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Abstract
Background Mitragynine (MIT), the primary indole alkaloid of kratom (Mitragyna speciosa), has been associated with 
addictive and cognitive decline potentials. In acute studies, MIT decreases spatial memory and inhibits hippocampal synaptic 
transmission in long-term potentiation (LTP). This study investigated the impacts of 14-day MIT treatment on hippocampus 
synaptic transmission and its possible underlying mechanisms.
Methods Under urethane anesthesia, field excitatory post-synaptic potentials (fEPSP) of the hippocampal CA1 region were 
recorded in the Sprague Dawley (SD) rats that received MIT (1, 5, and 10 mg/kg), morphine (MOR) 5 mg/kg, or vehicle 
(ip). The effects of the treatments on basal synaptic transmission, paired-pulse facilitation (PPF), and LTP were assessed in 
the CA1 region. Analysis of the brain's protein expression linked to neuroplasticity was then performed using a western blot.
Results The baseline synaptic transmission's amplitude was drastically decreased by MIT at 5 and 10 mg/kg doses, although 
the PPF ratio before TBS remained unchanged, the PPF ratio after TBS was significantly reduced by MIT (10 mg/kg). 
Strong and persistent inhibition of LTP was generated in the CA1 region by MIT (5 and 10 mg/kg) doses; this effect was not 
seen in MIT (1 mg/kg) treated rats. In contrast to MIT (1 mg/kg), MIT (5 and 10 mg/kg) significantly raised the extracel-
lular glutamate levels. After exposure to MIT, GluR-1 receptor expression remained unaltered. However, NMDAε2 receptor 
expression was markedly downregulated. The expression of pCaMKII, pERK, pCREB, BDNF, synaptophysin, PSD-95, 
Delta fosB, and CDK-5 was significantly downregulated in response to MIT (5 and 10 mg/kg) exposure, while MOR (5 mg/
kg) significantly raised synaptophysin and Delta fosB expression.
Conclusion Findings from this work reveal that a smaller dose of MIT (1 mg/kg) poses no risk to hippocampal synaptic 
transmission. Alteration in neuroplasticity-associated proteins may be a molecular mechanism for MIT (5 and 10 mg/kg)-
induced LTP disruption and cognitive impairments. Data from this work posit that MIT acted differently from MOR on 
neuroplasticity and its underlying mechanisms.
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Abbreviations
AMPA-R  Alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid receptor
ANOVA  Analysis of variance
ARASC  Animal Research and Service Centre
BDNF  Brain-derived neurotrophic factor
CaMKII  Calcium/calmodulin-dependent protein kinase 

II
CDR  Centre for drug research
CA1  Cornu ammonis 1
CA3  Cornu ammonis 3
CREB  Cyclic AMP-response element binding 

protein
DG  Dentate gyrus
DTT  Dithiothreitol
GLU  Glutamate
ERK  Extracellular signal-regulated kinase
fEPSP  Field excitatory post-synaptic potentials
HP  Hippocampus
I/O  Input–output
IACUC   Institutional Animal Care and Use Committee
ISIs  Interstimulus intervals
LTP  Long-term potentiation
MB  Midbrain
MIT  Mitragynine

MOR  Morphine
NMDA-R  N-methyl-D-aspartic acid receptor
PPF  Paired-pulse facilitation
PSD-95  Post-synaptic density protein 95
SDS  Sodium dodecyl sulfate
SD  Sprague Dawley
SEM  Standard error of the mean
TBS  Theta-burst stimulation
TBS-T  Tris-buffered saline/Tween 20

Introduction

Mitragynine (9-methoxy-corynantheidine) (MIT) is the 
most studied active indole alkaloid from kratom (Mitragyna 
speciosa) that constitutes more than 60 percent of the total 
alkaloids in kratom [1, 2]. Kratom and MIT's potential for 
addiction and cognitive deficits appear to be debatable 
in light of human studies [3], and they may even be used 
therapeutically to treat other drug addictions [4–6]. 
However, long-term use can impair cognitive functions. 
Animal studies revealed learning and memory deficits after 
either short or prolonged exposure to kratom or MIT [7–12].

The investigational mechanism in rodent CA1 
hippocampal slices revealed that acute and sub-chronic 
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treatments with standardized kratom extracts could 
significantly decrease non-potentiated field excitatory 
post-synaptic potentials (fEPSPs) and block long-term 
potentiation (LTP) [13, 14]. Data from our lab also showed 
that an acute MIT treatment reduced synaptic transmission 
and impaired spatial learning in the Morris water maze by 
significantly reducing fEPSP amplitude during LTP in the 
CA1 region of the hippocampus of urethane-anesthetized 
rats [15].

