Skip to main content

Advertisement

Log in

Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AMPK:

5′Adenosine monophosphate-activated protein kinase

α-SMA:

α-Smooth muscle actin

ATF:

Activating transcription factor

ARDS:

Acute respiratory distress syndrome

ALT:

Alanine aminotransferase

AFLD:

Alcoholic fatty liver disease

AECs:

Alveolar epithelial cells

Ang II:

Angiotensin II

AST:

Aspartate aminotransferase

ADHD:

Attention deficit hyperactivity disorder

ASD:

Autism spectrum disorder,

BMAL1:

Basic Helix-Loop-Helix ARNT Like 1

BDL:

Bile duct ligation

BMMSCs:

Bone marrow-derived mesenchymal stem cell

BAL:

Bronchoalveolar lavage

CCl4 :

Carbon tetrachloride

CAT:

Catalase

CKD:

Chronic kidney disease

CTGF:

Connective tissue growth factor

COX-2:

Cyclooxygenase 2

CXCR4:

C-X-C motif chemokine receptor 4

DCM:

Diabetic cardiomyopathy

ER:

Endoplasmic reticulum

ESRD:

End-stage renal disease

EMT:

Epithelial–mesenchymal transition

eIF2A:

Eukaryotic translation initiation factor 2A

ECM:

Extracellular matrix

ERK:

Extracellular signal-regulated kinase

FGF:

Fibroblast growth factor

Gal-3:

Galectin-3

GAG:

Glycosaminoglycan

GSH-Px:

Glutathione peroxidase

HF:

Heart failure

HSP70:

Heat shock protein 70

HO:

Heme oxygenase

HSCs:

Hepatic stellate cells

HMGB1:

High-mobility group box 1

HIF-1α:

Hypoxia-inducible factor 1 α

HDAC:

Histone deacetylases

HA:

Hyaluronic acid

JAK:

Janus kinase

IPF:

Idiopathic pulmonary fibrosis

IRE:

Inositol-requiring ER-to-nucleus signal kinase

ITGA9:

Integrin subunit alpha 9

IL:

Interleukin

LN:

Laminin

L-NAME:

L-N(G)-Nitro arginine methyl ester

Mst1:

Macrophage stimulating 1

mTOR:

Mammalian target of rapamycin

MMP-13:

Matrix metalloproteinase-13

MSCs:

Mesenchymal stem cells

Mfn2:

Mitofusin

MI:

Myocardial infarction

Notch1:

Neurogenic locus notch homolog protein 1

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

Nrf2:

Nuclear factor erythroid-2-related factor 2

NF-kB:

Nuclear factor-kappa B

PSCs:

Pancreatic stellate cells

PPARα:

Peroxisome proliferator-activated receptor alpha

PI3K:

Phosphatidylinositol 3-kinase

PERK:

PKR-like ER kinase

PDGF:

Platelet-derived growth factor

Akt:

Protein kinase B

PINK1:

PTEN-induced kinase 1

ROS:

Reactive oxygen species

RIP1:

Receptor-interacting protein 1

RAGE:

Receptor for advanced glycation end products

SERCA:

Sarcoendoplasmic reticulum calcium ATPase

SAD:

Seasonal affective disorder

SIAH3:

Siah E3 Ubiquitin Protein Ligase Family Member 3

STAT:

Signal transducer and activator of transcription

SIRT:

Sirtuin

SYK:

Spleen tyrosine kinase

SOD:

Superoxide dismutase

TIMP:

Tissue inhibitor of metalloproteinase

TLR4:

Toll-like receptor 4

TGF-β:

Transforming growth factor beta

TAC:

Transverse aortic constriction

TNF:

Tumor necrosis factor

UPR:

Unfolded protein response

VEGF-A:

Vascular endothelial growth factor-A

XBP1:

X-box binding protein 1

YAP:

Yes-associated protein

References

  1. Parola M, Pinzani M. Pathophysiology of organ and tissue fibrosis. Mol Aspects Med. 2019;65:1.

    Article  PubMed  Google Scholar 

  2. Jun J-I, Lau LF. Resolution of organ fibrosis. J Clin lnvest. 2018;128(1):97–107.

    Article  Google Scholar 

  3. Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial–mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. Burns Trauma. 2022;10:tkac011.

  4. Hu W, Ma Z, Jiang S, Fan C, Deng C, Yan X, et al. Melatonin: the dawning of a treatment for fibrosis? J Pineal Res. 2016;60(2):121–31.

    Article  CAS  PubMed  Google Scholar 

  5. Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, et al. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int. 2023;34(10):1677–701.

    Article  CAS  PubMed  Google Scholar 

  6. Poza JJ, Pujol M, Ortega-Albás JJ, Romero O. Melatonin in sleep disorders. Neurología (English Edition). 2022;37(7):575–85.

    Article  Google Scholar 

  7. Anderson G, Almulla AF, Reiter RJ, Maes M. Redefining autoimmune disorders’ pathoetiology: implications for mood and psychotic disorders’ association with neurodegenerative and classical autoimmune disorders. Cells. 2023;12(9):1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49:654–64.

    Article  CAS  PubMed  Google Scholar 

  9. Xie Z, Chen F, Li WA, Geng X, Li C, Meng X, et al. A review of sleep disorders and melatonin. Neurol Res. 2017;39(6):559–65.

    Article  CAS  PubMed  Google Scholar 

  10. Masahiro S, Fukunaga K, Kawahata I. Use of melatonin for the treatment of dementia: Addressing core symptoms and behavioral challenges. J Clin Bas Psycho. 2023;1(2):1174.

    Google Scholar 

  11. Rzepka-Migut B, Paprocka J. Efficacy and safety of melatonin treatment in children with Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder—a review of the literature. Brain Sci. 2020;10(4):219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arjunan A, Sah DK, Jung YD, Song J. Hepatic encephalopathy and melatonin. Antioxidants. 2022;11(5):837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Yarahmadi R, Ghaznavi H, Mehrzadi S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin Ther Targets. 2018;22(12):1049–61.

    Article  CAS  PubMed  Google Scholar 

  14. Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci. 2018;201:17–29.

    Article  CAS  PubMed  Google Scholar 

  15. Popow C, Ohmann S, Plener P. Practitioner’s review: Medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions. Neuropsychiatrie. 2021;35(3):113–34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ogundele MO, Yemula C. Management of sleep disorders among children and adolescents with neurodevelopmental disorders: a practical guide for clinicians. World J Clin Pediatr. 2022;11(3):239.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lalanne S, Fougerou-Leurent C, Anderson GM, Schroder CM, Nir T, Chokron S, et al. Melatonin: from pharmacokinetics to clinical use in autism spectrum disorder. Int J Mol Sci. 2021;22(3):1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Besag FM, Vasey MJ, Lao KS, Wong IC. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs. 2019;33:1167–86.

    Article  PubMed  Google Scholar 

  19. Gerlach LB, Kales HC. Pharmacological management of neuropsychiatric symptoms of dementia. Curr Treat Options Psychiatry. 2020;7:489–507.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adnyana I, Tertia C, Widyadharma I, Mahadewi NPAP. Melatonin as a treatment for migraine sufferers: a systematic review. Egypt J Neurol Psychiatry Neurosurg. 2022;58(1):1–10.

    Article  Google Scholar 

  21. Nussbaumer‐Streit B, Greenblatt A, Kaminski‐Hartenthaler A, Van Noord MG, Forneris CA, Morgan LC, et al. Melatonin and agomelatine for preventing seasonal affective disorder. Cochrane Database Syst Rev. 2019; 6:CD011271.

  22. Reiter RJ, Sharma R, Cucielo MS, Tan DX, Rosales-Corral S, Gancitano G, et al. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci. 2023;80(4):88.

    Article  CAS  PubMed  Google Scholar 

  23. Mehrzadi S, Sheibani M, Koosha F, Alinaghian N, Pourhanifeh MH, Tabaeian SAP, et al. Protective and therapeutic potential of melatonin against intestinal diseases: updated review of current data based on molecular mechanisms. Expert Rev Gastroenterol Hepatol. 2023;17:1–19.

