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Abstract
Disruption of the skin barrier and immunity has been associated with several skin diseases, namely atopic dermatitis (AD), 
psoriasis, and acne. Resident and non-resident immune cells and the barrier system of the skin are integral to innate immunity. 
Recent advances in understanding skin microbiota have opened the scope of further understanding the various communi-
cations between these microbiota and skin immune cells. Vitamins, being one of the important micronutrients, have been 
reported to exert antioxidant, anti-inflammatory, and anti-microbial effects. The immunomodulatory action of vitamins can 
halt the progression of skin diseases, and thus, understanding the immuno-pharmacology of these vitamins, especially for 
skin diseases can pave the way for their therapeutic potential. At the same time, molecular and cellular markers modulated 
with these vitamins and their derivatives need to be explored. The present review is focused on significant vitamins (vita-
mins A, B3, C, D, and E) consumed as nutritional supplements to discuss the outcomes and scope of studies related to skin 
immunity, health, and diseases.
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Abbreviations
AD	� Atopic dermatitis
AMP	� Anti-microbial peptides
ATRA​	� All-trans-retinoic acid
CGD	� Chronic granulomatous disease
COX	� Cyclooxygenase
CRH	� Corticotrophin
GLUT	� Glucose transporters
HBD	� Human beta-defensins
IgE	� Immunoglobulin E
IL	� Interleukin
iNOS	� Inducible nitric oxide synthase
IU	� International unit
LPO	� Lipid peroxides
MC	� Mast cells
NAD	� Nicotinamide adenine dinucleotide
NFκB	� Nuclear factor kappa B
NK cells	� Natural killer cells
PARP-1	� Poly-(ADP-ribose) polymerase-1
POMC	� Proopiomelanocortin
PTHrP	� Parathyroid hormone-related protein
RAR​	� Retinoic acid receptors
RELMα	� Resistin-like molecule α
RETN	� Resistin
ROS	� Reactive oxygen species
SVCT	� Sodium-dependent Vitamin C transporter
TEWL	� Trans-epidermal water loss
TLR	� Toll-like receptors
TNF-α	� Tumor necrosis factor-alpha
UHMWPE	� Ultra-high molecular weight polyethene
VDR	� Vitamin D receptor

Introduction

Skin, an essential organ of the integumentary system, acts 
as a defensive barrier between the internal organs and 
the environment. Its three layers (the epidermis, dermis, 
and hypodermis) that occupy a surface area of 2 m2 and 
approximately 15% of the total body mass, thus forming 
the most significant single organ in the human body. The 
skin serves several critical functions in the body, such as 
protection (against radiation, microorganisms, and mechani-
cal, thermal, and chemical injuries), repair (responding to 
stress and altering its structure/composition during injuries), 
sensation (through mechanoreceptors, chemoreceptors, and 
nociceptors), thermoregulation (regulating body tempera-
ture of using insulation and sweating), synthesis of vitamin 
D, hormones and neurotransmitters, and excretion of water, 
uric acid, and ammonia [1–3]. The skin is constantly repre-
sented with information from environmental factors, includ-
ing exposure to radiation, changes in temperature, relative 
humidity, and biological/chemical damage. The extent and 

the type of exposure determine the diversity in the structure 
and function of different parts of the skin. The mechanisms 
developed by the skin to maintain homeostasis and respond 
to external stimuli are widely distributed and highly regu-
lated. This includes the response generated by the skin's 
immune system when exposed to biological insults/trauma 
or the synthesis of factors like parathyroid hormone-related 
protein (PTHrP), proopiomelanocortin-derived (POMC) 
β-endorphin peptides, corticotropin-releasing hormone 
(CRH) and urocortin peptides, catecholamines, and ace-
tylcholine that respond to specific stimuli. Due to its size, 
location, and functional diversity, the skin plays a significant 
role in sending modulatory signals to the endocrine system 
that participate in a cascade of events necessary to maintain 
global and local homeostasis [2, 3].

The epidermis and the dermis layers of the skin consist of 
several types of immune-competent cells. Highly specialized 
epithelial cells are referred to as keratinocytes throughout 
the epidermis. They are periodically replaced by a single 
layer of basal keratinocytes, which proliferate constantly 
and give birth to cells that ascend toward the skin’s sur-
face. Their maturation into corneocytes results in forming a 
protective barrier termed stratum corneum [4]. As a result 
of elastin and collagen fibers produced by fibroblasts, the 
dermis builds a thick extracellular matrix. Immune cells 
are engaged when pathogens are detected by blood capil-
laries irrigating the dermis and by lymphatic veins draining 
lymph fluid to lymph nodes. Moreover, the dermis includes 
hair follicles, oil glands, blood capillaries, and lymphatic 
vessels, which are the main conduit for immune cells like 
macrophages, dendritic cells, and T cells in the body [5]. 
The epidermis also contains a specialized subset of dendritic 
cells known as the Langerhans cells (LCs), which play a 
significant role in activating T cells in response to surface 
antigens [6]. Researchers found that the T cell responses 
are widely affected by cytokines secreted by keratinocytes. 
There is a range of different immune cells in the dermis that 
are implicated in allergic reactions in the skin, such as Natu-
ral Killer (NK) cells, eosinophils, monocytes, mast cells, 
and CD8+ cells. These immune cells, especially dendritic 
cells, and keratinocytes identify foreign particles or bacte-
ria via Toll-like receptors, triggering subsequent immune 
responses, such as heightened production of AMPs and 
inflammatory cytokines. As a result, other immune cells, 
such as neutrophils, macrophages, and T cells, are attracted 
to the site of the immune response, resulting in an antibacte-
rial action. Activated T cells in the skin eliminate infected 
keratinocytes to manage viral infections or release signals 
that attract other immune cells. After the virus is elimi-
nated, lasting memory CD8+ T cells remain in the epider-
mis, ensuring immunity against future exposures [3, 7, 8]. 
However, it is found that commensal residents on the skin 
control the expression of AMPs and other various immune 
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factors. AMPs in epithelial cells belong to several families 
of proteins, the main ones in the skin being cathelicidin and 
beta-defensin.