It is believed that the brain modifies the strength of 
synaptic connections between neurons to encode and store 
memory. Chronic use of substances with abuse potential 
alters synaptic plasticity in learning-associated brain circuits 
gradually and cumulatively, which leads to long-term 
behavioral changes [16–18]. The mechanism of synaptic 
plasticity in the hippocampus posits that a high-frequency 
stimulation at the CA3 pre-synaptic pyramidal neuron allows 
the entry of  Ca2+ into the CA1 post-synaptic pyramidal 
neurons as a result of N-methyl-D-aspartate receptor 
(NMDA-R) activation [19–21], which modulates alpha 
Ca2 + /calmodulin-dependent protein kinase II (CaMKIIα). 
At the Schaffer collateral–commissural pathway of the adult 
rat's hippocampus, CaMKIIα is abundant and is necessary 
for LTP-dependent protein activation (18), which is not 
only core to the synaptic plasticity, learning, and memory 
[22] but also potential for drug addiction development [23]. 
CaMKIIα becomes auto-phosphorylated and mediates 
some intracellular cascades that can result in a long-
lasting increase in synaptic transmission [24]. The latter is 
accomplished by phosphorylating specific target proteins and 
transcription factors, such as cyclic AMP-response element 
binding protein (CREB), which plays a role in forming long-
term memory [25]. CREB phosphorylation, particularly 
at serine 133, activates brain-derived neurotrophic factor 
(BDNF), leading to neuronal outgrowth, and hence the 
strengthening of synaptic transmission [26]. Neuronal 
survival, morphogenesis, LTP, and synaptic plasticity in 
the hippocampus are greatly influenced by BDNF [27–29]. 
The protein kinases known as extracellular signal-regulated 
kinases (ERKs) are highly present in the central nervous 
system and significantly contribute to neuroplasticity [27]. 
Activated ERK (pERK) directly phosphorylates CREB, and 
therefore remains a critical protein during LTP induction 
[27, 30].

The synaptic vesicle membrane protein, synaptophysin is 
associated with both axonal growth and brain plasticity and 
is still a crucial pre-synaptic molecule for the development 
and maintenance of synapses [31–33]. The post-synaptic 
density protein 95 (PSD-95) controls the actions of 
glutamate receptors, including α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptors (AMPA-R) 
and NMDA-R, which are essential for hippocampal 
neuroplasticity [34]. Activity-dependent neuroplasticity 

pathways underpinning learning and memory formation 
have been linked to synaptophysin and PSD-95 [35]. Delta 
fosB expression also depends on  Ca2+ influx and ERK 
activation [36]. Cyclin-dependent protein kinase 5 (CDK-5) 
is a synaptic plasticity biomarker since it promotes neuronal 
connection and NMDA-R conductance in the hippocampus 
[37].

The mechanisms underlying MIT-induced synaptic 
plasticity deficits in the hippocampal CA1 region remains 
unresolved. Thus, this study aimed to examine the impact 
of sub-chronic MIT administration on synaptic transmission 
and its neural mechanisms in the hippocampus of rats. The 
selection of MIT doses (1, 5, and 10 mg/kg) in this study was 
based on the earlier reported data, as the highest dose tested 
(10 mg/kg) was found to impair spatial memory [15] and 
disrupted LTP in rats that received urethane anaesthesia [15, 
38]. Morphine (MOR) 5 mg/kg was chosen as a reference 
drug for this study because of its ability to affect cognitive 
function in rodents [10, 13]. In addition, MIT acts partially 
on the opioid receptor in a similar way to MOR [39]. The 
selection of 5 mg/kg dose for MOR in this study was based 
on our previous study [15].

Experimental procedures

Animals

All experimental procedures received approval from the 
Institutional Animal Care and Use Committee (IACUC), 
Universiti Sains Malaysia {USM/IACUC/2020/(124)
(1082)}. The research was carried out in accordance with 
the bioethical law applicable in the EU/USA. Forty (40) 
male Sprague Dawley (SD) rats weighing 200–300 g were 
obtained from the Animal Research and Service Centre 
(ARASC) at Universiti Sains Malaysia. The rats were 
housed in cages of not more than five rats per cage and were 
provided with unlimited access to water and food, and a 12-h 
light and dark cycle was adhered to (07:00–19:00) daily. 
Before any experiment, all animals were acclimated to a 
temperature and humidity-controlled environment for at least 
7 days.

Drugs

MIT used in this study was extracted in-house from the 
kratom leaves using the procedure outlined by Ref. [38]. 
High-performance liquid chromatography verified the MIT's 
98% purity (HPLC). MOR hydrochloride (Lipomed Pharm., 
Batch: 35.IB0.2) and MIT solutions were freshly prepared 
daily using 20% Tween 80 (vehicle) prior to intra-peritoneal 
(ip) administration.
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In vivo electrophysiology

Animals were treated (ip) with control vehicle (20% tween 
80), MOR (5 mg/kg), and MIT (1, 5, and 10 mg/kg) for 
14 days and used in electrophysiological studies as described 
previously [15]. Urethane at a dose of 2 g/kg was given 
to the animals in four separate doses at a rate of 0.5 g/kg 
each after every 20 min. Urethane was selected for this 
study because it can induce anesthesia without causing 
any interference with neurotransmission in a range of 
subcortical regions and the peripheral nervous system [39]. 
In addition, urethane is known to produce long-term stability 
of physiological signals in rats without markedly affecting 
both cardiovascular and respiratory systems [40].

