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Abstract
We have explored several statistical approaches to impute missing time-to-event data that arise from outcome trials with 
relatively long follow-up periods. Aligning with the primary estimand, such analyses evaluate the robustness of results by 
imposing an assumption different from censoring at random (CAR). Although there have been debates over which assumption 
and which method is more appropriate to be applied to the imputation, we propose to use the collection of retrieved dropouts 
as the basis of missing data imputation. As retrieved dropouts share a similar disposition, such as treatment discontinua-
tion, with subjects who have missing data, they can reasonably be assumed to characterize the distribution of time-to-event 
among subjects with missing data. In terms of computational intensity and robustness to violation of underlying distribu-
tional assumption, we have compared parametric approaches via MCMC or MLE multivariate sampling procedures to a 
non-parametric bootstrap approach with respect to baseline hazard function. Each of these approaches follows a process of 
multiple imputation (“proper imputations”), analysis of complete datasets, and final combination. The type-I error, and power 
rates are examined under a wide range of scenarios to inform the performance characteristics. A subset of a real unblinded 
phase III CVOT is used to demonstrate the application of the proposed approaches, compared to the Cox proportional hazards 
model and jump-to-reference multiple imputation.

Keywords Time to event · Missing data · Multiple imputation · Cardiovascular outcome trial · Estimand · Informative 
censoring · Proper imputation

Introduction

In the 2008 published regulatory guidance [1] for type 2 dia-
betes medications, cardiovascular outcome trials (CVOTs) 
were required to demonstrate that the investigational drug 
would not increase the risk of major adverse cardiovascular 
events by 30% or more, compared to placebo. All subsequent 
CVOTs in this field to date have met this requirement and the 
regulatory agency is in the process of rolling out a new guid-
ance [2] to replace the 2008 version, with a new focus on 
size of the safety trial and patient population characteristics. 
These safety trials feature very large sample size, long dura-
tion and consequently come at very high costs, aiming to 

rule out cardiovascular risk increase and potentially to show 
cardiovascular or renal benefits. Beyond diabetes, CVOTs 
are also commonly conducted in lipid-lowering therapies 
[3, pp. 1713–1722, 4, pp. 2387–2397, 5, pp. 1527–1539]. 
Powered by even larger sample size and higher number of 
events to accrue, CVOTs for lipid-lowering drugs usually 
aim to demonstrate cardiovascular benefits.

In most CVOTs, time to event endpoints are primarily 
analyzed using a semi-parametric Cox proportional haz-
ards (CPH) model in which discontinued subjects with no 
prior events are censored at their study discontinuation date, 
assuming non-informative censoring [6, pp. 139–156], usu-
ally justifiable by censoring at random in each treatment 
group [7, pp. 1–6, 8]. Although every study aims to keep 
all participants in the study, some subjects will prematurely 
discontinue study for various reasons including withdrawal 
of consent, lost to follow-up, physician/sponsor decision, 
subject move, site closure, etc.

Missing data can be generally defined as subjects who 
prematurely discontinue the study with no prior events that 
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can be counted towards the endpoint of interest. If the end-
point of interest has already been reached, followed by the 
subject’s discontinuation from the study, then that would 
not be considered missing data according to this definition. 
As most CVOTs aim to follow subjects from randomization 
until death or end of study, whichever occurs first, deaths 
occurring during the study will generally not be considered 
as missing data. For example, consider a scenario in which 
a subject dies during the study and the endpoint is time to 
first occurrence of 3-point MACE (defined as a composite 
of non-fatal MI, non-fatal stroke and CV death). If this sub-
ject has died due to CV cause, he/she will not be counted 
as missing data because his/her CV death is counted as a 
MACE event. In the same example, if he/she dies due to 
non-CV cause and he/she has no MACE events prior to 
death, he/she will be counted as complete data with no event, 
and a time-to-event will not be imputed. Overall, it’s not 
trivial to handle death data because death events often come 
with limited data on which to adjudicate the cause. Because 
missing data censored at random in CPH model can poten-
tially result in a biased estimate [9, p. 4, 10, p. 40], we take 
a missing not at random (MNAR) approach to impute the 
time to event/censoring based on observed discontinuation 
and then present a combined estimate of treatment effect.

Missing data sensitivity analyses have become more 
and more essential to support robustness of primary con-
clusions, with regulatory agencies seeking for consistency 
with primary conclusions [11]. Overall, a lot of progress 
has been made in the past decade on continuous endpoints, 
with various methods based on different MNAR assump-
tions proposed. For instance, return to baseline [12, pp. 
242–248, 13, pp. 641–653] assumes discontinued subjects 
will experience a washout effect and hence eventually return 
to their baseline levels. The class of control-based methods 
[14, pp. 1352–1371, 15, pp. 443–463] assumes subjects who 
discontinue the test treatment will follow the distribution 
of the reference group after discontinuation. Stress testing 
strategies such as tipping point analyses [16, pp. 1085–1098] 
is another very popular approach that has gained much atten-
tion in recent years. It searches for the breaking point under 
which statistical significance will vanish. These sensitivity 
analysis approaches can be adapted and readily applied to 
binary endpoints due to the connection between linear model 
and generalized linear model theory. Sensitivity analyses 
for time to event endpoints are, nevertheless, underdevel-
oped. There have been some key contributors in this area 
in the past decade. For instance, Jackson et al. [17, pp. 
4681–4694] was the pioneer to propose a non-parametric 
bootstrap approach for imputation of missing data based on 
non-independent censoring (i.e., censoring not at random) 
and Ruau et al. implemented his proposed approach in an 

