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Abstract
The debate over human visual perception and how medical images should be interpreted have persisted since X-rays were 
the only imaging technique available. Concerns over rates of disagreement between expert image readers are associated 
with much of the clinical research and at times driven by the belief that any image endpoint variability is problematic. The 
deeper understanding of the reasons, value, and risk of disagreement are somewhat siloed, leading, at times, to costly and 
risky approaches, especially in clinical trials. Although artificial intelligence promises some relief from mistakes, its routine 
application for assessing tumors within cancer trials is still an aspiration. Our consortium of international experts in medical 
imaging for drug development research, the Pharma Imaging Network for Therapeutics and Diagnostics (PINTAD), tapped 
the collective knowledge of its members to ground expectations, summarize common reasons for reader discordance, iden-
tify what factors can be controlled and which actions are likely to be effective in reducing discordance. Reinforced by an 
exhaustive literature review, our work defines the forces that shape reader variability. This review article aims to produce 
a singular authoritative resource outlining reader performance’s practical realities within cancer trials, whether they occur 
within a clinical or an independent central review.
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Introduction

Today’s clinical trials for cancer therapies regularly depend 
upon the interpretation of medical imaging to establish effi-
cacy. Of the 20,682 cancer trials registered in clinicaltrial.
gov over the last decade,1 67% feature endpoints hinging 
upon medical imaging.2 Image readers for cancer trials, typi-
cally radiologists or nuclear medicine experts, can be on-site 
in the clinical setting or comprise teams of selected experts 
performing an off-site Blinded Independent Central Review 
(BICR). The BICR serves as the backdrop for this paper.
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The purpose of the BICR is to provide an image assess-
ment independent of bias and potential functional unblinding 
that may exist when patient health information is known. 
The FDA’s current guidance for industry affirms that the 
BICR “enhances the credibility” and “better ensures the con-
sistency” of imaging assessment [1]. The BICR is employed 
for most but not all cancer trials of all phases but deemed 
specifically important in Phases 2 and 3 and necessary in 
single-arm or unblinded studies. The most common BICR 
design is referred to as “2 + 1,” in which two independent 
readers assess the same images for each study subject, and 
one adjudicator settles endpoint disparities between the two 
outcomes. The duplication of two readers with the addi-
tion of the adjudicator enhances the reliability of endpoint 
assessment and makes the measurement of reader perfor-
mance possible. Though site readers are expected to have 
the same sources of variability, measurement of that vari-
ability is most often not practical if even possible. However, 
any two readers will inevitably differ in their interpretation 
to some degree. Research over the last 70 years shows that 
that disagreement between two radiologists is remarkably 
consistent throughout the decades and also comparable to 
the inherent variability between two physicians within any 
field. Necessarily, the variability that leads to disagreement 
is present in all radiologists, whether on-site or at a central 
reading facility. While differences in interpretation do not 
inevitably nor inherently equate to error, understanding the 
sources of these differences and associated significance will 
help guide appropriate action to minimize and control these 
differences when they can be controlled and understand 
them when they cannot. The question of whether an inde-
pendent read using multiple readers provides greater benefit 
than using individual site investigators is discussed in detail 
elsewhere [2–7]. Methods to measure and monitor for these 
differences and their relationship with sources of variability 
are presented in the companion paper to this manuscript [8].

Reader Disagreements are Consistent 
with Diagnostic Disagreements in Other 
Areas of Medicine

The breadth of literature supports the broader medical 
community’s view that disagreement between experts is 
inevitable and at times necessary in all fields of medicine, 
including radiology and nuclear medicine. The Society to 
Improve Diagnosis in Medicine [9]. was established in 2011 
to improve misdiagnoses in the clinic, including those made 
by radiologists. The primary concern over misdiagnosis is 
the main motivation behind 70 years of exhaustive focus 
into the causes of perceptual error in imaging [10]. Con-
temporary medical imaging associations, such as the Medi-
cal Image Perception Society (MIPS), have made extensive 

contributions over many years to the study of medical image 
interpretation [11]. Since BICR evaluations include a diag-
nostic component of lesion assessment, as well as evaluating 
disease status over time, the variability between independent 
clinical trial readers will also necessarily include some of 
the challenges seen in the clinic [12–20].