Animals were mounted on a stereotaxic frame for surgery. 
Subcutaneously, a local analgesic agent (Xylocaine, 5 mg/
kg) was injected at the incision site. The animals' body 
temperatures were kept at 36–37 °C throughout the trial 
using a blanket and an electric heating pad.

The CA1 and CA3 regions were located by taking 
coordinate readings from the bregma and the surface of the 
skull. The coordinate of CA1 (AP: − 4.2 mm, ML: -3.0 mm; 
V: 3.0 mm) and CA3 (AP: − 4.2 mm; ML: + 3.0 mm: V: 
− 4.0 mm. A stimulating electrode (SNE 100, MicroProbes, 
USA) was implanted at the CA3 area to stimulate the 
Schaffer collateral/commissural route (0.2 ms at 0.05 Hz). 
A recording electrode (Insulated Steel Wire, A-M Systems, 
USA) was implanted at the CA1. Two screws were drilled 
into the frontal cortex as the recording electrode's ground 
and reference. Final ventral adjustments were made to the 
CA3 stimulating and CA1 recording electrodes to reach the 
maximal fEPSP amplitude.

The CA3 region was stimulated with increasing intensity 
from 0.1 to 1.0 mA to create an input/output (I/O) curve. 
The intensity that produced an fEPSP amplitude of 
approximately 50–60% of the maximum in CA1 was utilized 
for the subsequent measurement of paired-pulse facilitation 
(PPF) and LTP. PPF was measured by delivering pairs of 
stimulation pulses (0.2 ms duration) with interstimulus 
intervals (ISIs) of 20, 50, 100, 200, 500, and 1000 ms to 
evaluate short-term plasticity.

Baseline fEPSPs were recorded for 60 min to establish 
a steady baseline for the LTP. LTP was compared to the 
baseline fEPSP recordings by delivering one theta-
burst stimulation (TBS) at the CA3 area immediately 
following the 60-min baseline recording. In a TBS train, 
ten stimulus bursts with five pulses at 100 Hz each were 
administered at a frequency of 5  Hz. After TBS was 
distributed, fEPSP recordings continued for the next 2 h. The 
electrophysiological signals were amplified and digitized 
using a PowerLab/4SP system (ADInstruments, Australia) 
at a rate of 10 kHz and stored in a PC. Offline analysis was 
performed using LabChart v. 7 software (ADInstruments). 

The treatment regimen was blinded to the experimenter who 
performed the electrophysiological recordings.

Glutamate measurement

This study was conducted as outlined by Ref. [41]. Sodium 
pentobarbital (Dorminal 20% ®; Batch No 1609260–07, 
Alfasan, Holand), 100  mg/kg was used to euthanize 
the animals after the LTP experiment. The animal was 
decapitated before the structure isolation. The hippocampi 
(HP) and midbrain (MB) were isolated and immediately 
transported to a − 80 °C freezer for storage until needed. HP 
and MB were homogenized with an equal volume of chilled 
tissue protein extraction reagent (T-PER™, REF:78,510, 
LOT: WE320059; Thermo-scientific, USA) containing 1X 
protease inhibitor (Roche Diagnostics). The homogenates 
were spun for 10 min at 4 °C and 1000 g/min. The resulting 
supernatant was used for a colorimetric assay to determine 
the glutamate concentration. The glutamate level was 
quantified using a commercial kit  (Elabscience(R) Co. Ltd., 
USA) as specified by the manufacturer. The glutamate 
concentration was determined by reading the plates using a 
Bio-Rad microplate reader (Hercules, CA, USA) at 450 nm. 
The concentrations were extrapolated from standard curves 
and expressed in μmol/L.

Assessment of protein expression with western blot

The glutamate colorimetric assay used HP supernatant for 
protein quantification and optimization. Total proteins in 
each sample were quantified using the Lowry microplate 
reader protocol as previously described [42] and subse-
quently used for western blot using standard SDS-PAGE 
Laemmli buffer system protocol [43] as previously con-
ducted [44–46]. After determining the proper protein con-
centration, 50 µg of the proteins were added to the sample 
buffers (X4 LDS and 1 M DTT) and heated at 90 °C for 
10 min before loading to the SDS–polyacrylamide gels. 
Electrophoresis began at 130 V for 90 min or until the stain 
reached the bottom of the gel. Separated proteins from the 
gels were transferred to nitrocellulose membranes (Bio-Rad) 
using a wet transfer cell for 45 min at 90 V. Membranes 
were then incubated in 5% (w/v) defatted dried milk to block 
unspecific binding during detection. The membranes were 
washed in TBS-T and subjected to immunodetection with 
primary antibodies incubated at 4 °C overnight on an orbital 
shaker. The membranes were then washed with TBS-T and 
re-incubated for 90 min in a secondary antibody HRP conju-
gate specific to the initial primary antibodies (Table 1). The 
membranes were then washed and re-incubated in strepta-
vidin-HRP (1:3000 dilution) for 60 min. Membranes were 
again washed and subjected to colorimetric detection using 
Opti-4CN substrate (Bio-Rad, Batch No: 64450147, Expiry: 
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08–2023, USA). The substrate was prepared according to the 
manufacturer's specification, and the membrane was incu-
bated (light off) in the substrate using an orbital shaker for 
30 min or until clear protein bands were seen. The mem-
branes were washed with deionized water for 15 min and 
protein abundance/expression was measured using ImageJ 
(NIH software). The densitometry values of each blot were 
normalized to tubulin levels and expressed as a ratio relative 
to the control group. Protein samples of each group were not 
pooled and acted as individual samples.