New metagenomics research indicates that the skin hosts 
a diverse range of microorganisms including bacteria, fungi, 
and viruses, all affected by factors like humidity, tempera-
ture, pH, and anti-microbial substances [9–11]. These com-
mensal organisms habituated on the skin assist in wound 
healing and impede pathogen invasion by making anti-
microbial peptides (AMPs) to prevent colonization, thereby 
suppressing the development of microorganisms’ biofilm 
[12, 13]. Eubiosis in the skin, i.e., the existence of a home-
ostatic balance of microbiota, plays a significant function 
in the maintenance of skin health. Thus, the skin has been 
demonstrated over time to play a considerable part in immu-
nological function and not only as a physical barrier [14]. 
Epidermis, dermis, and subcutaneous fatty regions make up 
the skin’s layers. The skin also features hair follicles along 
with sebaceous, eccrine, and apocrine glands, which form 
separate niches housing a discrete microbiota [11]. The 
skin microbiota is mainly contributed by four members of 
phyla like Actinobacteria, Firmicutes, Proteobacteria, and 
Bacteroidetes. The most abundant and widespread genera 
that fall under the above category are Propionibacterium, 
Corynebacterium, and Staphylococcus [15]. In addition 
to genetic variables (such as genotype, age, and gender), 
external determinants, such as lifestyle, use of antibiotics, 
and cosmetics, can impact the variety and distribution of 
microorganisms on the skin [16]. In sebaceous glands, for 
example, lipophilic Propionibacterium species prevail, 
whereas Staphylococcus and Corynebacterium species are 
more prevalent in a wet environment. When it pertains to 
mycosis, Malassezia species are commonly encountered 
around the center of the body as well as in the underarm 
and feet. Malassezia, Aspergillus, Cryptococcus inhabit the 
plantar heel areas [9, 17, 18].

The skin microbiota further stimulates the expression of 
other highly complex host defense pathways, such as upgrad-
ing the levels of IL-1. This system comprises many proteins 
that react with each other, leading to the opsonization of the 
pathogens and triggering an inflammatory response which 
further facilitates their elimination [18]. The disruption 
between the homeostasis and microbiome may dysregulate 
some immune responses and cause skin disorders such as 
psoriasis or atopic dermatitis (AD) [16].

For sustaining healthy skin, a prominent corrective meas-
ure against the triggered immune response and free radicals-
mediated damage is by the use of antioxidants. Antioxidants 
alter the signal transductions associated with skin damage 
[19]. Because of the natural antioxidant property of nutra-
ceuticals, many individuals are augmenting their meals with 
multivitamins or isolated vitamin supplements, in addition to 
using topical skin care treatments on their faces. Vitamins A, 

B3, C, D, and E also exhibit anti-microbial effects through 
various pathways. For instance, vitamin C mitigates the pro-
liferation of Cutibacterium acnes and increases barrier func-
tionalities [20, 21]. Similarly, vitamin A is known to regu-
late mast cell function and support the treatment of various 
inflammatory disorders [22]. Hence, it is crucial to examine 
the impact of vitamins as antioxidants on skin immunity and 
their role in preventing dysbiosis. Thus, this article explores 
the various pathways in which vitamins A, B3, C, D, and E 
demonstrate their effects on skin immunity and prevent the 
growth of microbes that cause skin disorders.

Methodology

A comprehensive review of publications, encompassing sur-
veys and systematic reviews, was conducted to collectively 
analyze the roles played by vitamins A, B3, C, D, and E in 
skin immunity and various dermatological conditions. Stud-
ies were examined to elucidate the significance of the skin’s 
immune system and how it can be influenced by disruptions 
in the skin microbiome—a state called dysbiosis. Further, 
articles exploring the intricate pathways by which vitamins 
A, B3, C, D, and E contribute to fortifying skin immunity 
were discussed. Clinical trial data was examined to assess 
the efficacy of vitamins in mitigating inflammatory disorders 
triggered by the proliferation of microbiomes in conditions, 
such as AD, psoriasis, and chronic urticaria, among oth-
ers. Scopus databases and PubMed were extensively used to 
identify articles around “skin immunity”, “skin microbiota”, 
and “skin immunity and vitamins A, B3, C, D, and E”. All 
the figures included in this manuscript were prepared using 
the Microsoft PowerPoint tools.

