CORRECTION

Correction: Protective effect of hygrolansamycin C against corticosterone-induced toxicity and oxidative stress-mediated via autophagy and the MAPK signaling pathway

Jongtae Roh^{1,2} · Jun-Pil Jang¹ · Taehoon Oh^{1,3} · Jihong Kim^{1,3} · Byeongsan Lee^{1,3} · Young-Soo Hong^{1,2} · Jae-Hyuk Jang^{1,2} · Sung-Kyun Ko^{1,2}

Published online: 4 April 2024 © The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences 2024

Correction: Pharmacological Reports

https://doi.org/10.1007/s43440-024-00572-x

In this article " μ " symbol was missing from the " μ M" notation for substance concentration in Figs. 2 and 4.

Additionally, the symbol " β " in " β -Actin" is missing in Figs. 5, 6, 7. The figures should have appeared as shown below.

The original article has been corrected.

The original article can be found online at https://doi.org/10.1007/ s43440-024-00572-x.

☑ Jae-Hyuk Jang jangjh@kribb.re.kr

Sung-Kyun Ko ksk1230@kribb.re.kr

- ¹ Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- ² KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
- ³ College of Pharmacy, Chungbuk National University, Cheongju, Korea

Fig.2 HYGC inhibits corticosterone (CORT)-induced cytotoxicity in PC12 cells. **a**, **b** PC12 cells were incubated with the indicated concentration of HYGC or DMSO for 24 h or the indicated time. Cell viability was measured using the EZ-Cytox colorimetric kit (mean \pm SD, n=3). **c** PC12 cells were incubated with various concentrations of CORT for 24 h. Cell viability was measured using the EZ-Cytox colorimetric kit (mean \pm SD, n=3). **d** PC12 cells were incubated with the indicated concentration of HYGC in the absence

or presence of CORT (400 μ M). NAC (5 mM) was used as a positive control. Cell viability was measured using the EZ-Cytox colorimetric kit. Data were analyzed using **a**, **c**, **d** one-way ANOVA followed by Dunnett's post hoc test and **b** two-way ANOVA followed by Tukey's post hoc test. (Mean ± SD, n=3; *p < 0.05 and **p < 0.01 compared to the DMSO control group; ^{##}p < 0.01 compared to the group treated with CORT only)

Fig. 4 Inhibitory effects of HYGC on CORT-induced oxidative stress in PC12 cells. **a** PC12 cells were incubated with HYGC (25 μ M) in the presence or absence of CORT (400 μ M) for 24 h. Cellular ROS production was determined by DCFH-DA assay. The intensity of DCFH-DA was analyzed with flow cytometry. **b** The radical scavenging potential of HYGC was determined using the DPPH assay. AA (1 mM) was used as a positive control (mean ± SD, n=3). **c**, **d** PC12 cells were incubated with various concentrations of HYGC in the presence or absence of CORT (400 μ M) for 24 h. Cultured cells were

used to measure intracellular GSH activity, and the supernatant was used to measure H₂O₂ production. **c** Intracellular GSH activity was measured using the GSH-Glo assay kit (mean±SD, n=3. **d** H₂O₂ production was measured using the ROS-Glo H₂O₂ assay kit. Data were analyzed using one-way ANOVA followed by Dunnett's post hoc test. (Mean±SD, n=3; **p*<0.05 and ***p*<0.01 compared to the DMSO control group; ^{##}*p*<0.01 compared to the group treated with CORT only)

Fig.5 Inhibitory effects of HYGC on CORT-induced autophagy in PC12 cells. **a**, **b** PC12 cells were treated with HYGC (25 μ M) or DMSO (vehicle control) in the absence or presence of CORT (400 μ M) for 12 h. Autophagy-related gene expression was measured by immunoblotting. β -actin was used as a loading control. **a**

Representative image of autophagy-related protein levels. **b** Quantitative analysis of protein levels. Data were analyzed using twoway ANOVA followed by Tukey's post hoc test. (Mean±SD, n=3; *p<0.05 and **p<0.01 compared to the DMSO control group; ##p<0.01 compared to the group treated with CORT only)

Fig. 6 Recovery effects of HYGC on the expression of Akt proteins induced by CORT. **a**, **b** PC12 cells were treated with HYGC (25 μ M) or DMSO (vehicle control) in the absence or presence of CORT (400 μ M) for 12 h. Protein levels of phosphorylated and nonphosphorylated forms of Akt were measured by immunoblotting. β -Actin was

used as a loading control. **a** Representative images of protein levels. **b** Quantitative analysis of protein levels. Data were analyzed using twoway ANOVA followed by Tukey's post hoc test. (Mean±SD, n=3; *p<0.05 and **p<0.01 compared to the DMSO control group; ##p<0.01 compared to the group treated with CORT only)

Fig. 7 Effects of HYGC on CORT-induced MAPK activation in PC12 cells. PC12 cells were treated with HYGC (25 μ M) or DMSO (vehicle control) in the absence or presence of CORT (400 μ M) for 12 h. Protein levels of phosphorylated and nonphosphorylated forms of MAPK were measured by immunoblotting. β -Actin was used as a

loading control. **a** Representative images of protein levels. **b** Quantitative analysis of protein levels. Data were analyzed using twoway ANOVA followed by Tukey's post hoc test. (Mean±SD, n=3; *p<0.05 and **p<0.01 compared to the DMSO control group; ##p<0.01 compared to the group treated with CORT only)