Statistical analysis

The normality of data distribution was checked using the 
Shapiro–Wilk normality test. Two-way ANOVA for repeated 
measures followed by Dunnett's post hoc test was used to 
analyze I/O, PPF, and LTP data. One-way ANOVA followed 
by Dunnett’s post hoc test was employed to analyze data from 
average fEPSP of the LTP last 60 min, colorimetric assay, 
and western blot. All statistical analyses were performed 
using GraphPad Prism (V. 9.0; GraphPad Software, Inc., 
San Diego, California USA) and a p value of < 0.05 was 
considered statistically significant for all studies.

Results

MIT effects on hippocampal I/O, PPF, and LTP

MIT (5 and 10 mg/kg) significantly decreased the fEPSP 
amplitude during I/O curves generation from 0.4 to 1.0 mA 
intensities compared to the control group. MIT (1 mg/kg) 
and MOR (5 mg/kg) produced no significant reduction of 
the fEPSP amplitude throughout the experiment (Fig. 1a). 
A two-way ANOVA revealed significant effects of stimu-
lation intensity (F9350 = 322, p < 0.0001) and drug treat-
ment (F4350 = 128.9, p < 0.0001), as well as of the inter-
action (F36, 350 = 5.171, p < 0.0001). Significant effects of 
the interstimulus interval (F5206 = 52.4, p < 0.0001) and of 
the drug treatment (F4206 = 3.986, p = 0.0039), but no sig-
nificant interaction (F20,206 = 1.285, p = 0.1915) before the 
TBS were detected (Fig. 1b). A significant effect of inter-
stimulus interval (F5199 = 41.50, p < 0.0001), drug treatment 
(F4199 = 4.078, p = 0.0034), and interaction (F20,199 = 3.431, 
p = 0.0034) after TBS was also revealed (Fig. 1c).

In the LTP study, a two-way ANOVA showed a significant 
effect of time  (F17,630 = 158.6, p < 0.0001) and drug treatment 
(F4630 = 142.3, p < 0.0001), as well as of the interaction 
 (F68, 630 = 5.332, p < 0.0001). MIT (5 mg/kg) significantly 

Table 1  List of the antibodies 
used for analysis

Primary antibody Dilution Source Secondary antibody Dilution Source

GLUR-1 (A-6)
(sc13152)

1:1000 Santa Cruz
Biotechnology
(USA)

Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)

NMDARε2
(A-8)
(sc-13152)

1:1000 Santa Cruz
Biotechnology
(USA)

Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)

pCAMKIIΑ
(A-1)
(sc-13141)

1:1000 Santa Cruz
Biotechnology
(USA)

Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)

pERK (1/2)
(sc-136521)

1:1000 Santa Cruz
Biotechnology
(USA)

Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)

pCREB-1
(Ser 133)

1:1000 Santa Cruz
Biotechnology
(USA)

Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)

BDNF
(I11115)

1:1000 Santa Cruz
Biotechnology
(USA)

Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)

Synaptophysin
(4329S)

1:1000 Cell Signalling (USA Anti-rabbit
(7074S)

1:3000 Cell Signalling (USA

PSD-95
(2507S)

1:1000 Cell Signalling (USA Anti-rabbit
(7074S)

1:3000 Cell Signalling (USA

Delta fosB
(D3S8R)

1:1000 Cell Signalling (USA Anti-rabbit
(7074S) 

1:3000 Cell Signalling (USA

CDK-5
(D1F7M)

1:1000 Cell Signalling (USA Anti-rabbit
(7074S) 

1:3000 Cell Signalling (USA

αTubulin
(66,031–1)

1:1000 Proteintech (USA) Anti-mouse
(SA0000I-1)

1:3000 Proteintech (USA)
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decreased the fEPSP amplitude, starting at 80 min and 
lasting until the end of the experiment (180  min). In 
contrast, MIT (10 mg/kg) significantly decreased the fEPSP 
amplitude starting at 130 min and lasting until the end of 
the experiment. Neither MIT (1 mg/kg) nor MOR 5 mg/kg 

altered LTP compared to the control throughout the testing 
period (Fig. 1d). In addition, a one-way ANOVA revealed 
that MIT (1, 5, and 10 mg/kg) significantly (p < 0.0001) 
decreased the average fEPSP amplitude during the LTP last 
60 min compared to the control treatment. MOR (5 mg/kg) 
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treatment yielded a significant difference (p < 0.0011) from 
the control group (Fig. 1e).

