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Abstract
It is challenging to elucidate the effects of changes in external influences (such as economic or policy) on the rate of US drug 
approvals. Here, a novel approach—termed the Chronological Hurst Exponent (CHE)—is proposed, which hypothesizes 
that changes in the long-range memory latent within the dynamics of time series data may be temporally associated with 
changes in such influences. Using the monthly number FDA’s Center for Drug Evaluation and Research (CDER) approv-
als from 1939 to 2019 as the data source, it is demonstrated that the CHE has a distinct S-shaped structure demarcated by 
an 8-year (1939–1947) Stagnation Period, a 27-year (1947–1974) Emergent Period, and a 45-year (1974–2019) Saturation 
Period. Further, dominant periodicities (resolved via wavelet analyses) are identified during the most recent 45-year CHE 
Saturation Period at 17, 8 and 4 years; thus, US drug approvals have been following a Juglar/Kuznet mid-term cycle with 
Kitchin-like bursts. As discussed, this work suggests that (1) changes in extrinsic factors (e.g., of economic and/or policy 
origin) during the Emergent Period may have led to persistent growth in US drug approvals enjoyed since 1974, (2) the 
CHE may be a valued method to explore influences on time series data, and (3) innovation-related economic cycles exist (as 
viewed via the proxy metric of US drug approvals).
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Introduction

Drug discovery and development (DDD) requires investment 
to maneuver a single putative medicine from discovery sci-
ence to market approval for a given condition or disease. 
The investments cover the costs associated with acquiring 
both the hardware (e.g., laboratory materials and space) and 
software [explicit (e.g., patents) and tacit (e.g., know-how) 
knowledge] as well as executing the various DDD activities 
[1]. Ultimately, should an investigational candidate survive 
the attrition process and obtain marketing authorization 
(also known as marketing approval) by a health authority, 
a sponsor then enjoys economic rents secured from supply-
ing the approval medicine. On the demand side, the patient 
receives a trusted medicine associated with a market inno-
vation based on a new chemical and biologic entity, a cost 

advantage (generic), or a more efficient delivery of drug 
product [2].

Since the early twentieth century to the present, in terms 
of drug development, the social, economic, and politi-
cal environments have evolved dramatically. For example, 
the growth in the amount of governmental investment in 
research and development (R&D) [3], the number of R&D 
firms [4, 5], the volume of intellectual property (e.g., pat-
ents, trademarks, as well as peer-reviewed publications) [5, 
6], the number of R&D policy initiatives (see Table 1 and 
discussion below), and the rise of the R&D cluster [7] have 
seemingly grown synchronistically and exponentially. As a 
case in point, in the US and across industries, Daizadeh [8, 
9] showed a statistical significant intercorrelation in the time 
course of R&D investment, the number of patent and trade-
mark applications, peer-reviewed and media publications, 
and stock price of major indices in the US.

Importantly, the twentieth century also gave rise to the 
modern regulated DDD industry including the invention of 
an objective, independent, and external agency [collectively 
termed the health authority (HA)]. The HA performs a vital 
function by attesting to a medicine’s quality, safety, and 
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efficacy profile and to formally authorize a drug for mar-
keting purposes in a given jurisdiction. Since its original 

conception, there have been increasing refinement in its 
scope proportional to changes in the social environment 

Table 1   Brief Milestones in FDA Drug Regulation [10, 37]

https://​www.​fda.​gov/​about-​fda/​virtu​al-​exhib​its-​fda-​histo​ry/​brief-​histo​ry-​center-​drug-​evalu​ation-​and-​resea​rch