Vitamin A

Retinoids are known for their beneficial effects in the pre-
vention of various skin diseases. The class of retinoids, 
vitamin A, and its metabolites have been widely used in 
the cosmeceutical industry due to their beneficial effect 
in treating photo-damaged skin [23]. When vitamin A is 
consumed orally, the liver is responsible for converting 
dietary retinyl esters (RE) and beta-carotene to retinol. It is 
further esterified for storage or circulation within the body. 
Retinol binds to the retinol-binding protein and enters the 
capillaries in the dermis for distribution within the skin. 
The cellular uptake of retinol is mediated via endocytosis 
or specific receptors. Keratinocytes in human skin can con-
vert retinol, a major form of vitamin A, to retinaldehyde 
and subsequently retinoic acid with the aid of dehydro-
genases. Skin cells also could convert the precursor of 
vitamin A, beta-carotene to its subsequent metabolites. 
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Cultures of human keratinocytes incubated with radiola-
beled beta-carotene demonstrated increased concentra-
tions of retinol. However, the percutaneous absorption of 
topically applied retinoids is low. Repeated applications 
of tretinoin in the form of creams, gels, or ointments have 
shown no significant changes in the plasma tretinoin con-
centrations and limited excretion through the urine and 
feces. Thus, minimal quantities of the active ingredient 
can enter the systemic circulation [24, 25].

Vitamin A exhibits its effect on the skin’s innate immu-
nity through three major pathways (Fig. 1). This primarily 
includes increased expression of Toll-like receptors-2 and 
3 (TLR2 and TLR3), regulation of mast cells, and expres-
sion of anti-microbial proteins [26].

Toll-like receptors (TLRs) are important components 
of the skin's innate immunity [27]. Each TLR acts as a 
pathogen recognition receptor (PRR) that produces a pro-
inflammatory response to pathogens or damaged cells. 
These are divided into different types based on their cel-
lular localization [28, 29]. The activities of TLR2 and 
TLR3 are dependent on retinoic acid [26, 30, 31]. In a 
study conducted on human monocytes, Cutibacterium 
acnes was utilized to induce inflammation by increasing 
the expression of TLR2 and subsequently causing a release 
of cytokines. All-trans-retinoic acid (ATRA) demonstrated 
an anti-inflammatory response by downregulating TLR2 
and its co-receptor CD14. Pre- and co-treatment of pri-
mary human monocytes with ATRA inhibited the function 
of TLR2 in triggering the release of monocyte cytokines 
(Fig. 2). ATRA also inhibited the induction of monocyte 
cytokines by Cutibacterium acnes [30].

Mast cells (MC) are known to play a significant role 
in the skin's innate immunity. These cells proliferate 
and get functionally altered in skin conditions, includ-
ing AD, psoriasis, and chronic urticaria [32–34]. In 
response to microbial products, MC increases expression 
of TLRs and IgE receptors. This results in the secretion 
of pro-inflammatory cytokines [22]. Retinoic acid plays 

Fig. 1   a Major pathways 
involved in the modulation 
of skin immunity by vitamin 
A [26]. b ATRA (All-trans-
retinoic acid) downregulates the 
overexpressed TLRs activated 
by pathogenic bacteria and 
thereby inhibiting the release of 
cytokines, hence contributing to 
the anti-inflammatory effect, c 
vitamin A inhibits mast cell pro-
liferation initiated by microbial 
products and thereby halts the 
process of IgE and TLR recep-
tor activation with impaired 
release of cytokines and subse-
quently impedes inflammation. 
TLR Toll-like receptors, IgE 
immunoglobulin E

Fig. 2   Vitamin A enhances the expression of anti-microbial peptides 
(AMPs) which are produced in response to skin bacteria along with 
keratinocytes and promotes host immunity. Vitamin A also activates 
Resistin-like molecule α (RELM-α) and Resistin (RETN) which in 
turn decreases the load of pathogenic bacteria
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an intricate role in regulating mast cells and is widely 
used in the treatment of several inflammatory skin con-
ditions (Fig. 1). A growing number of studies indicate 
that patients with AD are deficient in vitamin A and 
susceptible to bacterial colonization by Staphylococcus 
aureus [35–37]. It was found that by activation of MC, 
Staphylococcus δ-toxin potentially causes AD (40). MC 
releases cytokines including IL-4, IL-10, and IL-13 that 
can stimulate the conversion of CD4+ T cells to Th2 cells 
[38]. A supporting study illuminating the role of vitamin 
A showed decreased serum levels in infants with AD. 
Further, a vitamin A-deficient mice model projected a 
more severe Th2-mediated inflammation and exacerbated 
in vivo MC activation. The results also illustrated that 
supplementation of vitamin A could rescue its deficiency-
mediated inflammation in AD by potentially supporting 
the homeostasis of MC [39]. Since T cells closely interact 
with MC and are modulated by the secretion of cytokines 
by these cells, retinoic acid may play a modulating role 
in mast cells through innate as well as adaptive immune 
processes [22].

Keratinocytes are involved in the production of AMPs 
in response to the skin microbiota. These proteins play 
a major role in regulating the bacterial communities on 
the skin and limiting the growth of pathogenic bacteria 
[40]. Recent findings have demonstrated that vitamin A 
can impact the expression of AMPs and thus promote host 
immunity against skin infections [26]. Bacterial species 
such as S. aureus can trigger the expression of resistin-
like molecule α (RELMα), which is bactericidal in nature. 
Findings indicate that retinol promotes the expression of 
RELMα. In humans, a similar result was obtained where 
resistin (RETN) was found to be dependent on vitamin A 
for its expression. It was suggested that retinol enhances 
the expression of the RETN gene in sebocytes by the 
binding of retinoic acid receptors (RARs) to the RETN 
promoter [41]. This could help in explaining analogs of 
retinol, such as isotretinoin are commonly used in skin 
conditions like psoriasis and acne. Studies have dem-
onstrated a decrease in the abundance of Cutibacterium 
acnes after the treatment of isotretinoin [42–44]. This 
shift in the microbial population could be attributed to 
the elevated expression of RETN in patients on isotreti-
noin (Fig. 2).