MIT enhances glutamate levels in the hippocampus 
and midbrain

A one-way ANOVA revealed a significant increase in the 
glutamate concentration in the hippocampus of MIT (5 and 
10 mg/kg)-treated rats compared to the control (F4,35 = 624.4, 
p < 0.0001). MIT (1 mg/kg) and MOR (5 mg/kg) produced 
no significant difference in glutamate level compared to the 
control (p > 0.05). A significant and dose-dependent increase 
in glutamate concentration in the midbrain of all MIT-tested 
doses (1, 5, and 10 mg/kg) was observed as compared to 
control-treated rats (F4,35 = 110.8, p < 0.0001). MOR (5 mg/
kg) did not change glutamate level in the midbrain compared 
to the control (p = 0.7913; Fig. 2).

MIT reduces NMDAε2, but not GluR‑1 expression

A one-way ANOVA and single-group comparisons did 
not show significant changes in GluR-1 in all the treat-
ment groups compared to the control (MOR 5: p = 0.2705; 
MIT 1: p > 0.999; MIT 5: p = 0.2674; MIT 10: p = 0.0595). 
However, MIT (5 and 10 mg/kg) significantly (p = 0.0001) 
decreased NMDAε2 expression compared to the control 
(Fig. 3).

MIT decreases the expression of pCaMKIIα, pERK, 
pCREB, and BDNF

A one-way ANOVA revealed that expression of the phos-
phorylated CaMKIIα, ERK, CREB as well as expression of 
BDNF were all significantly downregulated (p < 0.005) by 
MIT (5 and 10 mg/kg) as compared to control in the hip-
pocampus, whereas MIT (1 mg/kg) and MOR (5 mg/kg) did 
not yield significant changes the protein expression (Fig. 4).

MIT reduces the expression of synaptophysin 
and PSD‑95

A one-way ANOVA revealed that MIT at all the doses tested 
(1, 5, and 10 mg/kg) significantly decreased the expression 
of synaptophysin in the rat hippocampus (MIT 1: p = 0.0046; 
MIT 5: p = 0.0096; MIT 10: p < 0.0001). MOR 5 mg/kg pro-
duced a significant upregulation of synaptophysin (MOR 5: 
p < 0.0001) compared to the control. MIT (10 mg/kg) signifi-
cantly decreased PSD-95 expression in the rats’ hippocam-
pus as compared to the control (p = 0.0003), while MOR 
(5 mg/kg) and MIT (1 and 5 mg/kg) did not yield a signifi-
cant difference in PSD-95 expression (MOR 5: p = 0.9998; 
MIT 1: p = 0.1944; MIT 5: p = 6119) Fig. 5.

MIT reduces the expression Delta fosB and CDK‑5

A one-way ANOVA revealed that MIT (1, 5, and 10 mg/kg) 
significantly decreased Delta fosB (MIT 1: p = 0.0018; MIT 
5: p < 0001; MIT 10: p < 0.0001) and CDK-5 expression 
(MIT 1: p < 0.0001; MIT 5: p < 0.0001; MIT 10: p < 0.0001) 
in the rat hippocampus when compared to control. How-
ever, expression of Delta fosB was significantly increased 
(p < 0.0001) in the hippocampus of MOR (5 mg/kg)-treated 
rats. Expression of CDK-5 remained unaffected in MOR 
(5 mg/kg) treated rats (p = 0.9557, Fig. 6).

Discussion

Scientific evidence has shown that MIT causes cognitive 
impairments by affecting different types of learning and 
memory [10–12, 15]. LTP in the hippocampus is a crucial 
physiological mechanism underlying learning and memory 
processes [18]. Findings on synaptic plasticity have indicated 
that particular learning processes can expand the size of the 
dendritic spines, particularly at pyramidal neurons inside 
the CA1 arena of the hippocampus. This resulted in the 
development of new or strengthened synapses, which may act 
as the primary component of memory [47]. Recent studies 
demonstrated mild LTP suppression in the CA1 region of 
the hippocampus following acute treatment with MIT in rats 
[15]. In this work, we investigated the electrophysiological 
properties at the Schaffer collateral–CA1 synapses of 14-day 
MIT-treated rats in continuation of our previous study [15].

In the present study, MIT (5 and 10 mg/kg) significantly 
lowered the basal synaptic transmission in the hippocampus 
by decreasing the fEPSP amplitude at the stimulation 
intensities of 0.4–1.0 mA (Fig. 1a). We further assessed 
the effects of the treatments on both short- and long-term 
synaptic plasticity. PPF is a type of short-term synaptic 
plasticity induced by two stimulation pulses with a 
short interstimulus interval (ISI) that leads to calcium 

Fig. 1  The effects of repeated administration of MOR (5 mg/kg) and 
MIT (1, 5, and 10 mg/kg) on field excitatory post-synaptic potentials 
(fEPSPs) in the hippocampal CA1 region of anaesthetized rats fol-
lowing (a) input–output curves generated with increasing intensities 
(0.1 to 1.0 mA); (b and c) PPF ratio measured before and after TBS 
at CA1 region following delivery of paired-pulse stimulation to CA3 
at short interstimulus intervals of 20, 50, 100, 200, 500, and 1000 ms 
and calculating the amplitude of the two fEPSP; d LTP was assessed 
by recording a stable fEPSP amplitude for 60 min, followed by TBS 
delivery at the contralateral CA3 region and measurement of fEPSP 
continued for another 2  h and e average fEPSP amplitudes during 
the last 60 min of LTP. Data are presented as mean ± SEM and ana-
lyzed using two-way repeated measures ANOVA (a–d) and one-way 
ANOVA followed by the Dunnett’s post hoc test (e) (n = 8 animals/
group).; * p < 0.05, ** p < 0.01, **** p < 0.0001 compared to con-
trol,. MOR morphine, MIT mitragynine, CA1 cornu ammonis I, CA3 
cornu ammonis 3