Year US Drug Regulation

1938 Act and Requirements for Premarket Drug Safety and New Labeling
1941 The Insulin Amendment
1945 The Penicillin Amendment
1951 Durham–Humphrey Amendment
1962 Kefauver–Harris Drug Amendments
1977 Introduction of the Bioresearch Monitoring Program
1981 Revision of the regulations for human subject protections
1982 Tamper-resistant Packaging Regulations issued
1983 Orphan Drug Act
1984 Drug Price Competition and Patent Term Restoration Act (Hatch–Waxman Act)
1987 Investigational drug regulations
1988 FDA Act of 1988 and Prescription Drug Marketing Act
1989 Guidelines on significant use in elderly people
1991 Accelerated review of drugs for life-threatening diseases; Common Rule adopted across agencies
1992 Generic Drug Enforcement Act; co-establishes International Conference on Harmonization (ICH); Pre-

scription Drug User Fee Act (PDUFA I)
1993 MedWatch launched; revising women of childbearing potential in early phase drug studies policies and 

assessments of genders-specific medication responses
1994 Uruguay Round Agreements Act
1995 Cigarettes as ‘drug delivery devices’
1997 FDA Modernization Act (FDAMA); reauthorization of PDUFA II
1998 Adverse Event Reporting System (AERS); Demographic Rule; Pediatric Rule
1999 ClinicalTrials.gov; guidances for electronic submissions; drug facts; Prescription Drug Broadcasting 

Advertising Final Guidance; Managing the Risks from Medical Product use: Risk Management Frame-
work published

2000 Data Quality Act
2002 Best Pharmaceuticals for Children Act; Public Health Security and Bioterrorism Preparedness and 

Response Act of 2002; Current good manufacturing practice (cGMP) initiative; PDUFA III; outcomes 
of pregnancies registries guidance

2003 Medicare Prescription Drug Improvement and Modernization Act; Pediatric Research Equity Act
2004 Project BioShield Act of 2004; Anabolic Steroid Control Act of 2004; “Innovation or Stagnation?—

Challenge and Opportunity on the Critical Path to New Medical Products” published; bar code intro-
duced

2005 Drug Safety Board announced; risk management performance goal guidances
2006 Requirements on Content and Format of Labeling for Human Prescription Drug and Biological Products 

final rule
2007 PDUFA IV; FDA Amendments Act (FDAAA)
2008 Sentinel Initiative
2009 FDA Transparency Initiative
2010 FDA Transparency Results Accountability Credibility Knowledge Sharing (TRACK)
2012 PDUFA V; Launch of FDA Adverse Event Reporting System (FAERS); Food and Drug Administration 

Safety and Innovation Act (FDASIA); Generic Drug User Fee Amendment
2013 Drug Quality and Security Act; Mobile Medical Applications; Global Unique Device Identification 

Database (GUDID)
2016 21st Century Cures Act
2017 Current Good Manufacturing Practice (cGMP) Requirements for Combination Products; FDA Reau-

thorization Act (FDARA; PDUFA VI)

https://www.fda.gov/about-fda/virtual-exhibits-fda-history/brief-history-center-drug-evaluation-and-research
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through amendments in policy. For example, focusing on 
the US Food and Drug Administration (FDA), there has been 
an evolution in the number and variety of policy initiatives 
focused on providing oversight to the DDD process due 
exclusively to important social concerns regarding safety 
and efficacy of certain drugs circulating in inter-jurisdic-
tional commerce [10]. The FDA policy environment has 
evolved considerably from placing under regulation on spe-
cific drugs (e.g., insulin and penicillin) and describing the 
basic tenets of the safety sciences in its infancy to building 
a robust infrastructure commencing in the 1960s with the 
Kefauver-Harris amendments to regular updates in the pol-
icy landscape starting in 1977, with the introduction of the 
Bioresearch Monitoring Program, pushing the frontiers of 
regulatory science into the twenty-first century (see Table 1).

Concomitantly, economic factors have also greatly influ-
enced the landscape of DDD. Unlike the US (21 CFR 310 
et seq.; 21 CFR 601 et seq.), in many jurisdictions (e.g., the 
European Union), HAs consider cost and/or reimbursement 
when assessing the merits of granting a marketing applica-
tion. The ability of sponsors to obtain the economic rents 
from supplying quality, safe and efficacious HA-authorized 
drugs is a key driver that has sustained the DDD process. 
Among other factors, expected revenues from marketing an 
innovative HA-approved drug product would be proportional 
to monopolizing power of the intellectual property [1] as 
well as the amount of labor required to move the drug from 
concept to delivery, thereby requiring a broad assortment 
of various investments in terms of tangible and intangible 
assets. While beyond the scope of this work, cost estimates 
to secure marketing authorization vary based on the types of 
challenges experienced in various phases (e.g. target/modal-
ity in discovery; the number, length and type of clinical trials 
in development) [11], with significant savings expected with 
expediting development [12]. Thus, drug approvals may be 
thought of an economic outcome within a given jurisdic-
tion, and should behave as such. One such test would be to 
investigate the presence of cycles in the number of approv-
als similar to that found in other forms of economic output.