Disagreement among physicians is an integral part of 
medicine. Interestingly, disagreement rates are remarkably 
consistent across the decades for different types of image 
evaluations, across medical specialties and different technol-
ogies, falling between 20 and 40% [20–35] (see Table 1 for 
a summarized sample of research on evaluator agreement)

Earlier research on radiological discordance focused on 
disagreements in diagnoses. Other research specifically 
dedicated to radiological image perception concluded that 
radiological disagreements are expected for radiologists as 
they are for any physician [36–44]. In a landmark article on 
radiological error from 1959, Henry [45] stated

Even experienced physicians are found to have a 
measurable degree of ‘observer error’ due apparently 
to the so-called human equation… In evaluating pairs 
of serial roentgenograms, (two physicians are) apt to 
disagree … in about one-third of the cases and with 
(themselves) in one-fifth of them.

Remarkably, even when considering technological 
advancements in scanners, little has changed in the rate of 
reader discordance over time. Radiological disagreement 
rates of approximately 30–40% reported by several papers 
since 1959 are consistent with the rates shown by Ford in 
2016 across a variety of oncologic indications [45–47] [, 
holding steady across different response criteria, whether 
quantitative or subjective in form [26, 35, 45–49]. This 
consistency may be due to only 5–10% of the information 
for visual perception coming from the retina while 90–95% 
comes from different regions of the brain including the cor-
tex and brain stem [50]. Therefore, the majority of the inputs 
that affect visual perception are resident in the brain at the 
time the images are evaluated.

Why Expert Readers Disagree

The key to taking appropriate actions to minimize reader 
disagreement in a clinical trial setting is understanding 
what sources of variability are involved. Assessing medical 
images demands cognitive tasks such as reasoning, problem-
solving, and visual perception. Within these tasks, clinical 
trial readers must not only identify and determine the state 
of the disease but also when the disease changed enough to 
cross a criteria threshold. The greatest contributing factor of 
inter-reader variability originates from a radiologist’s own 
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Table 1  A Sample of Evaluator Agreements for Different Specialties Since 1947.

Author Year Disagreement or Error Rate Type of Assessment

Birkelo et al. 1947 Inter-reader: 35%
Intra-reader: 20%

5 radiologists
Tuberculosis
radiological diagnosis
Film

Thiesse et al. 1997 Major disagreements—40%
Reasons: tumor measurements, selection of 

measurable targets, intercurrent diseases, and 
radiologic technical problems

Renal cell carcinoma
Disagreement with committee of tumor response
WHO criteria basis

Gwyther et al. 1997 Disagreement with response: 39% Epithelial ovarian cancer
Response: WHO criteria
2 Independent readers

Rubenfeld et al. 1999 κ = 0.55
32% had ≥ 5 dissenters

Acute respiratory distress syndrome diagnosis 
(CT)

21 experts
N = 28

Wormanns et al. 2000 5 mm slice thickness
Detection disagreement: 38%
Size category: κ = 0.61

Pulmonary nodules
2 readers
Detection and size
23 patients
286 nodules

Aldape et al. 2000 Disagreement: 23% Glioma
Digital pathology/neuropathology
Diagnosis
N = 457

Pandolfino et al. 2002 Intra-observer κ
Experts: 0.55
Trainees: 0.44
Inter-observer κ
Experts: 0.56
Trainees: 0.46

Endoscopic scoring of esophagitis
Experts and trainees

Scholten et al. 2004 FIGO disagreement: 30%
(κ = 0.4)

Endometrial carcinoma
Digital Histology (FIGO)
N = 800
2 independent pathologists

Gietema et al. 2006 Discrepant volumes: 10.9%
Inter-reader Spearman Correlation: r = 0.99

Lung cancer N = 232
nodule detection (n = 430)
Local and Central reader
Volume

Hricak H, et al. 2007 Staging
CT: κ = .26 MRI: κ = .44
Visualization
CT: κ = .16 MRI: κ = .32
Sens/Spec
Sens: CT = .26 MRI = .48
Spec: CT = .92 MRI = .79

Cervical cancer
Diagnosis
N = 326
4 radiologists (CT)
4 radiologists (MRI)

Hersh et al. 2007 All combinations of readers
Disagreement = 25%

Lobe- predominant emphysema
HRCT 
N = 30
Pulmonologists and radiologists

Suzuki et al. 2010 Inter-reader agreement
κ = 0.53 (95% CI 0.33-
0.72)
Intra-reader agreement
κ = 0.86 (95% CI 0.76-
0.96)

Breast and Colorectal cancer
N = 39
RECIST response
2 radiologists

Ibrahim et al. 2011 Inter-reader agreement for subarachnoid 
hemorrhage

κ = 0.41 (95% CI 0.33–0.49)

Aneurysmal subarachnoid hemorrhage
N = 413
1 neurosurgeon
1 neuroradiologist
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expertise in applying the essentially subjective aspects of 
the response criteria.