Vitamin A by virtue of its immunomodulatory effect 
protects against fungal infection due to Candida albi-
cans [45]. In vitro and in vivo results from multiple tri-
als reported the efficacy of vitamin A and its derivatives 
against a wide array of fungal infections in humans [46] 
for instance against Aspergillus spp. and Microsporum 
spp. Thus, vitamin A derivative such as retinoid can 
be explored in clinic as a potential therapeutic strategy 
against fungal infections.

Vitamin B3

Niacinamide, alternatively known as nicotinamide, rep-
resents a water-soluble derivative of niacin, specifically 
belonging to the vitamin B3 group. With its diverse array 
of effects on the skin, niacinamide has gained consider-
able popularity as a constituent in cosmetic formulations. 
Notably, niacinamide is derived from nicotinic acid and is 
commonly referred to as vitamin PP due to its ability to 
counteract pellagra [22, 47].

Situated as the outermost layer of the skin, the epider-
mis plays a pivotal role in shielding the body against exter-
nal agents, such as Ultraviolet radiation (UVR), pollution, 
and microorganisms. The delivery of vitamin B3 to the 
epidermis occurs through various mechanisms encompass-
ing topical administration and oral supplementation. Upon 
topical application, vitamin B3 permeates the stratum cor-
neum, which serves as the outermost layer of the epider-
mis, subsequently traversing to the viable epidermis [48]. 
Niacinamide participates in multiple metabolic processes 
and pathways (e. g. NAD synthesis) in the skin [49]. Once 
in the viable epidermis, vitamin B3 is converted to its 
active form, NAD+, which plays a critical role in energy 
metabolism and DNA repair [50].

Furthermore, the reduced forms of NAD+ like NADH 
and NADPH are also reported to have antioxidant proper-
ties. Dermo-cosmetics employ this vitamin for its anti-
inflammatory, anti-microbial, and barrier as well as for its 
photo-protective properties [47]. However, much of the 
current research has been focused on the ability of niacina-
mide to fight inflammation and acne. Niacinamide crosses 
the stratum corneum more efficiently than nicotinic acid 
and has a high tolerability profile as it does not provoke 
skin irritation or redness [51].

The anti-inflammatory properties of niacinamide are 
linked to its ability to suppress the expression of poly-
(ADP-ribose) polymerase-1 (PARP-1) enzyme that gov-
erns the nuclear factor kappa B (NFκB) transcription [52]. 
These gene transcriptions are regulated by PARP-1 in vari-
ous immune cells, including dendritic cells, macrophages, 
and lymphocytes. As a result of PARP-1 inhibition, pro-
inflammatory cytokine levels decline [53]. This makes it 
beneficial in the treatment of skin diseases, such as acne 
vulgaris and other skin disorders. Acne vulgaris, is a skin 
condition of different etiologies and is identified by the 
occurrence of both inflammatory and non-inflammatory 
skin lesions. Cutibacterium acnes plays a significant 
part in the progression of this disease by triggering the 
release of pro-inflammatory cytokines such as interleu-
kin-8 (IL-8) through the stimulation of toll-like receptors 
(TLR 2) [54]. IL-8 is a neutrophil-specific target inter-
leukin derived from keratinocytes, enhances its growth, 
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and triggers sebum formation. It has been established that 
acne lesions cause the stimulation of transcription factors, 
resulting in the release of PARP-1 [55]. Research shows 
that on topical application of 2% nicotinamide, there was a 
decrease in sebum production in a Japanese experimental 
group and a drop in the levels of sebum on the skin surface 
in a Caucasian experimental group [56]. Other studies con-
ducted in controlled clinical demonstrated that 4% niaci-
namide was proven to be as efficient as 1% clindamycin 
in patients with moderate acne [57]. Furthermore, in vitro 
investigations revealed that nicotinamide exhibits its anti-
inflammatory function by suppressing leukocytes and 
their cellular response and reducing the release of IL-8, a 
cytokine-induced in response to Cutibacterium acnes [32].

Apart from acne, nicotinamide has been tested against 
AD, which is a multifaceted chronic inflammatory skin 
condition due to several genetic and environmental factors. 
It progresses further because of genetic alterations in the 
structural protein called filaggrin [58]. A drop in filaggrin 
levels leads to skin barrier deficiencies, thus causing more 
significant trans-epidermal water loss, further aggravat-
ing the skin’s vulnerability to environmental allergens and 
pathogenic organisms, resulting in chronic skin irritation 
[59]. During clinical studies, it was observed that there was 
an increase in the Staphylococcus aureus bacterium popula-
tion in individuals affected by AD, which led to an overall 
reduction in the variety of skin microflora [60, 61]. Inflam-
matory and immunological responses elicited by this dys-
biosis include a decline in the number of circulating T cells, 
impaired functioning of TLRs, and an increase in CD4+ 
cells. Interleukins like IL-4, IL-5, and IL-13 are secreted 
by these cells, which stimulate IgE synthesis [60]. A clini-
cal study was undertaken for eight weeks to investigate the 
moisturizing impact of nicotinamide in patients with atopic 
dry skin and it was confirmed that surface application of 
niacinamide helps to sustain the skin barrier, decreasing 
trans-epidermal water loss (TEWL) and increasing the pro-
duction of skin proteins and ceramides [62].