Economic cycles, a wavelength between crests of devel-
opment maxima over stagnation minima, are an active area 
of inquiry, not without controversy [13]. Juglar defined this 
periodicity over three phases: prosperity, crisis, and sub-
sequent liquidation, and suggested an “approximate length 
of the cycle with crisis/liquidation taking 1–2 years, fol-
lowed by a 6–7 years phase of prosperity [14, p. 7],” with 
drivers to prosperity to crisis transition due to exuberance 
and thus over-speculation (ibid.). Kitchin derived ‘minor’ 
and ‘major’ inventory cycles with wavelengths of 3.5 years 
(40 months) and “aggregates usually of two, and less sel-
dom of three, minor cycles,” respectively [15, p. 10]. Sub-
sequent to the introduction of these short and intermediate 
cycles, Kondratieff introduced the concept of the long-wave 

50–60 years cycles [16]. Concomitantly, Kuznetz extrapo-
lated 15–25 years cycles derived from data from “fluctua-
tions in rates of population growth and immigrating but, also 
with investment delays in building, construction, transport 
infrastructure, etc.… [17, p. 2].” These authors extrapolated 
the information from a broad assortment of macro-economic 
data from US and Europe including climate, monetary, fis-
cal, consumption, among others.

Memory characteristics (also termed persistency) in 
the dynamics of typical econometrics captured over time 
are intimately connected with cycles and thus also to the 
underlying processes [18]. Technically, however, these same 
characteristics such as long-range memory processes are 
challenging to analyze and interpret due to (in part) self-
similarity and typical non-stationary properties (as they 
confound spurious from true signals) [19]. The Hurst con-
stant and wavelet analyses are statistical time series tools 
that may be calculated in such as a way as to avoid these 
challenges [20]. While there are other ways to define a Hurst 
constant, a measurement of memory, it is classically defined 
as H ~ ln(R/S)t/ln(t), where R and S is the rescaled range and 
standard deviation, respectively, and t is a time window. 
An H = 0.5, an H < 0.5, and an H > 0.5 indicates a random 
walk, an anti-persistent, and a persistent (trend reinforcing) 
time series, respectively [21]. Wavelet analyses is a well-
established group of time series methods that leverages the 
expansion and contraction of wave functions to resolve time 
series properties [22].

In this work, and the to the author’s knowledge, this is 
the first investigation of the existence and evolution of per-
sistency, and the existence of approval cycles (akin to eco-
nomic cycles) within US drug approvals, which is treated 
as a macro-economic variable and a proxy metric for FDA 
policy. This work is exploratory and empirical in nature. 
As presented in the Materials and Methods section below, 
the data source is a time series of monthly values of US 
drug Approvals from Jan. 1939 through Dec. 2019 from the 
Centers of Drug Evaluation and Research (CDER) branch of 
the Food and Drug Administration (FDA), which “regulates 
over-the-counter and prescription drugs, including biological 
therapeutics and generic drugs.1” While this is not the only 
institution that regulates the DDD process within the FDA, 
it is one that provides a publicly, reliable and valuable source 
of longitudinal metrics regarding the DDD process from the 
dawn of the review process (1939) to the present time. The 
methods are standard with the exception of the Chronologi-
cal Hurst Exponent to explore the persistency latent in the 
time series. All datasets and R Project code are provided in 
the Electronic Supplementary Materials section for the sake 

1  https://​www.​fda.​gov/​about-​fda/​fda-​organ​izati​on/​center-​drug-​evalu​
ation-​and-​resea​rch-​cder.

https://www.fda.gov/about-fda/fda-organization/center-drug-evaluation-and-research-cder
https://www.fda.gov/about-fda/fda-organization/center-drug-evaluation-and-research-cder
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of transparency and replicability as well as to encourage 
future researchers in investigate a potentially very interesting 
and informative aspect of drug development. This work then 
discusses the key results of both the descriptive and inferen-
tial statistics followed by a discussion on how the statistical 
work positively supports the hypotheses mentioned above 
(viz., persistency and economic cycles are latent within US 
drug approvals), and the ramifications of this work includ-
ing potential linkages to sociological, economic, and policy 
features experienced over the nearly 100 years of data.