    Article  Google Scholar 

  24. Tuft C, Matar E, Menczel Schrire Z, Grunstein RR, Yee BJ, Hoyos CM. Current insights into the risks of using melatonin as a treatment for sleep disorders in older adults. Clin Interv Aging. 2023;18:49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Besag FMC, Vasey MJ, Lao KSJ, Wong ICK. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs. 2019;33(12):1167–86.

    Article  PubMed  Google Scholar 

  26. Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013;60(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  27. Hashem NM, El-Hawy AS, El-Bassiony MF, Saber A, Radwan MA, Ghanem N. Melatonin administration during the first half of pregnancy improves the reproductive performance of rabbits: Emphasis on ovarian and placental functions. Theriogenology. 2023;205:40–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rockey DC, Bell PD, Hill JA. Fibrosis—a common pathway to organ injury and failure. NEJM. 2015;372(12):1138–49.

    Article  CAS  PubMed  Google Scholar 

  29. Gürses İ, Özeren M, Serin M, Yücel N, Erkal HŞ. Histopathological evaluation of melatonin as a protective agent in heart injury induced by radiation in a rat model. Pathol Res Pract. 2014;210(12):863–71.

    Article  PubMed  Google Scholar 

  30. Kus I, Ogeturk M, Oner H, Sahin S, Yekeler H, Sarsilmaz M. Protective effects of melatonin against carbon tetrachloride-induced hepatotoxicity in rats: a light microscopic and biochemical study. Cell Biochem Funct. 2005;23(3):169–74.

    Article  CAS  PubMed  Google Scholar 

  31. Ogeturk M, Kus I, Pekmez H, Yekeler H, Sahin S, Sarsilmaz M. Inhibition of carbon tetrachloride–mediated apoptosis and oxidative stress by melatonin in experimental liver fibrosis. Toxicol Ind Health. 2008;24(4):201–8.

    Article  CAS  PubMed  Google Scholar 

  32. Sezer A, Hatipoglu AR, Usta U, Altun G, Sut N. Effects of intraperitoneal melatonin on caustic sclerosing cholangitis due to scolicidal solution in a rat model. CTR. 2010;71(2):118–28.

    CAS  Google Scholar 

  33. Tas U, Ogeturk M, Meydan S, Kus I, Kuloglu T, Ilhan N, et al. Hepatotoxic activity of toluene inhalation and protective role of melatonin. Toxicol Ind Health. 2011;27(5):465–73.

    Article  CAS  PubMed  Google Scholar 

  34. Stacchiotti A, Lavazza A, Rezzani R, Bianchi R. Cyclosporine A-induced kidney alterations are limited by melatonin in rats: an electron microscope study. Ultrastruct Pathol. 2002;26(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sun CK, Lee FY, Kao YH, Chiang HJ, Sung PH, Tsai TH, et al. Systemic combined melatonin–mitochondria treatment improves acute respiratory distress syndrome in the rat. J Pineal Res. 2015;58(2):137–50.

    Article  CAS  PubMed  Google Scholar 

  36. Hu S, Yin S, Jiang X, Huang D, Shen G. Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. Eur J Pharmacol. 2009;616(1–3):287–92.

    Article  CAS  PubMed  Google Scholar 

  37. Tahan V, Atug O, Akin H, Eren F, Tahan G, Tarcin O, et al. Melatonin ameliorates methionine-and choline-deficient diet-induced nonalcoholic steatohepatitis in rats. J Pineal Res. 2009;46(4):401–7.

    Article  CAS  PubMed  Google Scholar 

  38. Esrefoglu M, Gül M, Emre MH, Polat A, Selimoglu MA. Protective effect of low dose of melatonin against cholestatic oxidative stress after common bile duct ligation in rats. World J Gastroenterol. 2005;11(13):1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marquez E, Sánchez-Fidalgo S, Calvo JR, Lastra CAld, Motilva V. Acutely administered melatonin is beneficial while chronic melatonin treatment aggravates the evolution of TNBS-induced colitis. J Pineal Res. 2006;40(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  40. Choi H-S, Kang J-W, Lee S-M. Melatonin attenuates carbon tetrachloride–induced liver fibrosis via inhibition of necroptosis. Transl Res. 2015;166(3):292–303.

    Article  CAS  PubMed  Google Scholar 

  41. Serin M, Gülbaş H, Gürses İ, Erkal HŞ, Yücel N. The histopathological evaluation of the effectiveness of melatonin as a protectant against acute lung injury induced by radiation therapy in a rat model. Int J Radiat Biol. 2007;83(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  42. Taslidere E, Esrefoglu M, Elbe H, Cetin A, Ates B. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Exp Lung Res. 2014;40(2):59–65.

    Article  CAS  PubMed  Google Scholar 

  43. Aktas C, Kanter M, Erboga M, Mete R, Oran M. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats. Toxicol Ind Health. 2014;30(9):835–44.

    Article  PubMed  Google Scholar 

  44. Crespo I, San-Miguel B, Fernández A, De Urbina JO, González-Gallego J, Tuñón MJ. Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice. Transl Res. 2015;165(2):346–57.

    Article  CAS  PubMed  Google Scholar 

  45. Atalik K, Keles B, Uyar Y, Dundar M, Oz M, Esen H. Response to vasoconstrictor agents by detrusor smooth muscles from cisplatin-treated rats and antioxidant treatment. Methods Find Exp Clin Pharmacol. 2010;32(5):305–10.

    Article  CAS  PubMed  Google Scholar 

  46. Ozbek E, Ilbey YO, Ozbek M, Simsek A, Cekmen M, Somay A. Melatonin attenuates unilateral ureteral obstruction–induced renal injury by reducing oxidative stress, iNOS, MAPK, and NF-kB expression. J Endourol. 2009;23(7):1165–73.

    Article  PubMed  Google Scholar 

  47. Tahan G, Akin H, Aydogan F, Ramadan SS, Yapicier O, Tarcin O, et al. Melatonin ameliorates liver fibrosis induced by bile-duct ligation in rats. Can J Surg. 2010;53(5):313.

    PubMed  PubMed Central  Google Scholar 

  48. Aust S, Jäger W, Kirschner H, Klimpfinger M, Thalhammer T. Pancreatic stellate/myofibroblast cells express G-protein-coupled melatonin receptor 1. Wien Med Wochensch. 2008;158(19–20):575–8.

    Article  Google Scholar 

  49. Zhao H, Wu Q-Q, Cao L-F, Qing H-Y, Zhang C, Chen Y-H, et al. Melatonin inhibits endoplasmic reticulum stress and epithelial-mesenchymal transition during bleomycin-induced pulmonary fibrosis in mice. PLoS ONE. 2014;9(5): e97266.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ben Soussia I, Mies F, Naeije R, Shlyonsky V. Melatonin down-regulates volume-sensitive chloride channels in fibroblasts. Pflug Arch Eur J. 2012;464:273–85.

    Article  CAS  Google Scholar 

  51. Cruz A, Padillo FJ, Torres E, Navarrete CM, Muñoz-Castañeda JR, Caballero FJ, et al. Melatonin prevents experimental liver cirrhosis induced by thioacetamide in rats. J Pineal Res. 2005;39(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J-C, Xie Y-F, Liu S-J, Dai L-B, Li J-P. The expression of melatonin receptor in human hypertrophic scar. Zhonghua wai ke za zhi [Chinese J Surgery]. 2010;26(3):203–7.

    CAS  Google Scholar 

  53. Xie Y, Zhang J, Liu S, Dai L, Du G. Effect of melatonin on proliferation and apoptosis of fibroblasts in human hypertrophic scar. Zhonghua wai ke za zhi [Chinese J Burns]. 2011;27(6):422–6.

    CAS  Google Scholar 

  54. Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis. 2017;11(12):1491–503.

    PubMed  Google Scholar 

  55. Sziksz E, Pap D, Lippai R, Béres NJ, Fekete A, Szabó AJ, et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm. 2015;2015:764641.