Psoriasis is an autoimmune disease analogous to AD, but 
it is distinguished by neutrophil accumulation and elevated 
nitric oxide levels [63]. As previously stated, nicotinamide 
is an anti-inflammatory agent. It can inhibit immunologi-
cal responses in conjunction with the nitric oxide synthase 
enzyme [64]. When used with calcipotriol in the treatment 
of psoriasis, nicotinamide proved to be an effective adju-
vant [65]. Additionally, it was also demonstrated that topi-
cal administration of 0.25% 1-methylnicotinamide helped to 
treat rosacea, another dermatological condition, after four 
weeks of clinical testing [66].

1-methyl nicotinamide(1-MNA) and nicotinamide-
N-oxide are the two primary metabolites of nicoti-
namide. 1-MNA undergoes further metabolism to 
produce 1-methyl-2-pyridone-5-carboxamide and 

1-methyl-4-pyridone-5-carboxamide. Despite having mul-
tiple therapeutic mechanisms, 1-MNA’s anti-inflammatory 
properties appear to be its primary benefit. Additionally, 
1-MNA is one of the analogs of nicotinamide adenine dinu-
cleotide (NAD+) [67, 68].

In non-melanoma skin cancer, vitamin B3 especially nic-
otinamide was found to be useful in modulates skin immune 
response and showed chemo-protective effects [69]. Nico-
tinamide, when taken orally, not only prevents skin cancer 
but also reduces the financial burden of treatment costs [70].

Vitamin C

Vitamin C is integral in ameliorating skin pathologies, 
including acne, psoriasis, progressive purpura, or allergic 
contact dermatitis [71]. It is often used as a part of formula-
tions that provide an anti-inflammatory effect. In the case 
of acne, Cutibacterium acnes triggers pro-inflammatory 
mediators, which leads to the generation of acne through its 
involvement in the skin keratinocytes and sebaceous glands 
of the pilosebaceous follicle [21]. A combination of vitamin 
C, zinc, and clarithromycin was found to render an antibacte-
rial effect on Cutibacterium acnes in vitro [72].

Vitamin C is found in both the layers of the skin, the 
dermis, and the epidermis, with the latter having higher con-
centrations [73, 74]. UVR or pollutants may affect the levels 
of vitamin C in the epidermis layer by causing degradation 
[75–77]. When consumed orally, vitamin C is transported 
from the bloodstream to the layers of the skin through spe-
cific transporter proteins [78]. Keratinocytes have a larger 
capacity for transporting vitamin C in comparison to the 
epidermis which has limited vascularization [78, 79]. Vita-
min C can also be topically administered. Applying vitamin 
C topically can provide benefits to the skin, but the outer-
most layer of skin, called the stratum corneum, can limit 
its absorption [80]. Removing this layer through various 
methods can improve absorption [81]. Studies on laboratory 
animals suggest that vitamin C absorption depends on pH, 
with a pH below 4.0 promoting absorption. Concentrations 
of up to 30% have been tested, but 20% is the most effective 
for absorption. Ascorbic acid can cross the epidermis and 
reach deeper layers of the skin. However, vitamin C can 
degrade over time due to exposure to air, heat, and/or light 
[80]. Stable synthetic derivatives, such as ascorbate phos-
phate and ascorbyl palmitate, have limited permeation, and 
absorption and may have toxic effects [82]. Adding other 
antioxidant compounds can increase the stability of topical 
vitamin C solutions [83]. Human studies have reported no 
adverse effects from using solutions containing 0.6–10.0% 
vitamin C or its synthetic derivatives [84].

Vitamin C is reported to exert its therapeutic effect by 
three mechanisms, (1) collagen stabilization, (2) ceramide 
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regulation, and (3) wound healing effect (Fig. 3a). Two 
sodium-dependent vitamin C transporter (SVCT), isoforms 
1 and 2 helps in the entry and accumulation of vitamin C in 
the dermis and the epidermis [78]. This suggests that vita-
min C plays a crucial role in skin health (Fig. 3b). Deficiency 
in vitamin C results in diseases like scurvy characterized 
by bleeding gums and poor wound healing [85, 86]. Such 
individuals are more prone to infections since they have a 
down-regulated immune system [87]. Vitamin C acts as a 
co-factor for the propyl and lysyl hydrolase enzymes that 
provide stability to the tertiary structure of collagen [88]. 
Hence, a deficiency in vitamin C is a plausible reason for the 
symptoms experienced by patients with scurvy.

Studies have demonstrated the role of vitamin C in skin 
inflammation [89]. One such study indicated decreased 
plasma levels of vitamin C (6–31 μmol/L) in patients with 
AD. Further, an inverse relationship between the epider-
mal ceramide levels and plasma vitamin C levels was also 
observed in the patients [90]. Ceramide is an essential com-
ponent of the stratum corneum and its increased production 
occurs due to the stimulation of ceramide synthase [40]. So, 
vitamin C act as a co-factor for enzymes involved in colla-
gen synthesis as well as for the enzyme ceramide synthase. 
Vitamin C supplementation in a keratinocyte culture results 
in increased differentiation and barrier functions through 
the synthetic and biosynthetic pathways [20]. This points 
toward the vital role of vitamin C in enhancing the synthesis 
of barrier lipids (Fig. 3c).