Materials and Methodologies

The following summarizes the data sources and the statisti-
cal approaches used. This work is applied by nature and thus 
differing the mathematical formulae and technical discus-
sion to original sources, as cited. All data and the R Project 
code for the statistical analysis are provided in the Electronic 
Supplementary Materials section supporting this article for 
transparency and reproducibility, as well as for purposes of 
future work.

Data Sources and Data Preparation

The data were obtained from the FDA repository accessed 
at https://​www.​acces​sdata.​fda.​gov/​scrip​ts/​cder/​daf/ on July 
16 and July 17, 2020. The data were culled from a monthly 
report and described as follows:

All Approvals and Tentative Approvals by Month.
Reports include only BLAs/NDAs/ANDAs2 or supple-
ments to those applications approved by the Center for 
Drug Evaluation and Research (CDER) and tentative 
NDA/ANDA approvals in CDER. The reports do not 
include applications or supplements approved by the 
Center for Biologics Evaluation and Research (CBER).
Approvals of New Drug Applications (NDAs), Bio-
logics License Applications (BLAs), and Abbreviated 
New Drug Applications (ANDAs), and supplements to 
those applications; and tentative approvals of ANDAs 
and NDAs.

Upon entry into the data-repository via the website, the num-
ber of approvals from January 1939 to December 2019 was 
then determined by month. The values were placed in Excel 
and then exported as a comma delimited comma-separated 
values (CSV) file for input into the data analysis routine.

The total dataset comprised 181,157 total approvals 
from January 1939 until December 2019 (for a total of 972 

monthly observations). The author notes that submission 
history for each approval during this roughly 100–year time 
period was not found on the US FDA website.

Statistical Analysis

As mentioned above, as this is an applied paper, reference 
is made to the various theoretical formulae in the respective 
supportive citations. Many of the distribution-inquiring sta-
tistical tests selected are considered ‘standard’ in the sense 
that they are typically used in the context described and are 
readily available and interpretable. All methods presented 
below followed standard implementation; default parameters 
were used (as appropriate) throughout the analyses. While 
the R code [23] is presented in the Electronic Supplemental 
Materials section of this article, the steps to perform the 
analysis were as follows:

	 I.	 Load US Approvals as a time series and perform 
descriptive statistics (including autocorrelation func-
tions) [24; R package: ‘moments’].

		    In this step, the data are read as a time series into 
the R program, and descriptive statistics including 
moments and serial and partial correlation functions 
calculated.

	 II.	 Assess attributes of the time series, including:

o	 Normality [25; R package: ‘nortest’] using the 
Anderson–Darling and Cramer–von Mises normal-
ity tests

o	 Stationarity [26; R package: ‘aTSA’] using the 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Unit 
Root Test for both the original and single difference

o	 Long-memory [27; R package: ‘LongMemoryTS’] 
using the Qu and local Whittle score tests

o	 Seasonality [28; R package: ‘seastests’] using the 
WO, QS, Friedman and Welch tests

o	 Nonlinearity [29; R package: ‘nonlinearTseries’] 
using the Teraesvirta’s and neural network tests, 
and Keenan, McLeod–Li, Tsay, and likelihood ratio 
tests.