    Article  PubMed  PubMed Central  Google Scholar 

  56. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246(1):379–400.

    Article  PubMed  Google Scholar 

  57. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dambacher J, Beigel F, Zitzmann K, De Toni E, Göke B, Diepolder HM, et al. The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut. 2009;58(9):1207–17.

    Article  CAS  PubMed  Google Scholar 

  59. Kim M-S, Rådinger M, Gilfillan AM. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol. 2008;29(10):493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu Y, Zhu H, Su Z, Sun C, Yin J, Yuan H, et al. IL-17 contributes to cardiac fibrosis following experimental autoimmune myocarditis by a PKCβ/Erk1/2/NF-κB-dependent signaling pathway. Int Immunol. 2012;24(10):605–12.

    Article  CAS  PubMed  Google Scholar 

  61. Guo X, Wang X-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2009;19(1):71–88.

    Article  CAS  PubMed  Google Scholar 

  62. Rodella L, Filippini F, Bonomini F, Bresciani R, Reiter R, Rezzani R. Beneficial effects of melatonin on nicotine-induced vasculopathy. J Pineal Res. 2010;48(2):126–32.

    Article  CAS  PubMed  Google Scholar 

  63. Martínez-Martínez E, Miana M, Jurado-López R, Bartolomé M, Souza Neto F, Salaices M, et al. The potential role of leptin in the vascular remodeling associated with obesity. Int J Obes. 2014;38(12):1565–72.

    Article  Google Scholar 

  64. Oh CJ, Kim J-Y, Choi Y-K, Kim H-J, Jeong J-Y, Bae K-H, et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. PLoS One. 2012;10(7):e45870.

    Article  Google Scholar 

  65. Oh CJ, Kim J-Y, Min A-K, Park K-G, Harris RA, Kim H-J, et al. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. Free Radic Biol Med. 2012;52(3):671–82.

    Article  CAS  PubMed  Google Scholar 

  66. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oliveira LGR, Kuehn CC, dos Santos CD, Miranda MA, da Costa CMB, Mendonça VJ, et al. Protective actions of melatonin against heart damage during chronic Chagas disease. Acta Trop. 2013;128(3):652–8.

    Article  PubMed  Google Scholar 

  68. Yeung HM, Hung MW, Lau CF, Fung ML. Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. J Pineal Res. 2015;58(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  69. Czechowska G, Celinski K, Korolczuk A, Wojcicka G, Dudka J, Bojarska A, et al. Protective effects of melatonin against thioacetamide-induced liver fibrosis in rats. J Physiol Pharmacol. 2015;66(4):567–79.

    CAS  PubMed  Google Scholar 

  70. Wang H, Wei W, Wang N-P, Gui S-Y, Wu L, Sun W-Y, et al. Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci. 2005;77(15):1902–15.

    Article  CAS  PubMed  Google Scholar 

  71. Kim GD, Lee SE, Kim TH, Jin YH, Park YS, Park CS. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts. J Pineal Res. 2012;52(3):356–64.

    Article  CAS  PubMed  Google Scholar 

  72. Gómez-Florit M, Ramis JM, Monjo M. Anti-fibrotic and anti-inflammatory properties of melatonin on human gingival fibroblasts in vitro. Biochem Pharmacol. 2013;86(12):1784–90.

    Article  PubMed  Google Scholar 

  73. Erol FS, Kavakli A, Ilhan N, Ozercan IH, Sarsilmaz M. Efects of melatonin and octreotide on peridural fibrosis in an animal model of laminectomy. Turk Neurosurg. 2010;20(1):50-6.

    PubMed  Google Scholar 

  74. Martínez-Martínez E, Jurado-López R, Valero-Muñoz M, Bartolomé MV, Ballesteros S, Luaces M, et al. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity. J Hypertens. 2014;32(5):1104–14.

    Article  PubMed  Google Scholar 

  75. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1):45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Drobnik J, Slotwinska D, Olczak S, Tosik D, Pieniazek A, Matczak K, et al. Pharmacological doses of melatonin reduce the glycosaminoglycan level within the infarcted heart scar. J Physiol Pharmacol. 2011;62(1):29.

    CAS  PubMed  Google Scholar 

  79. Czubryt MP, Hale TM. Cardiac fibrosis: pathobiology and therapeutic targets. Cell Signal. 2021;85: 110066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qin W, Cao L, Massey IY. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem. 2021;476:4045–59.

    Article  CAS  PubMed  Google Scholar 

  81. Nduhirabandi F, Maarman GJ. Melatonin in heart failure: a promising therapeutic strategy? Molecules. 2018;23(7):1819.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res. 2018;65(1): e12514.

    Article  PubMed  Google Scholar 

  83. Paulis L, Simko F, Laudon M. Cardiovascular effects of melatonin receptor agonists. Expert Opin Investig Drugs. 2012;21(11):1661–78.

    Article  CAS  PubMed  Google Scholar 

  84. Nduhirabandi F, du Toit EF, Lochner A. Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol. 2012;205(2):209–23.

    Article  CAS  Google Scholar 

  85. Pechanova O, Paulis L, Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci. 2014;15(10):17920–37.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sewerynek E. Melatonin and the cardiovascular system. Neuro Endocrinol Lett. 2002;23:79–83.

    CAS  PubMed  Google Scholar 

  87. Mızrak B, Parlakpinar H, Acet A, Turkoz Y. Effects of pinealectomy and exogenous melatonin on rat hearts. Acta Histochemi. 2004;106(1):29–36.

    Article  Google Scholar 

  88. Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Mullerova M, Bednarova K, et al. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats. J Hypertens Suppl. 2009;27(6):S5-10.

    Article  CAS  PubMed  Google Scholar 

  89. Maarman G, Blackhurst D, Thienemann F, Blauwet L, Butrous G, Davies N, et al. Melatonin as a preventive and curative therapy against pulmonary hypertension. J Pineal Res. 2015;59(3):343–53.

    Article  CAS  PubMed  Google Scholar 

  90. Simko F, Pechanova O, Pelouch V, Krajcirovicova K, Celec P, Palffy R, et al. Continuous light and L-NAME-induced left ventricular remodelling: different protection with melatonin and captopril. J Hypertens. 2010;28:S13–8.

    Article  CAS  PubMed  Google Scholar 

  91. Simko F, Pechanova O, Repova Bednarova K, Krajcirovicova K, Celec P, Kamodyova N, et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: protection by ACE-inhibition and melatonin. Mediators Inflamm. 2014;2014:703175.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Paulis L, Pechanova O, Zicha J, Krajcirovicova K, Barta A, Pelouch V, et al. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats. J Hypertens. 2009;27:S11–6.

    Article  CAS  Google Scholar 

  93. Pei H, Du J, Song X, He L, Zhang Y, Li X, et al. Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med. 2016;97:408–17.

    Article  CAS  PubMed  Google Scholar 

  94. Xu C-N, Kong L-H, Ding P, Liu Y, Fan Z-G, Gao E-H, et al. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10): 165848.

    Article  CAS  PubMed  Google Scholar 

  95. Zhai M, Liu Z, Zhang B, Jing L, Li B, Li K, et al. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: In vivo and in vitro studies. J Pineal Res. 2017;63(3): e12433.

    Article  Google Scholar 

  96. Domínguez-Rodríguez A, Hernández-Vaquero D, Abreu-González P, Báez-Ferrer N, Díaz R, Avanzas P, et al. Early treatment of acute myocardial infarction with melatonin: effects on MMP-9 and adverse cardiac events. J Clin Med. 2022;11(7):1909.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jiang J, Liang S, Zhang J, Du Z, Xu Q, Duan J, et al. Melatonin ameliorates PM2.5-induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res. 2021;70(1): e12686.

    Article  CAS  PubMed  Google Scholar 

  98. Che H, Wang Y, Li H, Li Y, Sahil A, Lv J, et al. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy. FASEB J. 2020;34(4):5282–98.