R package [18]. Because Jackson’s approach used a step 
function to estimate the cumulative hazard function H(t) , 
imputed time to event can only take the value of one of the 
observed times to event. As a result, his approach is not a 
full estimation approach and will not be applicable to a data-
set with very few events due to the nature of the proposed 
procedures via step functions. Lipkovich et al. [19], pp. 
216–229] treated missing data as non-ignorable and imputed 
them under tipping point framework (delta-adjusted), using 
piecewise exponential distribution and bootstrap sampling 
respectively. However, there have been no rules proposed in 
terms of which deltashould be selected for a standalone sen-
sitivity analysis. It’s noteworthy that both Jackson and Lip-
kovich described the application of delta/gamma approach 
which serves as the foundation for tipping point sensitivity 
analysis. Zhao et al. [20, pp. 229–253] proposed linear inter-
polation to conduct imputation based on bootstrap sampling, 
using Kaplan–Meier (KM) and Cox proportional hazards 
model respectively. Because the field lacks a generalizable 
overall MNAR (or informative censoring) assumption that 
can be directly applied to missing data imputation, all above 
approaches use the full dataset as the imputation basis and 
heavily rely on a user-specified delta/gamma adjustment to 
achieve MAR or MNAR imputation.

In the era of estimands when more and more sponsors 
integrate estimands into the protocol framework, it dictates 
the need to align proposed sensitivity analyses with primary 
analyses on estimands, according to ICH E9 R1 [21]. In 
other words, after primary analysis and primary estimand are 
pre-specified in the protocol, the proposed sensitivity analy-
ses must target the same estimand so that the results can 
be compared side by side. Because analyses of time to first 
events in CVOT are usually conducted under the intent to 
treat (ITT) principle with no exclusion of data post randomi-
zation, following the treatment policy (TP) strategy [22, pp. 
1–19] there is no controversy that all subsequent sensitivity 
analyses should target the same TP estimand, in terms of 
handling of missing data that arise from intercurrent events.

It’s not always easy to reach common ground between 
sponsors and regulators on the choice of sensitivity analy-
ses. When sponsors propose a sensitivity analysis based 
on missing at random (MAR), regulatory agencies are 
interested in knowing if the primary conclusion will still 
hold after imposing some unfavorable assumed condi-
tions. Therefore, it’s critical and urgent to settle on some-
thing that’s relatively acceptable to both parties. Assum-
ing MAR for all discontinued subjects can be criticized, 
especially for subjects who discontinued due to reasons 
that might be plausibly related to their treatment (e.g., side 
effects), but imposing the worst assumptions on all missing 
data is also hard to justify, and ultimately, the choice of 
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assumptions for imputing missing data should be driven 
by the estimand of interest. The approach we propose 
can serve as a balance point between sponsor and regula-
tory agencies because its underlying MNAR assumption 
is quite neutral. The assumption states that subjects with 
missing data will have similar treatment effect compared 
to retrieved dropouts (defined as off-treatment subjects that 
remain in the study) in the same randomized group. It uses 
the subpopulation of “off-treatment” subjects to multiply 
impute the missing data.

Recently He et  al. published a paper about retrieved 
dropout multiple imputation (MI) in CVOT using piece-
wise exponential distribution [22, pp. 1–19]. It was demon-
strated using a lipid-lowering CVOT dataset, with respect 
to time to first MACE. Results of the piecewise exponential 
model were compared to the regular CPH model and the 
jump to reference multiple imputation. However, simula-
tions were not conducted to inform type-I error and power 
rates. In our manuscript, we explore the approach in different 
ways: parametrically or non-parametrically with respect to 
the baseline hazard function. More specifically, we explore 
bootstrap, piecewise exponential and Weibull distributions 
for the imputation of time to event missing data. Simulation 
studies are conducted to help understand the type-I error and 
power rates under different clinical trial scenarios. Lastly, 
we illustrate these approaches by applying them to a real 
unblinded phase 3 CVOT.

The CVOT dataset needs to be broken down into 3 non-
overlapping subsets, before the initiation of the analysis. 
Similar to the implementations in continuous endpoints [23, 
p. 82], retrieved dropouts (RDs) in outcome trials are usually 
defined as subjects who have discontinued randomized treat-
ment but continue to stay in the trial. Because they are con-
tinuously followed until the occurrence of death or admin-
istrative censoring datacut, their outcome will be known. 
In the proposed analyses, they form the fundamental basis 
of missing data imputation, given that they resemble the 
missing data subjects in terms of treatment discontinuation 
and given the assumption that subjects who discontinued 
treatment will have similar outcomes whether they were fol-
lowed up in the study or not. Subjects who have withdrawn 
consent or lost to follow-up will not take the assigned study 
medication, which is essentially identical to RDs except that 
RDs continue to stay in the study so that their outcome will 
be known. Completers, on the other hand, are defined as 
subjects who have completed the study while on study medi-
cation. Missing data is the remainder of the CVOT dataset, 
i.e., subjects who have discontinued from the study with 
no prior endpoint events. In the “Statistical Methods” sec-
tion, we will first illustrate these methods with mathemati-
cal notation. Then we will summarize the implementation 
into an algorithm format. Next, we will conduct simulation 

studies to understand and compare the performance of each 
approach under different clinical trial scenarios. The data 
analysis section provides a real application of these analyses 
to an unblinded CVOT dataset. Finally, all findings will be 
discussed and concluded.