Vitamin C is known to substantiate the process of 
wound healing (Fig.  3d). It enhances the expression 

of mediators that promote wound healing and causes a 
decline in the pro-inflammatory mediators [91]. The 
inflammatory process is initiated by neutrophils that 
migrate to the site of infection (also called chemotaxis), to 
release anti-microbial proteins and reactive oxygen species 
(ROS) [92]. Ultimately, they undergo apoptosis and are 
cleared away by macrophages (Fig. 3d). Vitamin C influ-
ences all three stages of inflammation, including chemot-
axis, phagocytosis, killing the microbiota, apoptosis, and 
clearance of neutrophils [87].

Primarily, vitamin C is accumulated in the neutrophils 
through SVCT2 (sodium-dependent vitamin C transporter 
2), and its oxidized form (dehydroascorbate or DHA) is 
transported through glucose transporters (GLUT) [93, 94]. 
Vitamin C levels within the cells are rapidly increased to 
10 mM through the reduction of DHA to ascorbate. The 
accumulation of vitamin C in the neutrophils can play a 
protective role in oxidative damage and aid in regenerat-
ing antioxidants such as glutathione that are present in the 
membrane [94]. It also attenuates the generation of oxidants 
that activate ​​pro-inflammatory transcription factor nuclear 
factor κB (NFκB) [95, 96]. Patients with conditions such 
as chronic granulomatous disease (CGD), an immunodefi-
ciency disease where the neutrophils and macrophages are 
functionally defective, are left susceptible to bacterial and 
fungal infections [97]. They may develop skin infections due 
to bacteria such as Serratia marcescens or Staphylococcus 
aureus and fungal infections due to Aspergillus species [98]. 
Studies have indicated decreased infections and an improve-
ment in leukocyte chemotaxis through supplementation of 

Fig. 3   a Role of vitamin C 
in the maintenance of skin 
health; b role of vitamin C 
(Vit C) in collagen stabiliza-
tion. The accumulation of Vit 
C in the dermis and epidermis 
takes place through sodium-
dependent vitamin C transporter 
(SVCT) which is then respon-
sible for serving as a co-factor 
for propyl and lysyl hydrolases 
to stabilize collagen [78]; c Role 
of vitamin C in the regulation of 
ceramide levels. Vitamin C acts 
as a co-factor in the synthesis 
of ceramide by the conversion 
of ceramide synthase into cera-
mide. Ceramide enhances the 
level of barrier lipids and plays 
an important role in maintaining 
the structure and permeability 
barrier function of the skin. d 
Role of vitamin C in the three 
stages of wound healing
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vitamin C [98, 99]. This could be attributed to its effect on 
microtubule assembly [100].

Vitamin C also supports the process of apoptosis of neu-
trophils. During this process, enzymes such as caspases play 
a critical role in the marking and clearance by macrophages 
[101]. However, caspases are sensitive to the ROS gener-
ated by neutrophils and are likely to get inactivated due to 
the activation of the neutrophils [102, 103]. In vitro studies 
conducted on human neutrophils demonstrate that vitamin 
C could potentially play a protective role in the oxidant-
sensitive caspase-dependent apoptotic process induced 
by Escherichia coli [104]. Supporting evidence shows a 
decrease in apoptosis and persistence of inflammatory loci 
by isolated neutrophils of vitamin C-deficient Gulo mice 
[105, 106].

Vitamin D

Vitamin D, also called calciferol, is a vital fat-soluble nutri-
ent extensively known for its role in bone health and calcium 
homeostasis. There are multiple ways to administer vitamin 
D, including the following: the most common method is 
taking oral supplements in the form of capsules, tablets, or 
liquids. Sun exposure can also help the skin produce vitamin 
D, but the amount produced depends on factors, such as skin 
color, time of day, season, and location. Vitamin D can also 
be injected into the muscle or applied topically as creams, 
ointments, or lotions. A nasal spray can also deliver vitamin 
D, which is absorbed through the nasal mucosa [107, 108].

UVR serves as a natural source of radiation that encom-
passes a range of effects on human health, both advanta-
geous and detrimental. Its impact extends to various aspects 
of cutaneous and systemic homeostasis, including the 
synthesis of vitamin D, regulation of skin pigmentation, 
enhancement of the skin's barrier function, modulation of 
the immune system, regulation of blood pressure, and even 
mood regulation [109]. However, undue exposure of the 
skin to solar UVR can result in several forms of damage, 
including sunburn, photo-aging, and the development of skin 
cancer. Consequently, it is strongly advised to safeguard the 
skin against UVR by adopting multiple protective measures, 
such as the diligent use of sunscreen. Nevertheless, the rec-
ommendation of stringent Ultraviolet B (UVB) protection, 
as advocated by several guidelines, has triggered a debate 
due to its potential association with vitamin D deficiency 
[110]. To compensate for reduced solar exposure, the option 
of incorporating low-dose vitamin D dietary supplementa-
tion has been proposed. The overlapping action spectra of 
both harmful and beneficial effects prompt inquiries into the 
rationale behind the long-standing evolutionary process of 
gene-environment interactions. Nonetheless, the synthesis 
of pre-vitamin D3 does not necessitate prolonged exposure 

to UVB radiation, and excessive UVB irradiation can lead 
to sunburn, consequently, compelling individuals to limit 
or avoid sun exposure [111]. Thus, maintaining a delicate 
equilibrium between the advantageous and detrimental con-
sequences of UVR is crucial. Ongoing efforts are focused 
on developing optimized sunscreens that facilitate vitamin 
D synthesis while minimizing the risk of erythema [112].