    Article  CAS  PubMed  Google Scholar 

  99. Behram Kandemir Y, Guntekin Ü, Tosun V, Korucuk N, Bozdemir MN. Melatonin protects against streptozotocin-induced diabetic cardiomyopathy by the phosphorylation of vascular endothelial growth factor-A (VEGF-A). Cell Mol Biol (Noisy-le-grand). 2018;64(14):47–52.

    Article  PubMed  Google Scholar 

  100. Kandemir YB, Tosun V, Güntekin Ü. Melatonin protects against streptozotocin-induced diabetic cardiomyopathy through the mammalian target of rapamycin (mTOR) signaling pathway. Adv Clin Exp Med. 2019;28(9):1171–7.

    Article  PubMed  Google Scholar 

  101. Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med. 2018;22(10):5132–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou H, Yue Y, Wang J, Ma Q, Chen Y. Melatonin therapy for diabetic cardiomyopathy: a mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cell signal. 2018;47:88–100.

    Article  CAS  PubMed  Google Scholar 

  103. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, et al. Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via sup Cell death & disease.ression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones. 2018;23(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  104. Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect. 2022;10(1): e00904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao G, Su Z, Song D, Mao Y, Mao X. The long noncoding RNA MALAT 1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett. 2016;590(17):2884–95.

    Article  CAS  PubMed  Google Scholar 

  106. Lu L, Ma J, Sun M, Wang X, Gao E, Lu L, et al. Melatonin ameliorates MI-induced cardiac remodeling and apoptosis through a JNK/p53-dependent mechanism in diabetes mellitus. Oxid Med Cell Longev. 2020;:2020:1535201.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Abraham DM, Lee TE, Watson LJ, Mao L, Chandok G, Wang H-G, et al. The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J clin invest. 2018;128(11):4843–55.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kyoi S, Otani H, Matsuhisa S, Akita Y, Tatsumi K, Enoki C, et al. Opposing effect of p38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster. Cardiovasc Res. 2006;69(4):888–98.

    Article  CAS  PubMed  Google Scholar 

  109. Petrich BG, Eloff BC, Lerner DL, Kovacs A, Saffitz JE, Rosenbaum DS, et al. Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects*[boxs]. J Biol Chem. 2004;279(15):15330–8.

    Article  CAS  PubMed  Google Scholar 

  110. Chaanine A, Jeong D, Liang L, Chemaly E, Fish K, Gordon R, et al. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis. 2012;3(2): e265-e.

    Article  Google Scholar 

  111. Huang C, Kuo W, Yeh Y, Ho T, Lin J, Lin D, et al. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014;21(8):1262–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang C-Y, Lai C-H, Kuo C-H, Chiang S-F, Pai P-Y, Lin J-Y, et al. Inhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failure. J Mol Cell Cardiol. 2018;122:58–68.

    Article  CAS  PubMed  Google Scholar 

  113. Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF 1 exacerbates myocardial ischemia reperfusion injury via ASK 1–JNK/p38 signaling. J Am Heart Assoc. 2019;8(21): e012575.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wu Y, Si F, Luo L, Jing F, Jiang K, Zhou J, et al. The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs. Korean J Physiol Pharmacol. 2018;22(6):607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gallo P, Latronico MV, Gallo P, Grimaldi S, Borgia F, Todaro M, et al. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res. 2008;80(3):416–24.

    Article  CAS  PubMed  Google Scholar 

  116. Kang SH, Seok YM, Song MJ, Lee HA, Kurz T, Kim I. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats. Mol Pharmacol. 2015;87(5):782–91.

    Article  CAS  PubMed  Google Scholar 

  117. Li Y, Hiroi Y, Liao JK. Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction. Trends Cardiovasc Med. 2010;20(7):228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, Maestroni S, Delucchi F, Zheng H, et al. Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107(3):429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, et al. The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. 2014;35(32):2174–85.

    Article  CAS  PubMed  Google Scholar 

  120. Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, et al. Membrane receptor-dependent N otch1/H es1 activation by melatonin protects against myocardial ischemia–reperfusion injury: in vivo and in vitro studies. J Pineal Res. 2015;59(4):420–33.

    Article  CAS  PubMed  Google Scholar 

  121. Lochner A, Huisamen B, Nduhirabandi F. Cardioprotective effect of melatonin against ischaemia/reperfusion damage. Front Biosci (Elite Ed). 2013;5(1):305–15.

    Article  PubMed  Google Scholar 

  122. Zhou X-l, Wan L, Liu J-c. Activated Notch1 reduces myocardial ischemia reperfusion injury in vitro during ischemic postconditioning by crosstalk with the RISK signaling pathway. Chin Med J. 2013;126(23):4545–51.

    Article  CAS  PubMed  Google Scholar 

  123. Neyra JA, Hu MC. Chapter eleven-αKlotho and chronic kidney disease. In: Litwack G, editor. Vitam Horm. 101. Academic Press: Berlin; 2016. p. 257–310.

    Google Scholar 

  124. Geng X, Zhong D, Su L, Lin Z, Yang B. Chapter Nine - Preventive and therapeutic effect of Ganoderma lucidum on kidney injuries and diseases. In: Du G, editor. Adv Pharmacol. 87: Academic Press; 2020. p. 257–76.

  125. Gabbiani G, Coen M, Zampieri F. Chapter 3—fibrotic diseases. In: Gabbiani G, Coen M, Zampieri F, editors. Wound healing, fibrosis, and the myofibroblast. Academic Press; 2022. p. 27–85.

    Chapter  Google Scholar 

  126. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  127. el Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O. Renal fibrosis: insights into pathogenesis and treatment. Int J Biochem Cell Biol. 1997;29(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  128. Nogueira A, Pires MJ, Oliveira PA. Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo. 2017;31(1):1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kalra S, Agrawal S, Sahay M. The reno-pineal axis: a novel role for melatonin. Indian J Endocrinol Metab. 2012;16(2):192–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hrenak J, Paulis L, Repova K, Aziriova S, Nagtegaal EJ, Reiter RJ, et al. Melatonin and renal protection: novel perspectives from animal experiments and human studies (review). Curr Pharm Des. 2015;21(7):936–49.

    Article  CAS  PubMed  Google Scholar 

  131. Forman JP, Curhan GC, Schernhammer ES. Urinary melatonin and risk of incident hypertension among young women. J Hypertens. 2010;28(3):446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Molaee Govarchin Ghalae H, Zare S, Choopanloo M, Rahimian R. The lunar cycle: effects of full moon on renal colic. Urol J. 2011;8(2):137–40.

    PubMed  Google Scholar 

  133. Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 2018;9(11):1126.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life. 2013;65(7):602–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoon YM, Han YS, Yun CW, Lee JH, Kim R, Lee SH. Pioglitazone protects mesenchymal stem cells against P-cresol-induced mitochondrial dysfunction via up-regulation of PINK-1. Int J Mol Sci. 2018;19(10):2898.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yoon YM, Go G, Yun CW, Lim JH, Lee JH, Lee SH. Melatonin suppresses renal cortical fibrosis by inhibiting cytoskeleton reorganization and mitochondrial dysfunction through regulation of miR-4516. Int J Mol Sci. 2020;21(15):5323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cui T, Bell EH, McElroy J, Becker AP, Gulati PM, Geurts M, et al. miR-4516 predicts poor prognosis and functions as a novel oncogene via targeting PTPN14 in human glioblastoma. Oncogene. 2019;38(16):2923–36.

    Article  CAS  PubMed  Google Scholar 

  138. Chowdhari S, Sardana K, Saini N. miR-4516, a microRNA downregulated in psoriasis inhibits keratinocyte motility by targeting fibronectin/integrin α9 signaling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(12):3142–52.

    Article  CAS  PubMed  Google Scholar 

  139. Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol. 2014;307(1):C2-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yoon YM, Lee JH, Song KH, Noh H, Lee SH. Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res. 2020;68(3): e12632.