Factors that affect reader performance can be roughly 
defined as controllable, (e.g. experience/expertise, fatigue, 
and environment), less-controllable (e.g. daily disposition, 
stress, and internal biases), and not controllable (e.g. ran-
dom measurement variability and biological heterogeneity). 
The less controllable factors comprise 89% of radiological 
disagreement [31, 51]. Factors such as experience level and 
reader fatigue can be controlled to some degree and are rec-
ognized by regulatory authorities as factors to plan for and 
monitor and are important enough to be addressed in the 
FDA Guidance for Industry [1].

Controllable Factors in Reader Performance

Aside from the ambiguity inherent in imaging complex 
anatomy, sources of reader variability that can be controlled 
include expertise, training, the reading environment, and set-
ting, including the risk of fatigue [52–54]. Radiologists and 
other readers each have unique levels and types of training 
and experience that can also contribute to discordance and 
can be controlled to an extent by the choice of readers for 
the study. Familiarity with specific disease indications and 
clinical trial review, the extent of specific reader training 
and knowledge, and familiarity with the response criteria 
can also sway interpretation. Moreover, controllable factors 
unrelated to the individual may also have a considerable 
impact. These can include the imaging technique’s quality 
and limitations, the number of response categories, tumor 
growth rates relative to image sampling rates, and specific 
tumor feature characteristics.

Here, we provide additional detail to the major discord-
ance categories to explain why they occur to lay the ground-
work for reader performance monitoring methods described 
by Raunig et al. [8] in a companion paper.

Image Interpretation and Experience

Reading medical images requires the detection, interpre-
tation, and appropriate labeling of visible information of 
interest. Visual information that includes complex shape, 
texture, and intensity of the entire image is processed by 
the visual pathways in a manner that is strongly influenced 
by experience and higher functions including learning and 
memory [41, 55, 56]. Borradaile et al. authored a review of 
40 oncology clinical trials across 12 different indications 
with 12,299 participants and concluded that differences in 
expert visual interpretation commonly referred to as “medi-
cal image perception,” comprised 77% of the disagreements 
[57]. Their figure is remarkably consistent with the estimate 
of 80% independently reported by Kim and Mansfield for 
radiological diagnostic errors [58].

The importance of clinical trial experience in addition to 
clinical experience has been noted in the industry as exem-
plified by the advertisement of the Massachusetts General 
Hospital of their central reading services:

With over 20 years of clinical trial experience, our 
radiologists understand the unique needs of CROs 
[Contract Research Organizations] and pharmaceuti-
cal companies and are well equipped to handle even 
the most challenging of trials [59].

Radiological experience plays a particularly critical role 
when new findings may represent benign or unrelated condi-
tions mistaken for new metastasis or disease detected in less 
common manifestations or locations. For example, a pulmo-
nary embolus can appear to be a new lung lesion, imperson-
ating new pulmonary metastasis. Experience and training 
on the specific implementation of the clinical trial criteria 
are also critical. The proliferation of response criteria, over 
20 in oncology, increases the chance that the readers, site or 
central, will misinterpret the criteria and, therefore, commit 
the same procedural error. For example, in a trial involv-
ing prostate cancer and the newly released PCWG 3 crite-
ria [60], several readers evaluated according to the older 
criteria, PCWG2 [61]. The result of the errors was that the 
scans were re-opened and required re-reading, the readers 
were required to undergo refresher training, and a plan of 
corrective actions and preventive actions was created and 
implemented including a diary entry into the trial master file.