Statistical Methods

The Basis of Time to Event Imputation

Assume in a CVOT 2N  subjects are randomized to 
two treatment groups in a 1:1 allocation ratio. Let 
T = Ti(i = 1,… , 2N) denote the time to first event/censor-
ing of the primary endpoint. Then Ei is used to denote the 
event status: they are assigned a value of 1 for events and 0 
otherwise.

We first model the conditional probability of a subject 
with missing data because this will enable the derivation of 
imputed time to first event. Let c denote the observed time 
to censoring, e.g. from randomization to study discontinua-
tion, t is the unknown time to first event. S(t) stands for the 
survival function of T  , then we have the following general 
equation:

t  needs to satisfy the condition thatt > c , otherwise the 
above equation will reduce to 0. Then based on the above 
equation, we can randomly sample a variable from uniform 
distribution, i.e. u ∼ unif (0, 1) and t  can be estimated by 
solving the equationS(t)

S(c)
= u . Due to the monotone property 

ofS(t) , the estimated t̂  is ensured to be greater thanc . Simi-
larly this can be applied to all k subjects with missing data, 
by drawing k independent variables ( u1 , …,uk ) from 
unif (0, 1) , s.t.

where Sj
(
cj
)
= S

(
cj|trtj,Xj

)
= P

(
T > cj|trtj,Xj

)
 are sur-

vival functions adjusting for treatment and baseline covari-
ates and t̂j are the estimates of tj by solving Eq. (2). For 
simplicity with no loss of generalization, let trtj = 1 denote 
active treatment group and trtj = 0 denote placebo group and 
Xj is the vector of baseline covariates.

Next, we will describe how we combine this imputation 
step with the CPH model when the baseline hazard function 
h0(t ) is derived using: (1) non-parametric bootstrap sam-
pling, (2) parametric distribution.

(1)

P(T ≤ t|T > c) = 1 − P(T > t|T > c) = 1 −
S(t)

S(c)
∈ (0, 1).

(2)
Sj
(
tj
)

Sj
(
cj
) = uj(j = 1,… , k),
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Bootstrap

When an explicit parametric form is not imposed on baseline 
hazard function h0(t ), just like in the semi-parametric Cox 
proportional hazards model, we propose to use bootstrap 
and interpolation to multiply impute the time to event condi-
tional on observed time to censoring. Let Cj denote the indi-
vidual time to study closure from randomization Rj . With-
out loss of generalization, assume the study uses a common 
study datacut D and Cj is defined as Cj = D − Rj + 1 in days.

Assume there are a total of B bootstrap samples which 
generate B sets of survival function. Given a bootstrap sam-
ple b , the associated survival function is defined as 
S
(b)

j
(t) = S(b)

(
t|trtj,Xj

)
= P(b)

(
T > t|trtj,Xj

)
 ( b = 1,… ,B ). 

We first construct a grid with (m + 2) grid points as follows: 
cj = t

(0)

j
< t

(1)

j
< t

(2)

j
< ⋯ < t

(m−1)

j
< t

(m)

j
< t

(m+1)

j
= Cj . Then 

S
(b)

j

(
cj
)
, S

(b)

j

(
t
(1)

j

)
,… , S

(b)

j

(
Cj

)
 can be derived using “pre-

dict” function along with “coxph” in R, written as 
Ŝ
(b)

j

(
cj
)
,… , Ŝ

(b)

j

(
Cj

)
 .  Since S

(b)

j

(
tj
)
 i s  der ived as 

Ŝ
(b)

j

(
tj
)
= S

(b)

j

(
cj
)
uj

(b) according to Eq. (2), we can identify 
interval, say ( t(p)

j
, t

(p+1)

j
) in which tj(b) falls, s.t. 

Ŝ
(b)

j

(
t
(p+1)

j

)
≤ Ŝ

(b)

j

(
tj
)
≤ Ŝ

(b)

j

(
t
p

j

)
) . Then tj is estimated using 

linear interpolation, i.e.

If tj(b) falls outside the grids, then tj(b) is estimated as 
t̂
(b)

j
= Cj.

Parametric

Using parametric distribution to model h0(t) , estimates of tj can 
be derived in closed form. In the following sections, we dem-
onstrate how to use piecewise exponential and Weibull distri-
butions respectively to model the distribution of h0(t) because 
they are able to represent distribution of most baseline hazard 
functions for time to event endpoints [24, pp. 682–701, 25, p. 
873, 26, pp. 59–73, 27, pp. 10–11, 28, p. 152].

(3)

t̂
(b)

j
= t

(p)

j
+

t
(p+1)

j
− t

p

j

Ŝ
(b)

j

(
t
(p+1)

j

)
− Ŝ

(b)

j

(
t
p

j

)
(
Ŝ
(b)

j

(
tj
)
− Ŝ

(b)

j

(
t
p

j

))
.