    Article  CAS  PubMed  Google Scholar 

  141. Repova K, Stanko P, Baka T, Krajcirovicova K, Aziriova S, Hrenak J, et al. Lactacystin-induced kidney fibrosis: protection by melatonin and captopril. Front Pharmacol. 2022;13: 978337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sopakayang R, De Vita R, Kwansa A, Freeman JW. Elastic and viscoelastic properties of a type I collagen fiber. J Theor Biol. 2012;293:197–205.

    Article  CAS  PubMed  Google Scholar 

  143. Silver FH, Horvath I, Foran DJ. Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. Crit Rev Biomed Eng. 2001;29(3):279–301.

    Article  CAS  PubMed  Google Scholar 

  144. Craiu A, Gaczynska M, Akopian T, Gramm CF, Fenteany G, Goldberg AL, et al. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem. 1997;272(20):13437–45.

    Article  CAS  PubMed  Google Scholar 

  145. Simko F, Pechanova O, Repova K, Aziriova S, Krajcirovicova K, Celec P, et al. Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril. Int J Mol Sci. 2017;18(8):1612.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Schlondorff DO. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 2008;74(7):860–6.

    Article  CAS  PubMed  Google Scholar 

  147. Yea JH, Park JK, Kim IJ, Sym G, Bae TS, Jo CH. Regeneration of a full-thickness defect of rotator cuff tendon with freshly thawed umbilical cord-derived mesenchymal stem cells in a rat model. Stem Cell Res Ther. 2020;11(1):387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Di Trapani M, Bassi G, Midolo M, Gatti A, Takam Kamga P, Cassaro A, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep. 2016;6(1):1–13.

    Article  Google Scholar 

  149. Yea JH, Bae TS, Kim BJ, Cho YW, Jo CH. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater. 2020;114:104–16.

    Article  CAS  PubMed  Google Scholar 

  150. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, et al. Author correction: effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep. 2018;8(1):9889.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kao CY, Papoutsakis ET. Extracellular vesicles: exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr Opin Biotechnol. 2019;60:89–98.

    Article  CAS  PubMed  Google Scholar 

  152. Yan Y, Jiang W, Tan Y, Zou S, Zhang H, Mao F, et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol Ther. 2017;25(2):465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yea JH, Yoon YM, Lee JH, Yun CW, Lee SH. Exosomes isolated from melatonin-stimulated mesenchymal stem cells improve kidney function by regulating inflammation and fibrosis in a chronic kidney disease mouse model. J Tissue Eng. 2021;12:20417314211059624.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol. 2018;18:229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhou H, Wang J, Zhu P, Hu S, Ren J. Ripk3 regulates cardiac microvascular reperfusion injury: the role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal. 2018;45:12–22.

    Article  CAS  PubMed  Google Scholar 

  156. Zhang Y, Zhou H, Wu W, Shi C, Hu S, Yin T, et al. Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med. 2016;95:278–92.

    Article  CAS  PubMed  Google Scholar 

  157. Li J, Li N, Yan S, Lu Y, Miao X, Gu Z, et al. Melatonin attenuates renal fibrosis in diabetic mice by activating the AMPK/PGC1α signaling pathway and rescuing mitochondrial function. Mol Med Rep. 2019;19(2):1318–30.

    CAS  PubMed  Google Scholar 

  158. Motawi TK, Ahmed SA, Hamed MA, El-Maraghy SA, Aziz WM. Melatonin and/or rowatinex attenuate streptozotocin-induced diabetic renal injury in rats. J Biomed Res. 2019;33(2):113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal. 2017;37:1–11.

    Article  CAS  PubMed  Google Scholar 

  160. Alghanem AF, Wilkinson EL, Emmett MS, Aljasir MA, Holmes K, Rothermel BA, et al. RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells. Angiogenesis. 2017;20(3):341–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 2018;25(6):1080–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee HY, Back K. Melatonin is required for H(2) O(2) - and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res. 2017;62(2):e12379.

    Article  Google Scholar 

  163. Dufour F, Rattier T, Shirley S, Picarda G, Constantinescu AA, Morlé A, et al. N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death. Cell Death Differ. 2017;24(3):500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mayo JC, Sainz RM, González Menéndez P, Cepas V, Tan DX, Reiter RJ. Melatonin and sirtuins: A "not-so unexpected" relationship. J Pineal Res. 2017;62(2):e12391.

    Article  Google Scholar 

  165. Yang F, Huang XR, Chung AC, Hou CC, Lai KN, Lan HY. Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition. J Pathol. 2010;221(4):390–401.

    Article  CAS  PubMed  Google Scholar 

  166. Meng XM, Tang PM, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Front Physiol. 2015;6:82.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Morishita Y, Yoshizawa H, Watanabe M, Ishibashi K, Muto S, Kusano E, et al. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci Rep. 2014;4:6424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, et al. Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. J Am Soc Nephrol. 2016;27(6):1727–40.

    Article  CAS  PubMed  Google Scholar 

  169. Chen DQ, Cao G, Zhao H, Chen L, Yang T, Wang M, et al. Combined melatonin and poricoic acid A inhibits renal fibrosis through modulating the interaction of Smad3 and β-catenin pathway in AKI-to-CKD continuum. Ther Adv Chronic Dis. 2019;10:2040622319869116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tian X, Zhang J, Tan TK, Lyons JG, Zhao H, Niu B, et al. Association of β-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-β1. J Cell Sci. 2013;126(Pt 1):67–76.

    Article  CAS  PubMed  Google Scholar 

  171. Fan Z, Qi X, Yang W, Xia L, Wu Y. Melatonin ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/Smad3 pathways in db/db diabetic mice. Arch Med Res. 2020;51(6):524–34.

    Article  CAS  PubMed  Google Scholar 

  172. Tesch GH. Macrophages and Diabetic Nephropathy. Semin Nephrol. 2010;30(3):290–301.

    Article  CAS  PubMed  Google Scholar 

  173. Wang K, Wu YG, Su J, Zhang JJ, Zhang P, Qi XM. Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys. Am J Chin Med. 2012;40(3):521–36.

    Article  CAS  PubMed  Google Scholar 

  174. Walton KL, Johnson KE, Harrison CA. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol. 2017;8:461.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li JH, Huang XR, Zhu HJ, Johnson R, Lan HY. Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney Int. 2003;63(6):2010–9.

    Article  CAS  PubMed  Google Scholar 

  176. Han YS, Yoon YM, Go G, Lee JH, Lee SH. Melatonin protects human renal proximal tubule epithelial cells against high glucose-mediated fibrosis via the cellular prion protein-TGF-β-Smad signaling axis. Int J Med Sci. 2020;17(9):1235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li N, Wang Z, Gao F, Lei Y, Li Z. Melatonin ameliorates renal fibroblast-myofibroblast transdifferentiation and renal fibrosis through miR-21-5p regulation. J Cell Mol Med. 2020;24(10):5615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Harari S, Caminati A. IPF: new insight on pathogenesis and treatment. Allergy. 2010;65(5):537–53.

    Article  CAS  PubMed  Google Scholar 

  179. Karimfar M, Rostami S, Haghani K, Bakhtiyari S, Noori-Zadeh A. Melatonin alleviates bleomycin-induced pulmonary fibrosis in mice. J Biol Regul Homeost Agents. 2015;29(2):327–34.

    CAS  PubMed  Google Scholar 

  180. Arslan SO, Zerin M, Vural H, Coskun A. The effect of melatonin on bleomycin-induced pulmonary fibrosis in rats. J Pineal Res. 2002;32(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  181. Yildirim Z, Kotuk M, Erdogan H, Iraz M, Yagmurca M, Kuku I, et al. Preventive effect of melatonin on bleomycin-induced lung fibrosis in rats. J Pineal Res. 2006;40(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  182. Yousefi-Manesh H, Noori T, Asgardoon MH, Derakhshan MH, Tavangar SM, Sheibani M, et al. Protective effect of dapsone against bleomycin-induced lung fibrosis in rat. Exp Mol Pathol. 2022;124: 104737.