◂
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accumulation needed to cause neurotransmitter release 
from the pre-synaptic neuron [48, 49]. MIT at all the doses 
appeared not to have significant effects on the PPF ratio 
before TBS compared to control. However, MIT (10 mg/
kg) significantly suppressed the PPF ratio after TBS at 100 
and 200 interstimulus intervals suggesting a decrease in 
calcium influx necessary for short-term synaptic plasticity. 
The ability of MIT to suppress the PPF ratio at 100 and 200 
interstimulus intervals suggests that these durations represent 

the optimum stimulation intervals needed for the calcium 
release. However in our earlier work [15], we reported that 
MIT does not affect short-term synaptic plasticity via PPF 
[15]. This may be because Ref. [15] reported the effect of 
acute exposure to MIT on PPF, while this study reported 
the effects of 14 days of repeated exposure to MIT on PPF.

LTP, a permanent synaptic process in the hippocampus, is 
regarded as the physiological basis for learning and memory 
[18, 50–53]. This study detected a significant and persistent 
LTP depression with MIT 5 mg/kg for up to 50 min duration 
by reducing the fEPSP amplitude. MIT (10 mg/kg) produced 
a profound LTP depression for almost 120 min, suggest-
ing a marked interference with long-term memory. These 
findings support earlier reports on MIT, which, at higher 
doses, disrupts hippocampal synaptic transmission [15]. It 
also agrees with other research showing LTP suppression in 
rat hippocampus slices after administering kratom extracts 
[13, 54]. Interestingly, a lower dose of MIT (1 mg/kg) did 
not affect PPF or LTP, suggesting that this low dose is safe 
regarding synaptic transmission.

On the other hand, we found that, after MOR (5 mg/kg) 
administration, fEPSP amplitude remained unchanged in 
both PPF and LTP, thus suggesting morphine did not affect 
both short- and long-term synaptic plasticity in this study. 
This unique finding identified different actions between 
MOR and MIT. Although both MOR and MIT interact 
with opioid receptors to elicit anti-nociceptive action, 
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Fig. 2  The effects of repeated administration of MOR (5 mg/kg) and 
MIT (1, 5, and 10  mg/kg) on glutamate concentration in the rats' 
hippocampus and midbrain using the colorimetric assay kit. Data 
are expressed as mean ± SEM and analyzed using one-way ANOVA 
followed by the Dunnett’s post hoc test (n = 8 replicates/group. 
**p < 0.001, ****p < 0.0001 compared to control. MOR—morphine, 
MIT mitragynine
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Fig. 3  The effects of repeated administration of MOR (5  mg/kg) 
and MIT (1, 5, and 10  mg/kg)on GluR-1 and NMDAε2 expression 
in the rats' hippocampus using western blot. Data are expressed as 
mean ± SEM and analyzed using one-way ANOVA followed by the 
Dunnett’s post hoc test (n = 8 replicates/group). ***p < 0.0001. Val-
ues in each group were calculated in relation to the control group 
and alpha-tubulin served as a loading control. MOR morphine, MIT 
mitragynine, NMDAε2 NMDA epsilon 2, GluR-1 glutamate receptor 
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the disruptive effects of MIT on learning processes do 
not seem to be mediated by opioid receptors. Many non-
opioid mechanisms are included in the pharmacology of 
MIT compared to MOR [55]. Naltrexone that antagonized 
MOR action did not antagonize MIT effects which indicates 
a non-opioid mechanism exhibited by MIT [55]. MIT’s 
complex pharmacology is favored by its interactions with 
other receptors such as serotonergic [56], dopaminergic, 
cholinergic [57], and adrenergic receptors [58], as well 
as with many liver microsomal enzymes [59] leading the 
variety of pharmacological actions.