Piecewise Exponential

When baseline hazard function follows a piecewise expo-
nential distribution, the proportional hazards model is writ-
ten as h

(
t|Zj;�

)
= h0(t)e

Zj�  where h0(t) = �u for t  in 
[�u−1, �u) , with 0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏M = ∞ as partitioning 
points to be estimated as well and Zj is the full design vector 
denoted as Zj = (trtj,Xj

) . Its corresponding survival function 
is written as

A total of B imputations are planned. To make sure the 
imputation follows the “proper” principle [29, pp. 202–243, 
30, pp. 473–489], different sets of coefficients and variance 
estimates have to be generated and applied to each imputa-
tion. The following two methods can fulfill this goal because 
they are asymptotically equivalent [31, pp. 593–607]. For SAS 
users, the most convenient way is to use “MCMC sampling” 
to draw Bayesian posterior samples for parameter coefficients 
� and scale parameters �u ( u = 1,… ,M) . The alternative is to 
draw from a multivariate normal distribution with the MLE 
estimates as the mean and the estimated variance matrix of 
the MLE estimates as the variance (i.e., “MLE multivariate 
sampling”). Both approaches start from fitting a CPH model 
based on a piecewise exponential distribution using data of 
all RD subjects, with parameter estimates and estimate of the 
covariance matrix denoted as �̂ = (�̂, �̂) and v̂ar(�̂).

For each imputation (b = 1,… ,B) , parameters 
�(b) =

(
�(b), � (b)

)
=
(
�1

(b),… , �M
(b), �(b)

)
 can be randomly 

sampled using either approach:

• MCMC sampling:  �
m,(t+1)

(b) ∼ P(�
m
|�1,(t+1)(b),… ,

�(m−1),(t+1)
(b)
, �(m+1),(t)

(b)
,… , �

M,(t)

(b)
, �(t)

(b))  f o r 
m = 1,… ,M and continue through � until iteration t is 
large enough and chain convergence is achieved.

• MLE multivariate sampling: sample �(b) ∼ MVN(�̂,

v̂ar

(
�̂
)
).

Then by combining the above survival function formula (4) 
with (2) and by letting S

(b)

j
(t) be defined as 

S
(b)

j
(t) = S

(
t|Zj;�

(b)
)
 , the estimated time to first event is 

expressed as

(4)S
(

t|Zj;�
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp(−�1te
Zj� ) t�[0, �1)

exp(−(
∑u−1

v=1�v(�v − �v−1) + �u
(

t − �u−1
)

)eZj� ) t�[�u−1, �u)

exp(−(
∑M−1

v=1 �v(�v − �v−1) + �M
(

t − �M−1
)

)eZj� ) t�[�M−1,∞)

.

(5)
t̂(b)j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�M−1 −
log

(

uj∗(b)
)

e−Zj�
(b)

+
∑M−1

v=1 �v (b)(�v−�v−1)
�M (b) uj∗(b) = S(b)j

(

cj
)

uj(b) ∈
(

0, S(b)j
(

�M−1
)

]

�p−1 −
log

(

uj∗(b)
)

e−Zj�
(b)

+
∑p−1

v=1�v
(b)(�v−�v−1)

�p (b)
uj∗(b) ∈

(

S(b)j
(

�p
)

, S(b)j
(

�p−1
)

]

;2 ≤ p < (M − 1).

−log
(

uj∗(b)
)

e−Zj�
(b)

�1 (b)
uj∗(b) ∈ (S(b)j

(

�1
)

, 1]



118 Therapeutic Innovation & Regulatory Science (2024) 58:114–126

1 3

Weibull

We first introduce accelerated failure time (AFT) [32, pp. 
31–51, 33, pp. 1871–1879] model because the following AFT 
model is directly linked to Weibull regression. AFT model is 
very frequently used in real applications with statistical pack-
ages and software readily available [34, pp. 583–592].

where � is scale parameter and �j follows a Gumbel distribu-
tion (also known as extreme-value distribution).

Using the notations of Weibull AFT model, the hazard 
function based on Weibull distribution can be written as 

h
(
t|Zj

)
=

1

�
t
1

�
−1
e
−(Zj�+�0)∕�

= h0(t)e
Zj� where

Therefore, the baseline hazard function follows a Weibull 
distribution with 1

�
 as the shape parameter and e�0 as the scale 

parameter. Because the above AFT model is readily imple-
mented in statistical software, e.g., “proc lifereg” in SAS 
software and “SurvRegCensCov” package in R, we will use 
notations of AFT model to derive imputed time to event as 
follows. To start with, we use � =

(
�, �0, �

)
 to denote the 

vector of parameters.
For each imputation (b = 1,… ,B) , �(b) is sampled 

from either MCMC or MLE sampling. Then using 
S
(
t|Zj

)
= e−exp(−�j∕�)t

1
� with linear predictor �j = Zj� + �0 in 

conjunction with (2), time to first event is derived as

where �̂(b)
j

= Zj�̂
(b)

+ �̂0
(b)
.

Algorithm

We summarize the general framework of implementation 
in this section.

A total of B multiple imputations/bootstrap samples are 
planned for imputation of missing data.

1. A Cox proportional hazards model is fit to the dataset 
comprised RDs (“RD dataset”) adjusting for treatment 
group and other pre-specified baseline covariates.

logTj = �0 + Zj� + ��j,

� = −
�

�
,

(6)h0(t) =
1

�

t
1

�
−1

e
�0
�

.

(7)t̂
(b)

j
= (cj

1

�̂(b) − exp

⎛⎜⎜⎝
�̂
(b)

j

�̂(b)

⎞⎟⎟⎠
log

�
uj

(b)
�
)

�̂(b)

• Bootstrap: B different input datasets are created, by 
sampling from RD dataset with replacements. Then B 
different CPH models are fit, and each model will serve 
as the basis of the imputation.