    Article  CAS  PubMed  Google Scholar 

  183. Shin N-R, Park J-W, Lee I-C, Ko J-W, Park S-H, Kim J-S, et al. Melatonin suppresses fibrotic responses induced by cigarette smoke via downregulation of TGF-β1. Oncotarget. 2017;8(56):95692.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Genovese T, Paola RD, Mazzon E, Muià C, Caputi AP, Cuzzocrea S. Melatonin limits lung injury in bleomycin treated mice. J Pineal Res. 2005;39(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  185. Gauldie J, Jordana M, Cox G. Cytokines and pulmonary fibrosis. Thorax. 1993;48(9):931–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Selman M, King TE Jr, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 2001;134(2):136–51.

    Article  CAS  PubMed  Google Scholar 

  187. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1β–mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mi S, Li Z, Yang H-Z, Liu H, Wang J-P, Ma Y-G, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1–dependent and–independent mechanisms. J Immunol. 2011;187(6):3003–14.

    Article  CAS  PubMed  Google Scholar 

  190. Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases (Review). Exp Ther Med. 2022;23(4):271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chapman HA. Disorders of lung matrix remodeling. J Clinical Invest. 2004;113(2):148–57.

    Article  CAS  Google Scholar 

  192. Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, et al. TGF-β1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005;289(1):G116–28.

    Article  CAS  PubMed  Google Scholar 

  193. Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012;9(3):111–6.

    Article  CAS  PubMed  Google Scholar 

  194. Dong C, Gongora R, Sosulski ML, Luo F, Sanchez CG. Regulation of transforming growth factor-beta1 (TGF-β1)-induced pro-fibrotic activities by circadian clock gene BMAL1. Resp Res. 2016;17:1–17.

    Google Scholar 

  195. Hill SM, Frasch T, Xiang S, Yuan L, Duplessis T, Mao L. Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther. 2009;8(4):337–46.

    Article  CAS  PubMed  Google Scholar 

  196. Jung-Hynes B, Reiter RJ, Ahmad N. Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res. 2010;48(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, et al. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016;75(1):226–33.

    Article  CAS  PubMed  Google Scholar 

  198. Wilkes MC, Mitchell H, Penheiter SG, Doré JJ, Suzuki K, Edens M, et al. Transforming growth factor-β activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res. 2005;65(22):10431–40.

    Article  CAS  PubMed  Google Scholar 

  199. Gomis RR, Alarcón C, He W, Wang Q, Seoane J, Lash A, et al. A FoxO–Smad synexpression group in human keratinocytes. Proc Natl Acad Sci. 2006;103(34):12747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Seoane J, Le H-V, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004;117(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  201. Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res. 2009;19(1):128–39.

    Article  CAS  PubMed  Google Scholar 

  202. Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, et al. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway. Biomed Pharmacother. 2020;132: 110827.

    Article  CAS  PubMed  Google Scholar 

  203. Bowley E, O’Gorman DB, Gan BS. β-catenin signaling in fibroproliferative disease. J Surg Res. 2007;138(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  204. Aumiller V, Balsara N, Wilhelm J, Günther A, Königshoff M. WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2013;49(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  205. Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. The Am J Pathol. 2003;162(5):1495–502.

    Article  CAS  PubMed  Google Scholar 

  206. Königshoff M, Balsara N, Pfaff E-M, Kramer M, Chrobak I, Seeger W, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS ONE. 2008;3(5): e2142.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Selman M, Pardo A, Kaminski N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med. 2008;5(3): e62.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, et al. TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 2008;57(4):274–82.

    Article  CAS  PubMed  Google Scholar 

  209. Mao L, Dauchy RT, Blask DE, Slakey LM, Xiang S, Yuan L, et al. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3β. Mol Endocrinol. 2012;26(11):1808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yu N, Sun YT, Su XM, He M, Dai B, Kang J. Melatonin attenuates TGFβ1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells. Mol Med Rep. 2016;14(6):5567–72.

    Article  CAS  PubMed  Google Scholar 

  211. MacKinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, et al. Regulation of transforming growth factor-β1–driven lung fibrosis by galectin-3. Am J Respir Crit Care Med. 2012;185(5):537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Delaine T, Collins P, MacKinnon A, Sharma G, Stegmayr J, Rajput VK, et al. Galectin-3-binding glycomimetics that strongly reduce bleomycin-induced lung fibrosis and modulate intracellular glycan recognition. ChemBioChem. 2016;17(18):1759–70.

    Article  CAS  PubMed  Google Scholar 

  213. Jia W, Wang Z, Gao C, Wu J, Wu Q. Trajectory modeling of endothelial-to-mesenchymal transition reveals galectin-3 as a mediator in pulmonary fibrosis. Cell Death Dis. 2021;12(4):327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lan YJ, Cheng MH, Ji HM, Bi YQ, Han YY, Yang CY, et al. Melatonin ameliorates bleomycin-induced pulmonary fibrosis via activating NRF2 and inhibiting galectin-3 expression. Acta Pharmacol Sin. 2022;44(5):1–9.

    Google Scholar 

  215. Li X, Molina-Molina M, Abdul-Hafez A, Ramirez J, Serrano-Mollar A, Xaubet A, et al. Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L887–95.

    Article  CAS  PubMed  Google Scholar 

  216. Uhal BD, Kyong Kim J, Li X, Molina-Molina M. Angiotensin-TGF-β1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des. 2007;13(12):1247–56.

    Article  CAS  PubMed  Google Scholar 

  217. Eschenbrenner J, Janssen W, Kojonazarov B, Murmann K, Ghofrani A, Weissmann N, et al. Role of JAK-STAT pathway in pulmonary fibrosis. Pneumologie. 2013;67(05):P06.

    Article  Google Scholar 

  218. Ji ZZ, Xu YC. Melatonin protects podocytes from angiotensin II-induced injury in an in vitro diabetic nephropathy model. Mol Med Rep. 2016;14(1):920–6.

    Article  CAS  PubMed  Google Scholar 

  219. Pfleger CM. The Hippo pathway: a master regulatory network important in development and dysregulated in disease. Curr Top Dev Biol. 2017;123:181–228.

    Article  CAS  PubMed  Google Scholar 

  220. Richardson HE, Portela M. Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol. 2017;48:1–9.

    Article  CAS  PubMed  Google Scholar 

  221. Zhao X, Sun J, Su W, Shan H, Zhang B, Wang Y, et al. Melatonin protects against lung fibrosis by regulating the Hippo/YAP pathway. Int J Mol Sci. 2018;19(4):1118.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T, Endo M, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004;169(11):1203–8.

    Article  PubMed  Google Scholar 

  223. Iyer AKV, Ramesh V, Castro CA, Kaushik V, Kulkarni YM, Wright CA, et al. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF. J Cell Biochem. 2015;116(11):2484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chaudhary N, Roth G, Hilberg F, Müller-Quernheim J, Prasse A, Zissel G, et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir. 2007;29(5):976–85.

    Article  CAS  Google Scholar 

  225. Hamada N, Kuwano K, Yamada M, Hagimoto N, Hiasa K, Egashira K, et al. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J Immun. 2005;175(2):1224–31.

    Article  CAS  PubMed  Google Scholar 

  226. Motomura Y, Kanbayashi H, Khan W, Deng Y, Blennerhassett P, Margetts P, et al. The gene transfer of soluble VEGF type I receptor (Flt-1) attenuates peritoneal fibrosis formation in mice but not soluble TGF-β type II receptor gene transfer. Am J Physiol Gastrointest Liver Physiol. 2005;288(1):G143–50.

    Article  CAS  PubMed  Google Scholar 

  227. Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S. Antiangiogenic effects of melatonin in endothelial cell cultures. Microvasc Res. 2013;87:25–33.

    Article  PubMed  Google Scholar 

  228. Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S. Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J Pineal Res. 2013;54(4):373–80.