Neurotransmitters, particularly glutamate, are released 
during high-frequency stimulation of the CA3 region. 
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Fig. 4  The effects of repeated administration of MOR (5  mg/kg) 
and MIT (1, 5, and 10  mg/kg) on pCaMKIIα, pERK, pCREB, and 
BDNF expression in the rats' hippocampus using western blot. Data 
are expressed as mean ± SEM and analyzed using one-way ANOVA 
followed by the Dunnett’s post hoc test (n = 8 replicates/group). 
**p < 0.005, ***p < 0.0001. Values in each group were calculated in 
relation to the control group and alpha-tubulin served as a loading 
control. MOR morphine, MIT mitragynine, pCaMKIIα phosphoryl-
ated calcium/calmodulin-dependent protein kinase type II alpha iso-
form, pERK phosphorylated extracellular regulated kinases, pCREB 
phosphorylated cAMP-response element binding protein, BDNF 
brain-derived neurotrophic factor
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Fig. 5  The effects of repeated administration of MOR (5 mg/kg) and 
MIT (1, 5, and 10  mg/kg) on synaptophysin and PSD-95 expres-
sion in the rats' hippocampus using western blot. Data are expressed 
as mean ± SEM and analyzed using one-way ANOVA followed by 
the Dunnett’s post hoc test (n = 8 replicates/group). **p < 0.001, 
***p < 0.0001. Values in each group were calculated in relation to the 
control group and alpha-tubulin served as a loading control. MOR—
morphine, MIT—mitragynine, PSD-95—post-synaptic density pro-
tein 95
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Fig. 6  The effects of repeated administration of MOR (5  mg/kg) 
and MIT (1, 5, and 10 mg/kg)on delta FosB and CDK-5 expression 
in the rats' hippocampus using western blot. Data are expressed as 
mean ± SEM and analyzed using one-way ANOVA followed by 
the Dunnett’s post hoc test (n = 8 replicates/group). **p < 0.001, 
***p < 0.0001. Values in each group were calculated in relation to 
the control group and alpha-tubulin served as a loading control. MOR 
morphine, MIT mitragynine, CDK-5 cyclin-dependent kinase 5
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The binding of glutamate to its receptors is a crucial step 
in the synaptic plasticity process [60]. Multiple exposures 
to psychostimulant substances have been shown to 
modify glutamatergic neurotransmission [61]. Glutamate 
overproduction results in synaptic dysregulation [62]. 
Our results indicate a significant extracellular glutamate 
level increase in the hippocampus of rats treated with 
MIT (5 and 10 mg/kg). Hippocampal glutamate levels in 
rats treated with MOR 5 mg/kg and MIT (1 mg/kg) were 
almost similar to those in vehicle-treated animals. Excessive 
glutamate neurotransmitter release is neurotoxic [63]. A 
glutamate accumulation in the hippocampus after repeated 
administration of MIT (5 and 10 mg/kg) may be responsible 
for neuronal death, which may constitute the reason behind 
the depressed basal synaptic transmission and LTP detected 
in this study. Because of the involvement of other brain 
regions in synaptic plasticity, we also tested the effects of 
our treatments on glutamate concentration in the midbrain. 
We observed a significant and dose-dependent increase in 
the glutamate level in all MIT-treated rats. However, the 
midbrain of rats treated with MOR (5 mg/kg) appears to have 
almost the same glutamate concentration as vehicle-treated 
rats, suggesting lower neurotoxicity of MOR compared to 
MIT.

To further understand the mechanism of neuroplasticity 
and memory following sub-chronic administration of 
MIT in rats, western blotting was employed to assess the 
changes in the expression of downstream proteins such as 
GluR-1, NMDAε2, pCaMKIIα, pERK, pCREB, BDNF, 
synaptophysin, PSD-95, Delta fosB, and CDK-5. These 
proteins have been associated with synaptic plasticity. All 
the treatment groups, including MOR (5 mg/kg), had no 
significant effect on GluR-1 expression. However, MIT (5 
and 10 mg/kg) significantly decreased NMDAε2 expression. 
Dysregulations of the AMPA and NMDA receptors have 
been linked to changes in synaptic transmission in the brain 
[64, 65].

Glutamatergic neurotransmission via NMDA-R activates 
new protein formation and induces neuroprotection via 
activation of CaMKIIα, ERK, CREB, and BDNF signaling 
pathways which are the major proteins associated with 
LTP [66]. Alterations in the ERK/CREB/BDNF pathway 
were reported to deplete synaptic plasticity and memory 
[67]. We, therefore, asked whether the modulation of 
hippocampal synaptic transmission observed in this study 
could be due to the changes in these proteins' expression. 
According to Ref. [68], CaMKII, a highly expressed 
protein in post-synaptic neurons of the hippocampus, has 
remained a crucial molecule linked to synaptic plasticity. 
It is activated by interactions with  Ca2+ and other synaptic 
proteins like the NMDA-R, resulting in phosphorylation 
and increased channel conductance essential for synaptic 
plasticity [69, 70]. We observed a significant decrease in the 

phosphorylated form of CaMKIIα (pCaMKIIα) expression 
after MIT (5 and 10 mg/kg). pCaMKIIα is the activated 
type of CaMKIIα. This data might imply that repeated 
MIT exposure decreases CaMKIIα phosphorylation via 
NMDAε2 dysregulation, thereby causing LTP decline. The 
repeated exposure to 1 mg/kg MIT and 5 mg/kg MOR did 
not impact CaMKIIα phosphorylation. Numerous findings 
have demonstrated the significance of NMDA-R-dependent 
activation of CaMKII in the molecular process of LTP and 
learning [22, 23, 62–65].