Upon exposure of the skin to UVB radiation, a crucial 
process unfolds whereby pre-vitamin D3 is synthesized from 
7-dehydrocholesterol (7-DHC), primarily occurring within 
the keratinocytes situated in the stratum basale and stratum 
spinosum layers of the epidermis. Subsequently, this pre-
vitamin D3 is converted into its active form, vitamin D3, 
and facilitated into the systemic circulation with the aid of 
a binding protein [113]. Notably, alternative photoproducts, 
namely tachysterol3, and lumisterol3, can also arise from the 
conversion of pre-vitamin D3. However, these photoproducts 
exhibit biological inactivity and exhibit limited entry into 
the circulation, thereby serving as a protective mechanism 
against potential vitamin D toxicity. While it is acknowl-
edged that vitamin D3 can undergo further degradation into 
additional photoproducts upon sunlight exposure, the pre-
cise biological significance of these resultant photoproducts 
remains ambiguous [114]. According to Dr. Michael Hol-
ick, a prudent approach to sun exposure entails selectively 
exposing arms and legs to midday sunlight for brief intervals 
twice a week, potentially meeting the individual's vitamin D 
requirements. Nevertheless, it is important to recognize that 
various factors, such as seasonal variations, geographical 
latitude, skin pigmentation, advancing age, and the use of 
sunscreen, possess the capacity to influence the synthesis of 
vitamin D within the skin, thereby significantly impacting 
overall vitamin D levels in the body [115].

There are multiple ways to activate vitamin D that differ 
from the conventional pathway. These alternative methods 
can still lead to the production of active vitamin D [113]. 
One of these alternative methods involves a particular 
enzyme called CYP11A1, which is present in various tissues 
including the skin and adrenal gland. Unlike the classical 
pathway, the activation of vitamin D through this enzyme is 
not reliant on the liver and kidneys [116]. Another alterna-
tive pathway of vitamin D activation involves the conver-
sion of vitamin D to calcidiol by enzymes CYP2R1 and 
CYP27A1, found in different tissues throughout the body. 
From calcidiol, calcitriol (the active form of vitamin D) can 
be produced directly, bypassing the need for the kidneys 
to activate it in the classical pathway. The significance of 
these alternative pathways in vitamin D metabolism is still 
being investigated, and therefore their importance is not 
fully understood [117, 118]. Studies conducted by Bubshait 
et al. indicated that the transdermal route of vitamin D is 
potentially safe and can give desired results to raise vitamin 
D levels [119].
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Keratinocytes residing in the epidermis possess the nec-
essary enzymatic machinery to facilitate the conversion of 
vitamin D into its biologically active form. Moreover, these 
keratinocytes also express the vitamin D receptor (VDR), 
which acts as a regulatory factor in gene expression [120]. 
Vitamin D is predominantly available in two primary forms: 
ergocalciferol (vitamin D2), derived from plant sources, and 
cholecalciferol (vitamin D3), obtained from animal sources. 
The precursor molecule, 7-dehydrocholesterol, abundantly 
present in keratinocytes, undergoes a non-enzymatic break-
down upon exposure to ultraviolet (UV) light, resulting in 
the formation of pre-vitamin D3, specifically cholecalcif-
erol. This molecule is subsequently subject to further enzy-
matic processing to yield the active metabolite of vitamin 
D3, known as 1,25-hydroxyvitamin D, or calcitriol [121]. 
The interaction between calcitriol and the VDR assumes a 
crucial role in the immunological system of the skin. Stud-
ies conducted in the past have indicated that calcitriol can 
enhance cellular calcium concentration, thereby promoting 
the activation of structural proteins and ultimately facili-
tating keratinocyte differentiation [122]. Furthermore, this 
ligand–receptor interaction holds significance in the devel-
opment of the epidermal barrier, as it contributes to the 
synthesis of ceramides, vital components involved in main-
taining the integrity and functionality of the skin's barrier 
function [123–125].

On the other hand, calcitriol binds to the TLR2 receptor 
and CD14, which changes the levels of anti-microbial pep-
tides, such as human beta-defensins (HBDs) and cathelicidin 
via CYP27B1 induction [123]. In recent years, researchers 
have been more intrigued by the preponderant effect of 
vitamin D on immune cells. Immunological functions of 
vitamin D include the inhibition of T lymphocyte cells and 
the induction of T-reg (regulatory T cell) [126, 127]. On 
T-lymphocyte membranes, vitamin D activates the expres-
sion of G protein-coupled receptor 2, which is engaged in 
the T cell-mediated pathway during skin inflammation, cul-
minating in its retention in the epidermal cells [128, 129].