Though there is widespread agreement that more expe-
rienced radiologists have better diagnostic sensitivity and 
specificity than less experienced radiologists, there is no 
defined threshold for the number of years’ experience needed 
to successfully read in a clinical trial though. Some research 
indicates that between 5 and 10 years of experience as a 
practicing radiologist may be a useful guideline for recruit-
ing candidate readers [62–64]. Additionally, Tucker et al. 
reported that fewer than 80,000 cases read was an appar-
ent threshold for decreased diagnostic accuracy. A search 
of clinicaltrials.gov for Phase 2 and 3 studies using RECIST 
for PFS resulted in 3429 studies over the last 10 years for an 
average of 175 subjects/trial which may be used to approxi-
mate the number of clinical trial cases read when the reader 
curriculum vitae indicates only the number of clinical trials 
experience and not the total number of cases.3 Interestingly, 
the interaction of reader experience and fatigue having a 
greater influence on performance for readers with less expe-
rience [29, 30, 47]. However, this may not always be true 
since, at times, information on newer scanning techniques 

3 (Search terms: RECIST | Recruiting, Active, not recruiting, Com-
pleted Studies | Interventional Studies | Cancer | PFS | Phase 2, 3 | 
Start date from 01/01/2011 to 12/31/2020).
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that were previously unavailable may compensate for a read-
er’s lack of experience [65].

The following are recommended as considerations when 
choosing either blinded independent readers for central reads 
or sites and radiology departments when using site readers:

• Experience

• Clinical experience in radiological or nuclear medi-
cine evaluations of the specific indication measured 
in both years as a practicing clinician and number of 
patients evaluated;

• Criteria experience or training
• Experience with reading for a clinical trial, including 

the phase of the trial which may indicate experience 
with timelines, criteria, and reader workload.

• Fatigue

• The numbers of readers used in a pool to offset the 
workload on the readers at different parts of the clini-
cal trial (e.g. interim analyses) and at the end of the 
study.

• Monitoring or restricting the number of cases read 
in a single read session or over a longer period (e.g. 
week or month).

Selecting and Measuring Target Lesions

For most metastatic cancers, response criteria are generally 
concerned with measuring the change in the patient’s tumor 
burden. However, measuring all visible lesions in all patients 
is simply impractical. Therefore, following only a sampled 
subset of lesions over time is the basis behind most objec-
tive response criteria. Radiologists must be able to select 
‘relevant” lesions at baseline that they believe represent the 
disease burden of the patient and that will continue to be 
accurately measurable throughout treatment. A radiologist’s 
ability to select suitable target lesions is also dependent on 
their interpretation of what constitutes a suitable target 
lesion based on experience. For example, a lesion that meets 
measurability criteria may also later coalesce on subsequent 
timepoints, i.e. hilar or mediastinal lymphadenopathy typi-
cally leading to changes in measurements inconsistent with 
the change in the disease state. In these cases, a radiologist 
who is experienced in reading for a clinical trial may be 
more likely to choose that lesion as non-target at baseline. 
Sridhara, et al. point out that a target lesion that cannot be 
followed by at least one reader can result in missing data and 
a not evaluable assessment [66]. Examples of this, that mem-
bers of PINTAD have observed, occurred in several studies 
when the site chose the target lesions for the central readers.

Complicating matters, the specific target lesions read-
ers select often differ especially in patients with numerous 
lesions. As the percentage of change will vary and meet 
certain thresholds at different times depending on the set 
of lesions selected these differences in selection have been 
identified as a major reason for reader disagreement [24, 67]. 
Nevertheless, studies show that allowing readers to inde-
pendently select target lesions does not affect the overall 
study result and increases the overall reliability of the result 
by reducing sampling error of the target lesions that might 
occur by leaving the target lesion response up to a single 
reader. [68, 69].

Detecting New Lesions

New lesions that are still small may miss detection or, even 
if detected, reader comments in many clinical trials indicate 
that they want to wait to confirm that it is a growing lesion 
and not a non-malignant finding. Disagreements on whether 
a “new lesion” existed at baseline for disease-free survival 
endpoints can lead to the casewise exclusion of that patient 
for analysis. Interestingly, researchers from MIPS point out 
that radiologists can miss or misdiagnose lesions even when 
directed to the location of interest [11].

The detection of new lesions is not only a matter of per-
ception but also of signal versus noise—small lesions in 
inherently noisy images. To help increase signal, supple-
mental imaging modalities may also assist the readers when 
specified or designed to be acquired [70, 71]. Errors by a 
single reader in new lesion detection account for approxi-
mately 10% of all discordances [57].