• Parametric: One CPH model is fit, using the RD dataset. 
Then B different sets of parameters are sampled using 
either Bayesian MCMC sampling or MLE multivariate 
sampling (i.e., “proper imputation”).

For each imputation (b = 1,…, B), proceed to step 2–4 
sequentially.

2. Missing data of time to first event will be estimated 
using

• Bootstrap: Use formula (3) in conjunction with (2) 
with pre-specified grid points.

• Parametric: Use formula (5)/(7) in conjunction 
with (2).

3. Then imputed time to first event will be added to the 
randomization date to derive the imputed outcome.

• If the value is greater than the censoring data cut, 
then the imputed outcome will be deemed as a cen-
sored and his time to censoring will be derived as 
censoring data cut—randomization date + 1 in days.

• Otherwise, the imputed outcome will be deemed as 
an event and the imputed value will be used as the 
time to first event. For studies that conduct vital 
search on subjects that are lost to follow up or have 
withdrawn consent, additional steps can be consid-
ered. For instance, if final vital status is death, the 
imputed event date also needs to be compared to 
death date. More specifically,

• It will be imputed as an event if and only if the 
imputed event date + randomization date doesn’t 
exceed the earlier of death date and study data cut.

• Otherwise, it will be treated as censored and time 
to censoring will be derived as the earlier of death 
date and study data cut-randomization date + 1.

4. All imputed outcomes will be analyzed together with 
RDs and completers using the regular CPH model. Coef-
ficient estimates of treatment effect and standard error 
(SE) will be generated.

5. Repeat step 2–4 for all B imputations. Coefficient esti-
mates and SE are pooled and combined into a single 
estimate following Rubin’s rules [29, pp. 202–243].

Simulation Studies

Simulation studies are conducted to evaluate the validity 
of the proposed approaches with respect to different clini-
cal trial scenarios. Starting from type-I error simulations 
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we will first present and compare type-I error rate of the 
three proposed methods, under the null hypothesis that 
there is no difference of treatment effect between the two 
randomized groups, i.e. H0 ∶ HR = 1 and with respect to 
different combinations of sample size, discontinuation rate 
and retrieved dropout rate, then we move to power simula-
tions to evaluate how powerful these approaches are when 
the alternative hypothesis that the drug is superior to pla-
cebo is true, i.e. H1 ∶ HR < 1.

Type‑I Error

Five thousand datasets are simulated under the null hypoth-
esis H0 ∶ HR = 1 . Under each replicate, the trial is simulated 
as a two-arm randomized clinical trial with a 1:1 allocation 
ratio, assuming an overall event rate of 2% per person-year 
according to a few completed CVOT studies of 5–6 year 
duration [3, pp. 1713–1722, 5, pp. 1527–1539], a 1-year 
enrollment, a fixed duration of 5.5 years (i.e. a common 
censoring data cut of 5.5 years from the first randomization 
is applied). The following 27 scenarios with respect to dif-
ferent sample size, proportion of RDs and missing rate are 
explored:

• Sample size: 1000, 5000, 10,000;
• RDs: 5%, 20%, 40%;
• Overall discontinuation from the study, by EOS: 5%, 

15%, 30%.

Time to event is simulated under exponential distribution. 
To test how robust the conclusions will hold, an additional 
distributional assumption is used. Time to discontinuation 
is simulated independently of events to avoid bias. RDs are 
randomly selected from the population set excluding study 
discontinuations to meet the definition and therefore there’s 
no overlap between RDs and Overall discontinuation from 
the study. Empirical type-I error is defined as proportion of 
simulations significant at a significance level of two-sided 
0.05. Results of type-I error are summarized in Table 2 and 
Supplementary Table 1.

Power

A thousand datasets are simulated under the alternative 
hypothesis that the drug is superior to placebo with a 20% 
risk reduction, i.e. H1 ∶ HR = 0.8 . The event rate in the pla-
cebo group is simulated as 2% per person-year, and the event 
rate in the active treatment group is modeled as 2% × HR 
accordingly, with the exception that RDs in the active group 
is simulated as 2% × HR * ( HR < HR* < 1) assuming RDs 

in the active group will have a slightly reduced risk reduc-
tion due to off-treatment periods. HR* = 0.9 is used in this 
instance. The placebo discontinuation rate is simulated in the 
same way as in type-I error simulations. Whereas, the active 
group discontinuation rate is assumed to be lower by 2%, 
compared to placebo. Scenarios with sample size of 1000 is 
removed because a CVOT with 1000 subjects is very under-
powered. The other parameters used in simulations remain 
the same as type-I error simulations.

Empirical power rate is defined as proportion of simula-
tions significant at a significance level of two-sided 0.05. 
In addition, power calculation based on the log-rank test is 
provided as a comparison reference which will help inform 
the conclusions. Results are summarized in Fig. 1.

Data Analysis

We take a subset of a completed and unblinded phase 
III CVOT dataset to demonstrate applications of these 3 
approaches. The subset is defined by restricting to sub-
jects who have been randomized no later than year 4 (i.e., 
4 years from the first randomization) and by shortening 
the study duration to 4 years (i.e., by applying a common 
censoring data cut of 4 years from the first randomization). 
In addition to the 3 approaches, we further explore jump to 
reference (j2r) imputation, and a regular CPH model and 
use them as comparison basis.