    Article  PubMed  Google Scholar 

  229. Song J, Kang SM, Lee WT, Park KA, Lee KM, Lee JE. The beneficial effect of melatonin in brain endothelial cells against oxygen-glucose deprivation followed by reperfusion-induced injury. Oxid Med Cell Longev. 2014;2014:639531.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Al-Rasheed NM, Fadda L, Attia HA, Sharaf IA, Mohamed AM, Al-Rasheed NM. Pulmonary prophylactic impact of melatonin and/or quercetin: a novel therapy for inflammatory hypoxic stress in rats. Acta Pharm. 2017;67(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  231. Jin H, Wang Y, Zhou L, Liu L, Zhang P, Deng W, et al. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res. 2014;57(4):442–50.

    Article  CAS  PubMed  Google Scholar 

  232. Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, et al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. The J Exp Med. 2006;203(13):2895–906.

    Article  CAS  PubMed  Google Scholar 

  233. Xing Y, Wang L, Wang H, Kong X, Zhan L. Dynamic expression of transformating growth factor-β1 and caveolin-1 in the lung of Bleomycin-induced interstitial lung disease. J Thorac Dis. 2017;9(8):2360.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Volonte D, Zhang K, Lisanti MP, Galbiati F. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell. 2002;13(7):2502–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Galbiati F, Brown AM, Weinstein DE, Ben-Ze’ev A, Pestell RG, Lisanti MP. Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruiting β-catenin to caveolae membrane domains. J Biol Chem. 2000;275(30):23368–77.

    Article  CAS  PubMed  Google Scholar 

  236. Cipriani P, Di Benedetto P, Capece D, Zazzeroni F, Liakouli V, Ruscitti P, et al. Impaired Cav-1 expression in SSc mesenchymal cells upregulates VEGF signaling: a link between vascular involvement and fibrosis. Fibrogen Tissue Repair. 2014;7:13.

    Article  Google Scholar 

  237. Lai L, Yuan L, Cheng Q, Dong C, Mao L, Hill SM. Alteration of the MT1 melatonin receptor gene and its expression in primary human breast tumors and breast cancer cell lines. Breast Cancer Res Treat. 2009;118:293–305.

    Article  CAS  PubMed  Google Scholar 

  238. Mougeolle A, Poussard S, Decossas M, Lamaze C, Lambert O, Dargelos E. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells. PLoS ONE. 2015;10(3): e0122654.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Shen J, Ma S, Chan P, Lee W, Fung PC, Cheung RT, et al. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J Neurochem. 2006;96(4):1078–89.

    Article  CAS  PubMed  Google Scholar 

  240. Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, et al. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS ONE. 2010;5(11): e14003.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Hsu Y-C, Wang L-F, Chien YW. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radic Biol Med. 2007;42(5):599–607.

    Article  CAS  PubMed  Google Scholar 

  242. Kang JW, Lee SM. Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion. J Pineal Res. 2012;53(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  243. Lawson WE, Cheng D-S, Degryse AL, Tanjore H, Polosukhin VV, Xu XC, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci. 2011;108(26):10562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wu J, Kaufman R. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Dis. 2006;13(3):374–84.

    Article  CAS  Google Scholar 

  245. Kohno K. How transmembrane proteins sense endoplasmic reticulum stress. Antioxid Redox Signal. 2007;9(12):2295–304.

    Article  CAS  PubMed  Google Scholar 

  246. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  CAS  PubMed  Google Scholar 

  247. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38(Suppl 1):S38-53.

    Article  PubMed  Google Scholar 

  248. Ginès P, Cárdenas A, Arroyo V, Rodés J. Management of cirrhosis and ascites. NEJM. 2004;350(16):1646–54.

    Article  PubMed  Google Scholar 

  249. Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y, et al. Liver fibrosis: therapeutic targets and advances in drug therapy. Front Cell Dev Biol. 2021;9: 730176.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sheibani M, Nezamoleslami S, Mousavi SE, Faghir-Ghanesefat H, Yousefi-Manesh H, Rezayat SM, et al. Protective effects of spermidine against cirrhotic cardiomyopathy in bile duct-ligated rats. J Cardiovasc Pharmacol. 2020;76(3):286–95.

    Article  CAS  PubMed  Google Scholar 

  252. Tahan G, Tarcin O, Tahan V, Eren F, Gedik N, Sahan E, et al. The effects of N-acetylcysteine on bile duct ligation-induced liver fibrosis in rats. Dig Dis Sci. 2007;52(12):3348–54.

    Article  CAS  PubMed  Google Scholar 

  253. Tarçin O, Avşar K, Demirtürk L, Gültepe M, Oktar BK, Ozdoğan OC, et al. In vivo inefficiency of pentoxifylline and interferon-alpha on hepatic fibrosis in biliary-obstructed rats: assessment by tissue collagen content and prolidase activity. J Gastroenterol Hepatol. 2003;18(4):437–44.

    Article  PubMed  Google Scholar 

  254. Tahan V, Ozaras R, Canbakan B, Uzun H, Aydin S, Yildirim B, et al. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats. J Pineal Res. 2004;37(2):78–84.

    Article  CAS  PubMed  Google Scholar 

  255. Svegliati Baroni G, D’Ambrosio L, Ferretti G, Casini A, Di Sario A, Salzano R, et al. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology. 1998;27(3):720–6.

    Article  CAS  PubMed  Google Scholar 

  256. Bedossa P, Houglum K, Trautwein C, Holstege A, Chojkier M. Stimulation of collagen alpha 1(I) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis? Hepatology. 1994;19(5):1262–71.

    CAS  PubMed  Google Scholar 

  257. Sahar E-S, Hassanen SI. Basic studiesImprovement of hepatic fibrosis by leukotriene inhibition in cholestatic rats. Ann Hepatol. 2009;8(1):41–9.

    Article  Google Scholar 

  258. Hong RT, Xu JM, Mei Q. Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol. 2009;15(12):1452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Mortezaee K, Sabbaghziarani F, Omidi A, Dehpour AR, Omidi N, Ghasemi S, et al. Therapeutic value of melatonin post-treatment on CCl4-induced fibrotic rat liver. Can J Physiol Pharmacol. 2016;94(2):119–30.

    Article  CAS  PubMed  Google Scholar 

  260. González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, de Urbina JO, González-Gallego J, et al. Melatonin attenuates dysregulation of the circadian clock pathway in mice with ccl4-induced fibrosis and human hepatic stellate cells. Front Pharmacol. 2018;9:556.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Kaneda H, Hashimoto E, Yatsuji S, Tokushige K, Shiratori K. Hyaluronic acid levels can predict severe fibrosis and platelet counts can predict cirrhosis in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2006;21(9):1459–65.

    Article  CAS  PubMed  Google Scholar 

  262. Dang SS, Wang BF, Cheng YA, Song P, Liu ZG, Li ZF. Inhibitory effects of saikosaponin-d on CCl4-induced hepatic fibrogenesis in rats. World J Gastroenterol. 2007;13(4):557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Hayasaka A, Saisho H. Serum markers as tools to monitor liver fibrosis. Digestion. 1998;59(4):381–4.

    Article  CAS  PubMed  Google Scholar 

  264. Zhou D, Wang Y, Chen L, Jia L, Yuan J, Sun M, et al. Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget. 2016;7(8):8625.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Zardi ME, Navarini L, Sambataro G, Piccinni P, Sambataro MF, Spina C, et al. Hepatic PPARs: their role in liver physiology, fibrosis and treatment. Curr Med Chem. 2013;20(27):3370–96.

    Article  CAS  PubMed  Google Scholar 

  266. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology. 2013;57(5):1773–83.

    Article  CAS  PubMed  Google Scholar 

  267. Gautheron J, Vucur M, Reisinger F, Cardenas DV, Roderburg C, Koppe C, et al. A positive feedback loop between RIP 3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol Med. 2014;6(8):1062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 2010;22(2):263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Crespo I, San-Miguel B, Fernández A, Ortiz de Urbina J, González-Gallego J, Tuñón MJ. Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice. Transl Res. 2015;165(2):346–57.

    Article  CAS  PubMed  Google Scholar 

  270. Jie L, Hong R-T, Zhang Y-J, Sha L-L, Chen W, Ren X-F. Melatonin Alleviates Liver Fibrosis by Inhibiting Autophagy. Curr Med Sci. 2022;42(3):498–504.