Recognizing Non‑target Lesion Progression

Unequivocal non-target progression should reflect growth in 
which the “overall tumor burden has increased sufficiently 
to merit discontinuation of therapy" [72]. Accordingly, disa-
greements between independent readers regarding non-target 
lesion progression occur [73–77]. Disagreement on non-tar-
get lesion progression comprises about 10% of all disagree-
ments [78] and, while this constitutes a small percentage 
of all disagreements, perceptual disagreements can be a 
source of controversy when discussing patient care. Objec-
tive evaluation of non-target lesion response to treatment is 
chiefly dependent on noticeable morphological degrees of 
growth, reader experience, and the readers’ internal thresh-
olds of when to call unequivocal tumor progression (see also 
reader bias below). The likelihood and degree of this kind of 
disagreement can be reduced by ensuring that all readers are 
jointly trained in the indication, the modality, the criteria, 
and, most importantly, covering the scenarios that constitute 
unequivocal progression.
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Lesion Measurement

Well-defined, oval, or round lesions with clear lesion-to-
background discrimination are easier to measure and result 
in less variability than complex lesions with diffuse or spicu-
lated borders or those with poor discrimination from the 
background [79, 80]. Some indications, such as hepatocel-
lular carcinoma or ovarian cancers, are particularly chal-
lenging to measure. A lesions’ shape, conspicuity, or diffuse 
or infiltrating borders, require varying degrees of subjectiv-
ity in their measurements [46]. Lesions are also subject to 
slight movements and deformations due to patient position-
ing, breathing, swallowing; furthermore, the same lesion can 
demonstrate changes in its diameter, even upon immediate 
re-imaging [79].

Also, tumor size is typically measured in a single plane 
by the longest and/or shortest (i.e. widest) diameter, depend-
ing on the lesion type and criteria. RECIST measures solid, 
non-lymphatic tumors along the longest diameter. Therefore, 
measurement differences among readers due to differences 
in the determination of the measured edge or the longest 
axis can affect the target lesion response. [81] Measurement 
variability between readers for the same lesion, for most 
tumor types, can be considered to be only a minor contribu-
tor to overall reader variability (intraclass correlation coef-
ficient = 0.991) [82].

Measurement variability can and does lead to different 
response categories across readers. One example seen in a 
clinical trial was an assessment of stable disease based on a 
19.7% increase in the sum of diameters and the other reader 
assessing progressive disease based on a 20.1% increase in 
a single brain metastatic tumor. The adjudicator chose stable 
disease, which resulted in no progression event at that visit. 
The actual percentage change was small but the response 
category difference highlighted disagreements that are inevi-
table with criteria that rely on thresholds.

Image Quality

Inherent in any reader assessment accuracy is the quality 
of the image, itself, tempered by one’s ability to perceive 
the true disease state from poorly acquired images. Alpert 
and Hillman reported that from 10 to 24% of diagnostic 
errors in the clinic are associated with low image quality 
[83]. Certainly, this would also apply to the central review. 
Low-quality bone scans, computed tomography (CT) scans 
with motion artifacts, differences in contrast enhancement, 
inadequate contrast levels, or incomplete data are all image 
quality issues that make reliable assessments difficult and 
can increase reader differences. These nuances demand 
consummate and careful focus. Clear guidance on the 
expected image acquisitions needs to be provided and the 
consequences of adjustments due to oversight or for example 

patient condition understood (e.g. patient cannot tolerate a 
full dose of intravenous contrast) by trialists and trial spon-
sors. Pre-study training should prospectively discuss these 
scenarios, in particular in the context of implications for the 
assessment criteria (e.g., the timing of contrast in mRECIST 
for HCC).