Within this snapshot there are a total of 7740 subjects 
(5143 on the active treatment group and 1998 on pla-
cebo) in this dataset, among which 1362 are RDs, 776 
are premature discontinuations and 466 are considered 
as missing data. These characteristics are summarized 
in Table 1. The primary endpoint is time to first occur-
rence of 3-point MACE defined as a composite endpoint 
of non-fatal stroke, non-fatal MI and CV death. There 
are 599 first MACE events (379 in active vs 220 in pla-
cebo) without imputation. We summarize the n(%) of 
events and censored prior to imputation by treatment 
group in Table 1. Missing data, RDs and completers are 
three mutually exclusive components of the dataset, add-
ing up to 100%. For subjects in the category of “Have 
events prior to discontinuation”, if they are completely 
on-treatment leading to the first occurrence of MACE, 
they are considered completers; otherwise, they are con-
sidered RDs.

J2r approach assumes the survival function of the 
active group will follow the distribution of the placebo 
group (coded as 0 without loss of generality) following 
study discontinuation. In other words, formula (1) will be 
adapted to reflect the distribution switch for missing data 
in active treatment group (coded as 1), written as (where 
t > c)
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Then the estimate t̂  will be derived by solving the equa-
tion S(t|trt=0,X)

S(c|trt=1,X) = u ∼ U(0, 1) . In the multiple imputation set-

ting �(b) in S(t|trt=0,X;�
(b))

S(c|trt=1,X;�(b)) = u can be sampled using MCMC 
or MLE sampling using approximation or interpolation. In 
this case, we implement the J2R approach based on Weibull 
regression by means of MLE sampling because Weibull 
regression is considered as a substantive model [35, pp. 
645–658]. The associated imputation formula is written as

(8)

P((T ≤ t|T > c)|trt = 1,X) =
P(c < T ≤ t|trt = 1,X)

P(T > c|trt = 1,X)
=

P(T > c|trt = 1,X) − P(T > t|trt = 0,X)

P(T > c|trt = 1,X)
= 1 −

S(t|trt = 0,X)

S(c|trt = 1,X)

(9)

t̂
(b)

j
= max

⎧
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exp
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Table 1  Disposition of Subjects in the CVOT Snapshot

*Still in the study being followed by the snapshot date or have discon-
tinued the study due to death
The 3 categories (Missing data, RDs and Completers) add up to the 
randomized population

Active Placebo

Randomized 5143 2598
Discontinued the study 501 (9.7%) 275 (10.6%)
Missing data 306 (5.9%) 160 (6.2%)
Have events prior to discon-

tinuation
195 (3.8%) 115 (4.4%)

RDs 835 (16.2%) 527 (20.3%)
Completers* 4002 (77.8%) 1911 (73.6%)

Figure 1  Compare the Power Rate of Three MIRD Approaches Under Different Clinical Scenarios
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Results

Type‑I Error

As shown in Table 2, all three approaches well control the 
type-I error rate and the bias relative to 0 is negligible (in log 
scale, 0 corresponding to HR = 1). It’s noteworthy in small 
sample size scenarios where the RDs and missing data are 
very imbalanced, the type-I error of piecewise exponential 
distribution seems a little deflated. For instance, when there 
are 5% RDs and 30% missing data in a study with a total 
of 1000 subjects, piecewise exponential distribution returns 
slightly deflated type-I error rate while the type-I error rate 
of the other two is close to 0.05 (Table 2).

Power Rate

All three approaches have very similar power rate, with the 
bootstrap approach slightly more powerful than the other 
two (Fig. 1). Furthermore, all three approaches follow simi-
lar patterns: (1) given a sample size and an RD rate, more 
missing data will lead to some power loss; (2) When sample 
size is large and given a study discontinuation rate, higher 
proportion of RDs results in a slightly higher power com-
pared to studies with a lower proportion. (3) When sample 
size is small to medium, given a study discontinuation rate, 
low RD rates lead to higher power rates. It’s very noteworthy 
in some scenarios the proposed approaches are more power-
ful than log-rank test assuming no RDs in the study. Differ-
ent competing forces that contribute to these phenomena will 
be discussed in the “Discussion” section.

Table 2  Type-I Error Results for Different Scenarios, Evaluated at a Two-Sided Alpha = 0.05

# Missing rate is lower than proportion of study discontinuation because subjects with events prior to study discontinuation are not counted as 
missing data
*On log(HR) scale

N

Different 
Proportion of 

RDs
Proportion of 

 Discontinuation#

Piecewise Exponential Bootstrap Weibull

Type-I Error Avg Bias* Type-I Error Avg Bias* Type-I Error Avg Bias*

1000 0.05 0.05 0.0494 0.005 0.0518  − 0.003 0.0352  − 0.002
0.2 0.05 0.0532  − 0.001 0.0526  − 0.003 0.0518  − 0.003
0.4 0.05 0.0528  − 0.002 0.0524  − 0.003 0.0524 0.002
0.05 0.15 0.0386 0.018 0.0568  − 0.003 0.0128  − 0.005
0.2 0.15 0.0532 0.003 0.0540  − 0.004 0.0506  − 0.004
0.4 0.15 0.054  − 0.001 0.0550  − 0.004 0.0532  − 0.004
0.05 0.3 0.0254 0.037 0.0526  − 0.005 0.0567  − 0.0002
0.2 0.3 0.0529 0.010 0.0542  − 0.003 0.0464  − 0.003
0.4 0.3 0.0551 0.003 0.0554  − 0.004 0.0534  − 0.004