    Article  CAS  PubMed  Google Scholar 

  271. Üstündağ B, Çinkilinç N, Halifeoğlu İ, Canatan H, Özercan İH. Effect of melatonin on hepatic fibrogenesis, vitamin c and hydroxyproline levels in liver of ethanol-fed rats. Turk J Med Sci. 2000;30(4):333–40.

    Google Scholar 

  272. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Sohrabi M, Gholami A, Taheri M, Fekri S, Amirkalali B, Hatami S, et al. Melatonin levels in patients with nonalcoholic fatty liver disease compared with healthy individuals according to fibrosis level. Middle East J Dig Dis. 2021;13(2):109–14.

    Article  PubMed  PubMed Central  Google Scholar 

  275. Sohrabi M, Gholami A, Amirkalali B, Taherizadeh M, Kolahdoz M, SafarnezhadTameshkel F, et al. Is melatonin associated with pro-inflammatory cytokine activity and liver fibrosis in non-alcoholic fatty liver disease (NAFLD) patients? Gastroenterol Hepatol Bed Bench. 2021;14(3):229–36.

    PubMed  PubMed Central  Google Scholar 

  276. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134(6):1655–69.

    Article  CAS  PubMed  Google Scholar 

  277. Mortezaee K, Pasbakhsh P, Ragerdi Kashani I, Sabbaghziarani F, Omidi A, Zendedel A, et al. Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran Biomed J. 2016;20(4):207–16.

    PubMed  PubMed Central  Google Scholar 

  278. Lu L, Ma J, Sun M, Wang X, Gao E, Lu L, et al. Melatonin ameliorates mi-induced cardiac remodeling and apoptosis through a JNK/p53-dependent mechanism in diabetes mellitus. Oxid Med Cell Longev. 2020;2020:1535201.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Zhao X, Wang X, Wang J, Yuan J, Zhang J, Zhu X, et al. A peptide-functionalized magnetic nanoplatform-loaded melatonin for targeted amelioration of fibrosis in pressure overload-induced cardiac hypertrophy. Int J Nanomedicine. 2020;15:1321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Zhai M, Liu Z, Zhang B, Jing L, Li B, Li K, et al. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: in vivo and in vitro studies. J Pineal Res. 2017;63(3):e12433.

    Article  Google Scholar 

  281. Yoon YM, Go G, Yoon S, Lim JH, Lee G, Lee JH, et al. Melatonin treatment improves renal fibrosis via miR-4516/SIAH3/PINK1 axis. Cells. 2021;10(7):1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wei J, Wang Y, Qi X, Fan Z, Wu Y. Melatonin ameliorates hyperglycaemia-induced renal inflammation by inhibiting the activation of TLR4 and TGF-β1/Smad3 signalling pathway. Am J Transl Res. 2020;12(5):1584–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Kim JY, Park JH, Jeon EJ, Leem J, Park KK. Melatonin prevents transforming growth factor-β1-stimulated transdifferentiation of renal interstitial fibroblasts to myofibroblasts by suppressing reactive oxygen species-dependent mechanisms. Antioxidants (Basel). 2020;9(1):39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Chen DQ, Feng YL, Chen L, Liu JR, Wang M, Vaziri ND, et al. Poricoic acid A enhances melatonin inhibition of AKI-to-CKD transition by regulating Gas6/AxlNFκB/Nrf2 axis. Free Radic Biol Med. 2019;134:484–97.

    Article  CAS  PubMed  Google Scholar 

  285. Ozbek E, Ilbey YO, Ozbek M, Simsek A, Cekmen M, Somay A. Melatonin attenuates unilateral ureteral obstruction-induced renal injury by reducing oxidative stress, iNOS, MAPK, and NF-kB expression. J Endourol. 2009;23(7):1165–73.

    Article  PubMed  Google Scholar 

  286. Li X, Zhang T, Lv W, Wang H, Chen H, Xu Q, et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicol Environ Saf. 2022;232:113238.

    Article  CAS  PubMed  Google Scholar 

  287. Mortezaee K, Khanlarkhani N, Sabbaghziarani F, Nekoonam S, Majidpoor J, Hosseini A, et al. Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res. 2017;369(2):303–12.

    Article  CAS  PubMed  Google Scholar 

  288. Das N, Mandala A, Naaz S, Giri S, Jain M, Bandyopadhyay D, et al. Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res. 2017;62(4).

  289. González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, Álvarez M, Tuñón MJ, et al. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. BioFactors. 2017;43(2):272–82.

    Article  PubMed  Google Scholar 

  290. Nalobin DS, Suprunenko EA, Golichenkov VA. Effects of melatonin on differentiation potential of ito cells in mice with induced fibrosis of the liver. Bull Exp Biol Med. 2016;161(6):845–9.

    Article  CAS  PubMed  Google Scholar 

  291. Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res. 2016;60(4):383–93.

    Article  CAS  PubMed  Google Scholar 

  292. San-Miguel B, Crespo I, Sánchez DI, González-Fernández B, Ortiz de Urbina JJ, Tuñón MJ, et al. Melatonin inhibits autophagy and endoplasmic reticulum stress in mice with carbon tetrachloride-induced fibrosis. J Pineal Res. 2015;59(2):151–62.

    Article  CAS  PubMed  Google Scholar 

  293. Choi HS, Kang JW, Lee SM. Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl Res. 2015;166(3):292–303.

    Article  CAS  PubMed  Google Scholar 

  294. Mortezaee K, Majidpoor J, Daneshi E, Abouzaripour M, Abdi M. Post-treatment of melatonin with CCl(4) better reduces fibrogenic and oxidative changes in liver than melatonin co-treatment. J Cell Biochem. 2018;119(2):1716–25.

    Article  CAS  PubMed  Google Scholar 

  295. Lebda MA, Sadek KM, Abouzed TK, Tohamy HG, El-Sayed YS. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes. Life Sci. 2018;192:136–43.

    Article  CAS  PubMed  Google Scholar 

  296. González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, de Urbina JO, González-Gallego J, et al. Melatonin attenuates dysregulation of the circadian clock pathway in mice with CCl(4)-induced fibrosis and human hepatic stellate cells. Front Pharmacol. 2018;9:556.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Bona S, Rodrigues G, Moreira AJ, Di Naso FC, Dias AS, Da Silveira TR, et al. Antifibrogenic effect of melatonin in rats with experimental liver cirrhosis induced by carbon tetrachloride. J Gastroenterol Hepatol. 2018;2(4):117–23.

    Google Scholar 

  298. Wang YR, Hong RT, Xie YY, Xu JM. Melatonin ameliorates liver fibrosis induced by carbon tetrachloride in rats via inhibiting TGF-β1/Smad signaling pathway. Curr Med Sci. 2018;38(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  299. Liu Q, Sun Y, Zhu Y, Qiao S, Cai J, Zhang Z. Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci. 2022;301: 120622.

    Article  CAS  PubMed  Google Scholar 

  300. Jie L, Hong RT, Zhang YJ, Sha LL, Chen W, Ren XF. Melatonin alleviates liver fibrosis by inhibiting autophagy. Curr Med Sci. 2022;42(3):498–504.

    Article  CAS  PubMed  Google Scholar 

  301. Rafiq H, Ayaz M, Khan HA, Iqbal M, Quraish S, Afridi SG, et al. Therapeutic potential of stem cell and melatonin on the reduction of CCl4-induced liver fibrosis in experimental mice model. Braz J Biol. 2022;84: e253061.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AH was involved in writing––original draft preparation and revising; SM did supervision; MHP, SA, MS, and RI were involved in writing––original draft preparation; RJR performed reviewing and editing.

Corresponding author

Correspondence to Saeed Mehrzadi.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, A., Pourhanifeh, M.H., Amiri, S. et al. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol. Rep 76, 25–50 (2024). https://doi.org/10.1007/s43440-023-00554-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00554-5

Keywords

Navigation