- 202—243]. Unlike the continuous MI-RD approach, imple-
mentation of time to event MI-RD approach doesn’t have small
sample size issues in CVOT. Because size of outcome trials
is normally large and usually it has more RDs than missing
data, there is a high degree of plausibility that the model-based
standard error is sufficiently small to get imputation values that
closely approximate the results that would have been obtained in
the real world. Generally speaking, 5-20% RDs in a CVOT will
enable the implementation of the MI-RD approach.

All three variations have well-controlled type-I error rate.
In terms of power rate, there are scenarios under which these
approaches lead to improved power rate, as a result of inter-
actions of two “competing” forces. The first one refers to
increase in number of events from imputation, while the
other one refers to attenuated risk reduction (i.e., larger HR)
after imputation. More specifically, these MI approaches
based on RDs tend to increase the overall hazard rate of the
active group post-imputation due to a slightly increased haz-
ard rate in the active group during the off-treatment period.
Time to event endpoints are mainly powered by total number
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of events and the alternative HR assumption. The first one
has the potential to increase power via the additional events
added by imputation while the latter has the tendency to
reduce power via attenuation of treatment effect toward an
HR that is closer to 1.0. The scenarios in which the first force
outweigh the 2nd one are those with power gain over tradi-
tional log-rank tests assuming no RDs (Fig. 1). In the setting
of a typical superiority CVOT with 4000 to 10,000 rand-
omized subjects, 15-25% RD rate and 1% annualized study
discontinuation rate, our proposed approaches will lead to
increased power rates. For smaller CVOTs (first two rows
in Fig. 1), more RDs lead to reduced power rates in every
sub plot because the impact of treatment effect attenuation
outweighs increase in events post-imputation.

The proposed three approaches can be implemented and
applied to real clinical datasets in either R or SAS on PC
platform. They have very similar performance but slightly
different computational complexity. For each approach,
users can either choose MCMC sampling or MLE sampling
because they are asymptotically equivalent. Although the
current R implementation for piecewise exponential distri-
bution using R package “eha” only allows partial sampling
of parameters, the type-I error and power rate assessments
do align with the results of other approaches. Users can find
all R functions and SAS examples in the supplementary
files. No matter which approach the sponsor pre-specifies
for the clinical study, it’s essential to gain consensus with the
health authorities (HA) before unblinding a study.

In this manuscript, we propose an example of using a
MNAR assumption to impute missing data of time to event
endpoints. There are various ways to pre-specify and to per-
form sensitivity analyses. The fundamentals are to decide
which assumption best fits the purpose. A conservative
assumption has the potential to solidify the primary conclu-
sion if the results don’t alter the primary conclusion, but it
also has the risk of deviating from primary results. Because
our assumption is neither conservative nor aggressive, it
should be relatively acceptable to both HA and sponsors.

Conclusion

We propose three MI approaches based on the same MNAR
assumption for time to event endpoints in CVOT. They truly
are estimation approaches that can be implemented using
non-parametric bootstrap or parametric methods via either
MCMC or MLE multivariate sampling (“proper imputa-
tions”) due to asymptotic equivalence. These approaches can
be readily extended to studies in other therapeutic areas if
the trials continue to follow patients regardless of treatment
discontinuation or not. The three proposed approaches have
very similar type-I error and power rates given a clinical
scenario, with bootstrap being the most optimal solution due

@ Springer

to the nature of the approach that it takes into account uncer-
tainty by not imposing parametric restriction. It’s noteworthy
that bootstrap approach is more computationally intensive,
while Weibull regression is the least. When bootstrap com-
putation is a burden, Weibull or piecewise regression will
suffice according to the supplementary analysis conducted:
These two approaches are also robust when the underlying
data deviates from the parametric distribution. Because the
underlying assumption is not as conservative as jump to
reference multiple imputation, the estimated HR usually is
smaller than jump to reference analyses but larger than Cox
model. We believe the proposed MI approaches meet the
expectation of health authorities in terms of their capabilities
to justify robustness of primary conclusions. Furthermore,
they can serve as primary analysis and driver of sample size
estimation.
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