Missing Clinical Information

Clinical information may direct the visual search to specific 
anatomical locations, or clinical information can provide 
context on a particular finding’s nature. Unlike in clinical 
practice, where the practice of medicine integrates objective 
disease progression with patient-related medical care fac-
tors, such as toxicity, medications, incidental findings, and 
overall clinical health, objective assessment of a patient’s 
response to treatment by imaging is fundamentally based on 
the reader having no information on the patient that is not 
pre-determined as part of the reader assessment. Accord-
ingly, patient-reported health status, typically available to 
the clinical radiologist, is not available to the clinical trial 
reader to ensure an objective assessment and reduce the pos-
sibility of biases to influence the assessment. For example, 
a reader who knows that the patient’s deteriorating health 
status may be biased to confirm that knowledge by assessing 
progressive disease (i.e. confirmation bias). The reverse of 
confirmation bias, anchoring bias, might occur if the reader 
is biased by the patient’s health status and then fails to adjust 
their assessment in light of contradictory radiological infor-
mation. A complete list of the 10 biases that radiologists are 
prone to was compiled by Busby et al. [54]. To mitigate the 
risk of bias and to also include clinical information critical 
to the assessment (e.g. biopsy), a careful and prospective 
determination of what clinical data is helpful in the context 
of the disease and how it is to be integrated with the criteria 
is strongly recommended and should be included into the 
image review charter.

Discussion

In 1996, the Clinton-Kessler Oncology Initiative accelerated 
cancer drug development. With this, centralized imaging 
rose in importance, becoming a prominent fixture in oncol-
ogy clinical trials. Accordingly, imaging core labs set out 
to establish specific read processes for clinical trials. Under 
the scrutiny of both regulators and sponsors, these pro-
cesses evolved to establish controls to ensure the reliability 
of blinded assessments by measuring and monitoring central 
reader performance, specifically by disagreements between 
paired readers on teams of two. Though medical imaging 
is common to most oncology trials, the familiarity of study 
personnel with what constitutes reasonable disagreement 
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and when or what corrective measures should be taken can 
vary greatly. We present in this paper a review of the lit-
erature as well as the experience of PINTAD members on 
why readers disagree and what kind of disagreement is to be 
expected. Fortunately, while errors are bound to occur when 
multiple readers read a case the errors are almost always 
limited to one of the readers since the chance that multiple 
readers committing the same error is small. Therefore, mul-
tiple reader paradigms allow for both an overall measure of 
disagreement and methods to eventually identify which of 
the readers contributed to that disagreement, provided in 
great detail in the companion to this paper [8].

A trend seen both by PINTAD members and within the 
literature on ICL reader disagreements is an increase in the 
desire to reduce reader disagreement using methods that also 
reduce the independence of the two readers. One example 
is to have a single reader choose the target lesions. This 
particular read design places target lesion response almost 
entirely on the abilities of the lesion-selection reader and 
reduces the adjudication of disagreement to a choice of how 
the readers measure lesions and not on the best set of target 
lesions. The common use of computer-aided measuring tools 
would reduce target lesion disagreement to near-zero but 
at the risk of a less-than-optimal choice of target lesions. 
Another example of misplaced efforts to reduce reader 
disagreement allows the readers to discuss the cases before 
the assessment which constitutes, essentially, a consensus 
assessment and which is specifically not accepted by the 
regulatory authorities as a multiple reader assessment. These 
and other examples demonstrate the risk of methods that, 
in essence, force the readers to agree without regarding the 
statistical impact on endpoint accuracy.

Many factors that shape reader variability are common to 
both on-site and off-site reviews. However, literature com-
paring imaging core lab and site reads is incomplete. The 
seminal meta-analysis of 27 studies that concluded equiva-
lence between central and site readers was limited by over 
half of the studies having sites and core labs communicate 
with each other (i.e. not independent) or having protocol 
amendments that required mitigation of site-related bias 
[84–87]. Nevertheless, the processes unique to each setting 
introduce different degrees of control for the reader vari-
abilities. The largest and most impactful differences include 
(1) the central read’s consistent use of two independent radi-
ologists, and (2) the ability of the central review process to 
monitor readers for both short-term and long-term trends. In 
most cases, monitoring site readers for bias, drift, and errors 
is typically impractical if even possible, and periodic retrain-
ing for all site readers may be needed in long follow-up stud-
ies to help ensure the reliability of the site-assessed results.

In studies that include the use of both site and central 
readers in a hybrid model of reader teams, the natural dis-
cordance between two radiologists can have an additional 

impact. For example, when enrollment requires a measurable 
lesion, which is required by RECIST for an assessment of 
Partial Response (PR), a disagreement by one reader on the 
presence of a measurable lesion will preclude that reader 
from assessing a PR. These incidents have been noted by 
the authors and other PINTAD members, and the following 
recommendations are made to mitigate the impact of site 
versus BICR discordance.