	 III.	 Determine the Chronological Hurst Exponent (that 
is, evaluate if the Hurst exponent over time evolves):

		    For a given time series, the Hurst constant [30; 
R package: ‘tsfeatures’] is a statistical indicator of 
the memory in a time series process (or processes). 
In this calculation, the time-varying nature of the H 
constant was investigated using time windows from 
the first datapoint (Jan. 1939) to the end of the win-
dow length, with 1-month increments. The algorithm 
to calculate the Chronological Hurst Exponent is as 
follows:

2  BLAs/NDAs/ANDAs: Biologics License Applications, New Drug 
Applications, Abbreviated New Drug Applications.

https://www.accessdata.fda.gov/scripts/cder/daf/
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hurstApprovals=0; end<-length(time)
for (i  in 1:end) { hurstApprovals[i] <- hurst 
(time[1:(1+i*1)]) }
hurstApprovals<-ts(hurstApprovals,start=c(1939,1), 
end=c(2019,12),frequency=12)

	 IV.	 Determine the periodicities within the time series.
		    Wavelet analyses used to investigate the structure 

of the periodicities within the time series given its 
dynamics (particularly its non-stationarity; see step 
II). Two wavelet methods were utilized: one with a 
smoothing (Loess) approach [31; R package: ‘Wave-
letComp’] and one [32–34; R Package: ‘dplR’] with-
out. The average period versus the average power for 
each method was then calculated to elucidate the 
main periodicities. The dominant frequency was then 
re-checked with spectral analysis [35, 36; R Package: 
‘forecast’].

Results

Descriptive Statistics: Elementary Properties 
of the Chromodynamics of US Drug Approvals

The time series of US drug approvals follows an interest-
ing flow given the dramatic rise starting in the 1970s to 
2000 then after a drastic fall with a subsequent re-rise 
(Fig. 1).

The US drug approvals time series distribution is non-
normal, platykurtic and positively skewed, with an average 
of 186 approvals (191 standard deviation) (Table 2 and 
3). Importantly, the time series is non-stationary, non-
seasonal, and non-linear, with intrinsic persistent memory 
(Table 2 and Fig. 2), which is removed with single differ-
encing (that is, the time series has an order of integration 
(number of differences to attain stationarity) of 1, I(1)). 
I(1) processes are rather well-represented across a spec-
trum of different disciplines and a broad assortment of 
the economic variables including US drug approvals [37].

Figure 1   The Number of Monthly US CDER Approvals as a Function of Year from 1939 to 2019

Table 2   Descriptive Statistics of US Approvals (Rounded to Tenths; Units in Months)

Minimum 1st Quartile Median Mean Standard deviation 3rd Quartile Maximum Kurtosis Skew

0 5.0 164 186.4 190.9 392.2 858 2.6 0.7
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Chronological Hurst Exponent: Existence 
of Economic Cycles and Latent Persistency

Using the Chronological Hurst Exponent approach to investi-
gate the long-term memory processes of the time series shows, 
interestingly, a unique trichotomized structure (Fig. 3). Three 
periods are clearly shown: Period 1: prior to June 1947, a 
period of stagnation with H ~ 0.5; Period 2: June 1947 to May 
1974, a period of time-varying nature (also herein called emer-
gent), where the H constant fluctuates rises under a degree of 
fluctuation; and, Period 3: May 1974 to Dec 2019, a period of 
saturation in which the H ~ 1.

Concordantly, the wavelet periodogram during Period 3 
demonstrates that the time series contains periodicities. Sev-
eral relatively long-, medium-, and short-range periodicities 
are observed during this period: 16–18 years (with a maxi-
mum (black ridge) occurring at 17 years), ~ 4–8 years, and on 
the monthly, yearly, or biyearly periodicities presenting inter-
mittently, respectively (Fig. 4). The predominate periodicity 
is identified to be 17, 8 and 4 years from spectral analysis 
(Fig. 5).

Discussion and Conclusion

Using time series analysis, this work finds two conceptually 
novel aspects of US drug approvals: the existence and evo-
lution of persistency, and the existence of approval cycles 
(akin to economic cycles).

Persistency

Formally, persistency may be defined as the “rate at which 
its autocorrelation function decays to zero,” or “the extent to 
which events today have an effect on the whole future history 
of a stochastic process [38].” Translating to the context of 
our concern, it generally means that the value of US drug 
approvals at a given month is closely related to its value at 
the prior month. The Chronological Hurst Exponent pro-
posed herein is a simple algorithm that reiteratively calcu-
lates the Hurst exponent (a measure of persistency) over an 
incrementally increased time period. With each iteration, an 
additional data point (here the next monthly observation of 
US approvals) is taken into account until the exponent of the 