Another signaling crucial to synaptic plasticity and 
memory is the ERK/CREB pathway which is activated 
following the induction of LTP and behavioral training [71]. 
ERK is a densely expressed protein kinase that has been 
implicated as playing a critical role in neuroplasticity (Um 
et al., 2018). Its inhibition leads to a decline in LTP [72]. 
ERK activation regulates CREB phosphorylation, which 
has been reported to occur during LTP induction [72, 73]. 
The late phase of LTP has been demonstrated to be critical 
for ERK signaling. Synaptic potentiation also activates 
 Ca2+ and NMDA-R-dependent ERK signaling [68]. In rats, 
hippocampal LTP was impaired following the inhibition of 
the CaMKII/ERK/CREB signaling pathway [21]. In this 
study, MIT 5 and 10 mg/kg appeared to disrupt ERK and 
CREB phosphorylation significantly. The transcription 
factor CREB is activated by ERK signaling to promote gene 
expression [69, 70]. Expression of other proteins related to 
neuroplasticity, such as BDNF, was reported to be altered in 
response to CREB modulation [74]. Furthermore, it has been 
shown that BDNF has lasting impacts on maintaining LTP, 
primarily due to its role in promoting the biosynthesis of 
proteins and structural modification at the synaptic level [74, 
75]. LTP is facilitated at Schaffer collateral–CA1 synapses 
when BDNF interacts with TrkB (tropomyosin-like receptor 
kinase B), which serves as its receptor [74]. MIT 5 and 
10 mg/kg significantly decreased the expression of BDNF 
in our current study.

Decreased expression of pCaMKIIα, pERK, pCREB, and 
BDNF in the rat hippocampus was reported to impair LTP 
and learning [75, 76], and other forms of synaptic plasticity 
[77]. The observed activity-dependent modulation of these 
synaptic plasticity proteins may constitute a molecular path-
way of how MIT induces suppression of hippocampal plas-
ticity and subsequent cognitive deficits.

Alterations of the synaptic structures and density 
in the hippocampus are considerably associated with 
synaptophysin and PSD-95 expression [78] and consequently 
affect synaptic plasticity and learning [79]. Synaptophysin 
is considered a reliable indicator for determining the 
distribution and density of synapses [80, 81]. In this 
study, MIT at all the doses tested significantly decreased 
synaptophysin expression dose dependently. These data 
suggest that MIT administration for 14  days disrupts 
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synaptogenesis, affecting synaptic plasticity. Interestingly, 
MOR (5  mg/kg) significantly increased synaptophysin 
expression as compared to control, and thus may enhance 
synaptogenesis. These findings align with previous reports 
of increased structural plasticity after MOR treatment and 
self-administration in rats [81, 82]. This finding may also be 
one of the reasons why MOR (5 mg/kg) did not alter LTP 
in this study. Although MOR and MIT interact with opioid 
receptors and elicit analgesic effects, MOR was reported 
to block LTP completely because it decreased GABAergic 
neurotransmission via a guanylate cyclase interaction [79].

PSD 95 is essential for regulating NMDA-R gating, 
trafficking, and intracellular signaling in response to 
synaptic plasticity by directly binding to NMDA-Rs [81], 
thus allowing an influx of  Ca2+ necessary during LTP 
induction. Here, we recorded a profound downregulation 
of PSD 95 after MIT (10 mg/kg) treatment. This result 
indicates that MIT affects NMDAε2 conductance via PSD 
95 dysregulation. The latter could cause the MIT-inhibited 
 Ca2+ influx that was previously observed [15].

Delta fosB is a C-terminal truncated FosB gene product 
generated by alternative splicing. It is a molecular mediator 
of long-term plasticity in the brain [83]. Delta fosB gene 
expression depends on  Ca2+ influx and subsequent activation 
of the mitogen-activated protein kinase ERK1/2 [36], a 
prominent protein implicated in neuroplasticity. Our data 
indicate that MIT decreased the expression of Delta fosB. It 
may be the reason behind the ERK/CREB signaling pathway 
disruption observed in this study. MOR 5 mg/kg produced 
an opposite effect to MIT by significantly upregulating the 
expression of Delta fosB.

CDK-5 is an essential protein for synaptic modulation 
on both pre- and post-synaptic neurons. It has been linked 
to alterations in synaptic strength and connectivity of 
hippocampal CA3 recurrent synapses [37]. The development 
and retraction of dendritic spines and the conductance 
and expression of NMDA-Rs are regulated by CDK-5 
phosphorylation [84]. CDK-5 also causes an increase in 
pre-synaptic N-type voltage-gated calcium channel opening 
probability [85], which plays a role in neurotransmitter 
release and neuroplasticity. This work detected a significant 
decrease in CDK-5 expression after all MIT treatments.

Altogether, present findings suggest that repeated 
exposure to MIT at a lower dose (1 mg/kg) in rats is safe; 
however, higher doses (5 and 10 mg/kg) disrupt hippocampal 
synaptic transmission dose dependently via NMDAε2, 
CaMKII, ERK, CREB, BDNF, synaptophysin, PSD-95, 
Delta fosB, and CDK-5 modifications. It may represent the 
molecular mechanism of how MIT induces LTP deficit and 
subsequent cognitive impairments, and this may serve as a 
potential therapeutic target to manage MIT effects on LTP. In 
addition, we found that MIT behaves differently from MOR 
in terms of synaptic plasticity.
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