5000 0.05 0.05 0.0538 0.002 0.0528  < 0.001 0.0526  < 0.001
0.2 0.05 0.0514 0.001 0.0510  < 0.001 0.0506  < 0.001
0.4 0.05 0.0526  < 0.001 0.0526  < 0.001 0.0528  < 0.001
0.05 0.15 0.0488 0.005 0.0528  < 0.001 0.047  < 0.001
0.2 0.15 0.0514 0.002 0.0514  < 0.001 0.0492  < 0.001
0.4 0.15 0.0534 0.001 0.0520  < 0.001 0.0518  < 0.001
0.05 0.3 0.0420 0.010 0.0492  − 0.0002 0.0356  < 0.001
0.2 0.3 0.0516 0.002 0.0500  − 0.0003 0.0500  − 0.0002
0.4 0.3 0.0514 0.001 0.0523  − 0.0004 0.0516  < 0.001

10,000 0.05 0.05 0.0536 0.002 0.0524 0.0015 0.0526 0.0015
0.2 0.05 0.0516 0.002 0.0514 0.0015 0.0508 0.0015
0.4 0.05 0.0510 0.002 0.0525 0.001 0.0514 0.0015
0.05 0.15 0.0484 0.005 0.0482 0.002 0.0468 0.0020
0.2 0.15 0.0506 0.002 0.0485 0.001 0.0490 0.0019
0.4 0.15 0.0510 0.002 0.0510 0.0026 0.0504 0.0019
0.05 0.3 0.0456 0.007 0.0470 0.0019 0.0424 0.0025
0.2 0.3 0.0488 0.004 0.0478 0.0029 0.0496 0.0025
0.4 0.3 0.0488 0.003 0.0470 0.0019 0.0492 0.0025
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From the perspective of hazard ratio, all three approaches 
lead to slightly reduced risk reduction (i.e. larger HR) after 
adjusting for diluted treatment effect contributed by RDs 
(Fig. 2). Within the same sub plot, more RDs lead to a more 
reduced risk reduction (i.e., a larger HR); for instance, the 
HR corresponding to 20% RDs is larger than the one with 
5% RDs.

Data Analysis

All imputation approaches lead to an increase in num-
ber of events, compared to the regular CPH. Among all 
approaches, J2R leads to the highest increase in number 
of events, especially in the active group which explains 
why its estimated risk reduction (= 1 − HR) is the small-
est of all. All three approaches yield very similar results 
consistently, with risk reduction all larger than J2R but 
slightly smaller than CPH. For the bootstrap version, 

Figure 2  Compare the HR of Three MIRD Approaches Under Different Clinical Scenarios
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using more refined grids will lead to an estimated risk 
reduction very similar to the CPH, according to Table 3.

Software Implementation

SAS is recommended for implementation of MCMC sam-
pling because Bayesian sampling is readily embedded in 
several relevant SAS procedures such as Proc Lifereg, Proc 
MCMC. In combination with these SAS procedures, it’s 
adequate to use SAS for imputation and data analyses. 
For example, users can firstly use Proc lifereg to generate 
the Bayesian sampling of the model parameters, and then 
perform matrix manipulation through Proc IML for time 
to events imputation, followed by Proc Phreg for the final 
analysis by imputation. Nevertheless, overall, it still poses 
some computing challenges for simulations, especially for 
approaches involving intensive interpolations and sam-
pling. R is used in all simulations of this manuscript with 
the use of MLE sampling, due to the asymptotic equiv-
alence [36, pp. 473–483]. The only limitation exists in 
piecewise exponential imputation because the current R 
package “eha” only provides a partial covariance matrix 
estimate, restricting to regression coefficients only (i.e. 
without piecewise baseline hazards). All R functions and 
SAS macros are provided in the supplementary files for 
reference.

Discussion

Cox proportional hazards model has long been regarded as 
the gold standard to analyze time to first event endpoints in 
cardiovascular and renal outcome trials [37, pp. 1425–1435, 
38, pp. 896–907, 39, pp. 1436–1446, 40, pp. 841–851, 
41, pp. 2295–2306, 5, pp. 1527–1539, 42, pp. 347–357, 
43, pp. 2117–2128]. On one hand, it’s still frequently 
used as primary analysis as a well-established model. On 
the other hand, it has been noted that censoring for pre-
mature study discontinuation, known as presumed “non-
informative censoring” can result in potential bias in the 

treatment effect estimate across different therapeutic areas 
[44, pp. 2001–2009, 10, p. 40, 45, p. 101865, 9, p. 4, 46, 
pp. 327–328, 47, pp. 1433–1440]. In our proposed analy-
ses, subjects censored due to non-administrative reasons are 
treated as missing data if they don’t have relevant events 
prior to the discontinuation, and the potential for informative 
censoring is allowed by imputing their outcome assuming 
they follow the distribution of RDs in the same randomized 
group. Generally, they are not considered as missing due to 
random reasons, and we aim to impute their outcome after 
their study discontinuation, based on the assumption that 
their time to event distribution will approximately follow 
the distribution of RDs in the same randomized group. As a 
MNAR assumption, this serves as the foundation for imple-
mentation of the imputation. The subsequent analysis and 
combining steps are common to almost all MI approaches.