Table 3   Summary of Tests Investigating Normality, Stationarity, Seasonality, Long-Memory, and Nonlinearity

a Some tests require stationary data. As such, as the number of differences required for a stationary series from the original time series was 1, the 
difference was used in the specific test demarcated

Test Category Test Name Test Statistic Outcome Against Null Hypothesis

Normality Anderson–Darling test p value < 2.2e^16 Normal distribution rejected
Cramer–von Mises test p value < 7.37e−10

Stationarity KPSS unit root testa 0.01 (for no drift/no trend; for drift/
no trend; for drift/trend)

Stationarity rejected

Long memory Qu testa 1.033545 versus 1.517 
(alpha = 0.01; eps = 0.02)

Long memory accepted

Multivariate local Whittle Scorea 1.668473 versus 1.517 
(alpha = 0.01)

Seasonality Webel–Ollech test p value 0.05 “The WO-test does not identify 
seasonality”

QS test, Friedman, Welch tests False—seasonality rejected
Linearity Teraesvirta’s neural network test p value = 0 Linearity in “mean” rejected

White neural network test p value = 0 Linearity in “mean” rejected
Keenan’s one-degree test p value = 3.889e^−5 The time series follows some AR 

process rejected
McLeod–Li test p value = 0 The time series follows some 

ARIMA process rejected
Tsay’s test p value = 6.45e^−14 Time series follows some AR 

process rejected
Likelihood ratio test for threshold 

nonlinearity
p value = 0.0004552571 Time series follows some TAR 

process rejected
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full data set is calculated. The Chronological Hurst Expo-
nent proposed in this work elucidated a S-shaped structure 
reflecting a trichotomized picture of the time evolution of 
persistency latent within US drug approvals:

•	 Period 1: An 8-year (1939–1947) stagnation period in 
which the Hurst exponent remained at or around 0.5. An 
Hurst exponent at these values suggest no persistency 
whatsoever.

•	 Period 2: A 27-year (1947–1974) time-varying (emer-
gent) period in which the Hurst exponent gradually 
evolved from 0.5 to 0.9. This range in the Hurst expo-
nent suggests a growing persistency within the time 
series data.

•	 Period 3: A 45-year (1974–2019) saturation period in 
which the Hurst exponent remained at or around 1. A 
saturated Hurst exponent implies that the time series 
has become (for lack of a better term) inelastic; that 
is, any further changes in the degree and/or number 
of exogenous variables do not affect the persistency 
course of the time series (as it is already maximized).

Figure 2   Serial and Partial Correlation Functions: Lag is Presented in Months
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Cyclicity

Interpreting US drug approvals as an economic variable—
a singular outcome of several complex macro- (national), 
meso- (cluster), and micro (firm)-inputs such as national 
policy and R&D spend (government, firm), potential of 
future rents (individual buyer, payor), science and tech-
nology innovation (tacit (e.g., staff dexterity) and explicit 
(e.g., patents) knowledge), and resource availability 
(e.g., chemicals, vials)—the existence of business cycles 
were investigated. Several tiered periodicities (17 years, 
4–8 years, and intermittent monthly/yearly) were identi-
fied within Periods 2 and 3 of the CHE. Thus, one of the 
key findings of this work is that approval cycles, similar 
to economic cycles, exist. These approval cycles seem to 

be the result of explanatory variables that are working in 
a cumulative manner.

Persistence and Cyclicity Interpreted

During Period 2 [27-years (1947–1974)], it is observed that 
1947 was the first year in which there were one or more 
approvals during much of the year and had the largest num-
ber on an annual basis since the start of the collection cycle 
in Jan 1939. After 1947, a general rise in the number of 
approvals per month and per annum is observed. It is also 
a period of commensurate changes to the policy and social 
landscape pertaining to DDD, as well as continued invest-
ment into R&D. These changes were seemingly due to end 
of World War II (1939–1945), the beginning of the so-called 

Figure 3   The Chronological Hurst Exponent Based on US Drug Approvals (Fig. 1) from 1939 to 2019

Figure 4   Wavelet Periodogram of US Approvals: Black Lines are the Wavelet Power Ridges and White Contour Lines to Border the Area of 
Wavelet Power Significance of 99%
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‘Golden Age of Capitalism,’ and the associated economic 
progress [39] with a relatively small number of economic 
disasters (see Fig. 3 in [40]). Since the 1938 Food, Drug 
and Cosmetic act, no significant advances in policy occurred 
until the 1962 Drug Amendments (see Table 1), while there 
were significant milestone activities in terms of congres-
sional review (the Kefauver Hearings dealt with pricing and 
market control [41]. One could therefore speculate that it an 
overall increased economic activity (and not specific FDA 
policy changes, per se) that may have driven the changes in 
the persistency measurement.