• In alignment with planned endpoints, consider central 
confirmation of baseline requirements, specifically the 
requirement for at least one measurable lesion to ensure 
that response is possible, and in studies that measure 
relapse for a disease-free survival (DFS) endpoint, have 
a central confirmation of the absence of disease at base-
line.

• Require central confirmation of progression or central 
adjudication of site-central discordance to reduce the 
possibility of informative censoring.

Independent from the read setting, when the prescribed 
disagreement rate is significantly above or below the 
expected rate, an evaluation should be performed to assess 
whether the observed rate is justified. In the context of well-
trained expert readers working under controlled conditions, 
a higher disagreement rate may reflect the challenges of the 
interpretation such as mixed responses due to the specific 
choice of target lesions, or “borderline cases” that hug the 
thresholds in slow-growing, or visually ill-defined disease, 
or simply poor image quality. However, if the investigation 
into unexpected disagreement rates does not suggest the 
presence of such justifiable differences in interpretation, then 
inadequate training, fatigue, or other performance-related 
factors may be the cause. Understanding which disagree-
ments are justified versus which disagreements can and 
should be limited and managed greatly adds to the effec-
tiveness of any conclusions and possible remedial actions. 
Most typically, these remedial actions consist of additional 
reader training, and, depending on the conclusions drawn, 
can consist of training as simple as a “Read and Acknowl-
edge,” or can be more involved such as a discordant case 
review remotely or in person. Reviewing discordant cases, 
though not specifically meant to reduce disagreement rate, 
does so by resolving the reason for discordance. It may also 
be helpful to review agreed-upon cases to identify reasons 
for agreement. In most cases, the review is likely to be most 
beneficial in identifying any misinterpretations of the cri-
teria which may greatly reduce subsequent disagreements.

In recent years, clinical researchers are looking to arti-
ficial intelligence (AI) to support radiologist’s reads and 
reduce reader variability [69–72] in addition to potentially 
replacing the current assessment criteria. A search of the 
term “AI” in the 2019 RSNA Annual Meeting program 
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resulted in 310 tutorials, classes, talks, or posters. Large 
international research collectives such as PRIMAGE, with 
access to adequate big data sets, are pursuing deep machine 
learning that could facilitate personalized imaging biomark-
ers [88]. We consider these efforts as highly promising, 
despite earlier research in computer-aided radiology that 
suggested computer-aided detection had not substantially 
improved the incidence of human error [44, 89–92], and 
are looking forward to further validation. For the present, at 
least, imaging interpretation relies on human expertise; and, 
reader variability remains an unavoidable reality.

A new concern that has arisen recently and sure to 
become integral in clinical trials for the future is the pres-
ence of intercurrent events (ICE) experienced during the 
COVID-19 pandemic, particularly those ICEs that may make 
it necessary for oncology patients to be scanned at differ-
ent imaging centers or even using different modalities [93]. 
While the guidance recommends consulting with the FDA 
for the impact of alternative imaging centers on efficacy end-
points and type I and type II error rates, study sponsors may 
also want to consider the impact of the pandemic on any 
studies using local evaluations. In the case of site radiolo-
gists being unavailable or overworked, studies should have 
a discussion about incorporating the consistency and avail-
ability of using central readers.

Conclusion: The Significance of Reader 
Variability in Clinical Trials

It is quite clear that two independent experts will always 
disagree to some extent. Disagreement rates of 25% to 40% 
on the interpretation of an image are a reasonable bench-
mark, based on seven decades of consistent findings. Impor-
tantly, variability among readers does not necessarily indi-
cate inadequate performance; instead, it often reflects natural 
and expected differences in all of its forms and may reveal 
where multiple interpretations are reasonable. In controlled 
and monitored reader environments, unexpected levels of 
disagreement should be flags for further investigation and 
changes in disagreement rates can be reliable indicators of 
some type of change in performance. Correctly identifying 
reasons for reader variability may become even more impor-
tant in the near future as immune-oncology studies become 
the standard and different sources of image data noise and 
confounders become more and more important to mitigate.

The procedures and methods presented in the compan-
ion to this article recommend ways to monitor and interpret 
imaging reviewer performance in most clinical trials [8].
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