Multiple imputation is favored over single imputation 
because it allows uncertainty by means of multiple sampling, 
regardless of whether the sampling is parametric or not. Fur-
thermore, it leads to non-biased estimates by using Rubin’s rule 
which combines within and between imputation variability [29, 
pp. 202–243]. Unlike the continuous MI-RD approach, imple-
mentation of time to event MI-RD approach doesn’t have small 
sample size issues in CVOT. Because size of outcome trials 
is normally large and usually it has more RDs than missing 
data, there is a high degree of plausibility that the model-based 
standard error is sufficiently small to get imputation values that 
closely approximate the results that would have been obtained in 
the real world. Generally speaking, 5–20% RDs in a CVOT will 
enable the implementation of the MI-RD approach.

All three variations have well-controlled type-I error rate. 
In terms of power rate, there are scenarios under which these 
approaches lead to improved power rate, as a result of inter-
actions of two “competing” forces. The first one refers to 
increase in number of events from imputation, while the 
other one refers to attenuated risk reduction (i.e., larger HR) 
after imputation. More specifically, these MI approaches 
based on RDs tend to increase the overall hazard rate of the 
active group post-imputation due to a slightly increased haz-
ard rate in the active group during the off-treatment period. 
Time to event endpoints are mainly powered by total number 

Table 3  Results of Using 
Different Statistical Methods to 
Analyze Time to First MACE

*4 piecewise exponential hazards are used with cut points generated using cuts < -c(0, quantile(A$t2e)
[2:4], max(A$t2e) + 1) before passed to the piecewise function

Method Events in placebo Events in Active
HR (95% CI)

vs Placebo p-Value

cph 220 379 0.86 (0.73, 1.02) 0.08
j2r 224.2 392.8 0.87 (0.74, 1.03) 0.11
MIRD_weibull 222.5 385.8 0.86 (0.73, 1.02) 0.09
MIRD_pwe* 222.4 386.9 0.87 (0.73, 1.02) 0.09
MIRD_bootstrap (grid width = 60 days) 222.5 385.4 0.86 (0.73, 1.02) 0.08
MIRD_bootstrap (grid width = 90 days) 222.4 386.9 0.87 (0.73, 1.02) 0.09
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of events and the alternative HR assumption. The first one 
has the potential to increase power via the additional events 
added by imputation while the latter has the tendency to 
reduce power via attenuation of treatment effect toward an 
HR that is closer to 1.0. The scenarios in which the first force 
outweigh the 2nd one are those with power gain over tradi-
tional log-rank tests assuming no RDs (Fig. 1). In the setting 
of a typical superiority CVOT with 4000 to 10,000 rand-
omized subjects, 15–25% RD rate and 1% annualized study 
discontinuation rate, our proposed approaches will lead to 
increased power rates. For smaller CVOTs (first two rows 
in Fig. 1), more RDs lead to reduced power rates in every 
sub plot because the impact of treatment effect attenuation 
outweighs increase in events post-imputation.

The proposed three approaches can be implemented and 
applied to real clinical datasets in either R or SAS on PC 
platform. They have very similar performance but slightly 
different computational complexity. For each approach, 
users can either choose MCMC sampling or MLE sampling 
because they are asymptotically equivalent. Although the 
current R implementation for piecewise exponential distri-
bution using R package “eha” only allows partial sampling 
of parameters, the type-I error and power rate assessments 
do align with the results of other approaches. Users can find 
all R functions and SAS examples in the supplementary 
files. No matter which approach the sponsor pre-specifies 
for the clinical study, it’s essential to gain consensus with the 
health authorities (HA) before unblinding a study.

In this manuscript, we propose an example of using a 
MNAR assumption to impute missing data of time to event 
endpoints. There are various ways to pre-specify and to per-
form sensitivity analyses. The fundamentals are to decide 
which assumption best fits the purpose. A conservative 
assumption has the potential to solidify the primary conclu-
sion if the results don’t alter the primary conclusion, but it 
also has the risk of deviating from primary results. Because 
our assumption is neither conservative nor aggressive, it 
should be relatively acceptable to both HA and sponsors.

Conclusion

We propose three MI approaches based on the same MNAR 
assumption for time to event endpoints in CVOT. They truly 
are estimation approaches that can be implemented using 
non-parametric bootstrap or parametric methods via either 
MCMC or MLE multivariate sampling (“proper imputa-
tions”) due to asymptotic equivalence. These approaches can 
be readily extended to studies in other therapeutic areas if 
the trials continue to follow patients regardless of treatment 
discontinuation or not. The three proposed approaches have 
very similar type-I error and power rates given a clinical 
scenario, with bootstrap being the most optimal solution due 

to the nature of the approach that it takes into account uncer-
tainty by not imposing parametric restriction. It’s noteworthy 
that bootstrap approach is more computationally intensive, 
while Weibull regression is the least. When bootstrap com-
putation is a burden, Weibull or piecewise regression will 
suffice according to the supplementary analysis conducted: 
These two approaches are also robust when the underlying 
data deviates from the parametric distribution. Because the 
underlying assumption is not as conservative as jump to 
reference multiple imputation, the estimated HR usually is 
smaller than jump to reference analyses but larger than Cox 
model. We believe the proposed MI approaches meet the 
expectation of health authorities in terms of their capabilities 
to justify robustness of primary conclusions. Furthermore, 
they can serve as primary analysis and driver of sample size 
estimation.
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