The appearance of Period 3 [45-years (1974–2019)] sug-
gests a uniform pressure onto the time series. Two general 
reasons present themselves to foment such a sustained per-
sistent alteration in the fabric of US drug approvals: some 
sort of substantive and everlasting change (1) to account-
ing practices regarding US drug approvals (that is, how 
the source data were initially contrived and/or collected); 
or (2) in the scientific, social, economic, and/or legislative 
landscape. The former is unlikely to cause a persistent shift. 
To illustrate, FDA data sources state a change in depart-
ment ownership in and around that time, as well as issues 
regarding changes from fiscal to calendar year practices.3 It 
is unlikely that either of these reasons would have changed 
the time series in such a permanent manner. The latter rea-
son, while likely, however, is ill-defined, but does allow for 
hypothesis generation.

One hypothesis that could be tested is that of a significant 
change in the FDA policy landscape (see Table 1) may have 

caused the formation of Period 3. From an FDA perspective, 
the 1960s and 1970s were a transformative vicennial [10]. In 
1962, the Kefauver-Harris (KH) amendments to the original 
Food, Drug and Cosmetics Act (FD&C) of 1938 introduced 
(inter alia) broad requirements on drug efficacy (including 
key concepts of ‘substantial evidence’ and ‘adequate and 
well-controlled studies’), drug quality (via good manufactur-
ing practices), ethical guidelines (patient informed consent), 
and physician-researcher supervision of the clinical trials. 
Subsequently, a review of prior-to-1962 approved drugs 
were retrospectively investigated based on the evidentiary 
standard of the KH amendments, which led to revocation of 
“over 1000 ineffective drugs and drug combinations from 
the marketplace (page 13 of ibid.).” The concepts such 
as those introduced in the KH amendments (partly listed 
above) have been refined and reinforced through ongoing 
congressional action, directly contributing to the identified 
persistency affect and cyclicity. Ongoing policy actions, 
such as Prescription Drug User Fee Act (PDUFA) and its 
subsequent 5-year amendments commencing in 1992, or the 
introduction of new technologies may have directly contrib-
uted to innovation-based periodicities, leading to significant 
increases in the promulgation of guidelines that may have 
furthered drug approvals [37, 42].

Thinking outside of the drug development process and 
continuing considering the periodogram (Fig. 5) and think-
ing of the original time series (Fig. 2), the complex perio-
dicity profile may have been motivated by socio-economic 
factors. Substantive economic pulses that may have affected 
the overall approval flow may include: Black Monday Mar-
ket Crash (October 19, 1987), the Dot-Com bubble burst 
(Q3, 2002), and the subprime mortgage crisis (September 
17, 2008), among others. Visually, the Dot-Com bubble 
burst seemed to coincide with a downsizing of amplitude. 
However, it is difficult to ascertain if the other triggers may 
have affected the time series.

Interestingly, if one considered the US drug approvals 
strictly as an economic variable, and assuming the theory of 
Schumpeter’s economic cycles, the identified periodicities 
seem to coincide with certain macro-economic periodicities, 
with exception as no canonical long-term (> 40 years) perio-
dicities were identified in this analysis (see Table 4). The 

Figure 5   Wavelet period versus power with 95% significant levels in 
red

Table 4   Mapping of Broad Canonical Economic Cycles with that of 
Periodicities Associated with US Approvals

Theory

Perio-
dicity 

(Years) US Approvals

Kitchin short-term cycle 3.5 Months to biannual
Juglar mid-term cycle 7–11 4–8 years
Kuznets medium-term cycle 15–25 17 years
Kondratieff long-term cycle 40–60

3  Data record information from https://​www.​fda.​gov/​about-​fda/​histo​
ries-​produ​ct-​regul​ation/​summa​ry-​nda-​appro​vals-​recei​pts-​1938-​prese​
nt (extracted on July 30, 2020).

https://www.fda.gov/about-fda/histories-product-regulation/summary-nda-approvals-receipts-1938-present
https://www.fda.gov/about-fda/histories-product-regulation/summary-nda-approvals-receipts-1938-present
https://www.fda.gov/about-fda/histories-product-regulation/summary-nda-approvals-receipts-1938-present
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periodicities began at different times with different durations 
(Fig. 4). The dominant periodicity of 17, 8 and 4 years has 
reoccurred during the longest (45 years), medium (20 years), 
and short-term (intermittent) durations, respectively (Fig. 5). 
Thus, it seems that US drug approvals follow a Juglar/
Kuznets mid-term cycle with Kitchin bursts. Only time will 
tell if a longer-term cycle (Kondratieff) emerges, irrespec-
tive of any downside pressures (such as multi-decade bear 
cycles). A key difference between the identified approval 
cycles as compared with economic cycles may be the degree 
of importance of the regulatory context. While a potentially 
coarse interpretation, without the legal requirement for mar-
ket approval there would not have been a US drug approvals 
time series, whereas for variables such as gross domestic 
product typically used to consider economic cycles this is 
not the case (as the legal regimes do not define (as much as 
support) the existence of these more traditional economic 
variables).

Further Thoughts in Light of Limitations of Current 
Study

There are extensions and limitations to any statistical analy-
ses, especially when dealing with social-economic variables. 
Examples of future investigation may include.

Hypothesis

•	 One could argue that the number of US drug applications 
may have been a more insightful variable, as applications 
may be either withdrawn (by the Sponsor) or rejected (by 
the FDA). Unfortunately, the author could not find this 
dataset.

•	 The number of initial US drug applications or approvals 
for new molecular and/or biologic entities may provide 
additional insight into the economics of the innovative 
process. In this article, the total number of US drug 
approvals including generics and line extensions (e.g., 
new indications or dosage forms) were considered, as 
reflected “market innovation.” That is, a sponsor would 
not have considered seeking an approval without a mar-
ket driver of some sort.

Data

•	 Data integrity and completeness: This study relies on a 
single source dataset from the FDA. While the author 
feels comfortable with the data source, there is uncer-
tainty in how the data are collected, maintained, and pre-
sented given the duration of data collection and limited-
to-no ability to cross-reference.

•	 Data transformation: The data were transformed from 
irregular to a regular time structure. That is, FDA drug 

approvals occurred as a function of day; these data 
were then aggregated into monthly values to facilitate 
the statistical analyses. Thus, some information may 
have been lost in terms of structure, as there are limited 
statistical routines able to manage such data.

In the author’s opinion, these data are an important artifact 
of R&D expenditures related to the DDD industry and 
therefore have interesting utility. Future investigations may 
consider these data and analyses to support research ques-
tions such as those related to forecasting and long-memory 
effects of non-stationary and non-linear data. It will be 
interesting to revisit these analyses on a yearly basis given 
the recent COVID-19 crises and resultant economic chal-
lenges, with a hope that the US drug approvals remain 
persistent with respect to these significant triggers.

Study Conclusions

In conclusion, this work introduces the Chronological 
Hurst Exponent, an algorithm which examines the time 
evolution of long-term memory intrinsic to time series 
data. Using this algorithm, US drug approvals are exam-
ined. The CHE of US drug approvals is found to follow 
a distinctive S-shaped (trichotomized) curve, with three 
periodicities that seem to be correlative with the evolv-
ing US drug development policy landscape, as well as 
macro-variable changes that may be relevant to drug 
development. Further, using wavelet analysis, cyclicity in 
the frequency of US drug approvals was observed in the 
most recent period identified in the CHE analysis. These 
periodicities adds evidence to the concept of mid-term 
economic cycles, assuming US drug approvals data are 
viewed a proxy metric of innovative capacity. The empir-
ical findings and statistical approaches outlined in this 
report promise an exciting new frontier of further research 
into the various forces driving drug development.
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