Several studies have documented that vitamin D insuf-
ficiency may have a main function in the development of 
psoriasis. This chronic skin disease is identified by Th-17 
cells and their associated immuno-stimulatory cytokines 
(IL-17, IL-21, IL-22), including tumor necrosis factor-alpha 
and atypical AMP response, resulting in its overproduction 
ultimately triggering the inflammation and proliferation of 
keratinocytes, leading to the development and persistence of 
psoriatic lesions [130]. Vitamin D therapy has been shown 
to reduce the activity of TLR2 and TLR4 in monocytes 
[131]. The active form of calcitriol exerts its anti-inflam-
matory activity by suppressing pro-inflammatory cytokines 
and HBDs and slowing down the chemical responses of den-
dritic cells, which are abundant in psoriatic lesions [131, 
132]. Decreased VDR mRNA activity was found to result in 

increased cathelicidin LL-37 expression in psoriatic lesions 
[133].

Previous reports have shown that treating patients with 
psoriatic skin with an isoform A of VDR yielded better 
results [124]. The VDR gene is responsible for regulating 
the effects of vitamin D and various intracellular signal-
ing pathways that are involved in cell differentiation. The 
A-allele of this gene has been found to bind more efficiently 
to the Cdx-2 protein and has increased transcription activ-
ity compared to the G allele. Genetic variations in the VDR 
gene can affect vitamin D synthesis, metabolism, and deg-
radation, and it is expressed in various organs, including 
the intestine, thyroid, and kidneys, where it plays a crucial 
role in calcium homeostasis [134]. VDRs can repress the 
expression of 1alpha-hydroxylase, which is responsible for 
activating 1,25(OH)2D3, and it can induce the expression 
of the 1,25(OH)2D3 inactivating enzyme CYP24. The VDR 
is also expressed in keratinocytes, and calcitriol, which is 
a natural ligand for VDR, can inhibit the proliferation and 
induce differentiation of human keratinocytes [134, 135].

Unlike psoriasis, the epithelial layer in AD contains less 
cathelicidin, making it more vulnerable to infection by S. 
aureus. One of the studies showed that macrophages acti-
vate TLRs, leading to increased expression of VDR and 
its genes, which ultimately leads to increased production 
of cathelicidin, thereby reducing susceptibility to bacterial 
infections [136]. In vitro, evidence reveals that vitamin D 
has a functional role in acne vulgaris. However, according 
to recent data, it was indicated that 1,25-hydroxyvitamin 
(1,25 OH2D) lowers the proliferation of Th-17 cells whose 
release was triggered by Cutibacterium acnes during the 
progression of acne lesions [137].

Vitamin E

Vitamin E, an essential fat-soluble vitamin, is present 
in the form of eight compounds, namely α-, β-, γ- and 
δ-tocopherols and tocotrienols [138]. Despite its lower 
concentrations in the cell membranes, it is the first line 
of defense against damage caused by free radicals on cell 
membranes. It is considered a significant antioxidant in tis-
sues and can prevent lipid peroxidation by quenching free 
radicals. The deficiency of vitamin E can result in reduced 
immune function [139].

Within the skin, the epidermis exhibits higher concentra-
tions of vitamin E compared to the dermis [74]. Specifically, 
α-tocopherol emerges as the prevailing form of vitamin E 
observed in the skin of individuals who have not undergone 
vitamin E supplementation. Nevertheless, detectable quanti-
ties of γ-tocopherol [140], as well as other tocopherols and 
tocotrienols derived from the diet [141], may also be present 
in the skin.
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Following its initial accumulation in the sebaceous 
glands, vitamin E is subsequently transported to the skin 
surface via sebum [142, 143]. It should be noted that oral 
ingestion of vitamin E requires a minimum of seven days to 
cause noticeable changes in the vitamin E content of sebum 
[142, 144]. While the skin lacks specific transport proteins 
exclusively dedicated to vitamin E, its lipophilic proper-
ties enable it to penetrate all underlying layers of the skin 
[145]. Exposure to UV light [140, 146, 147] or ozone [143, 
148, 149] can diminish the levels of vitamin E in the skin, 
particularly within the stratum corneum. This reduction in 
vitamin E content may be attributed to the destructive effects 
of these environmental factors on the antioxidant properties 
of vitamin E. Furthermore, it has been observed that vita-
min E levels in the human epidermis decline with age [74], 
potentially due to the altered structure of the aging epider-
mis, which facilitates increased penetration of UV light into 
this layer [150].

Much like the transportation of vitamin E to the stra-
tum corneum via sebum, the topical usage of vitamin E can 
infiltrate both the epidermis and dermis [147, 148]. Nev-
ertheless, our comprehension of the rate at which vitamin 
E is absorbed through the skin and the elements affecting 
its permeation in humans remains considerably unclear. 
This is due to the varied employment of concentrations and 
timeframes in diverse studies. Generally, it’s believed that 
even solutions containing a minimal 0.1% concentration of 
vitamin E can enhance its cutaneous levels [151]. Notably, 
following topical application, the concentration of vitamin E 
in the dermis significantly increases, with sebaceous glands 
likely serving as a major site of accumulation [152]. None-
theless, the concentration of vitamin E in the dermis remains 
lower than that observed in the stratum corneum. Skin that 
primarily relies on dietary vitamin E typically contains α- 
and γ-tocopherol [140, 144, 145]. In contrast, skin exposed 
to synthetic vitamin E topically may encompass a mixture 
of various tocopherols and/or tocotrienols [147, 148]. Upon 
topical application, vitamin E tends to accumulate in the 
cell membranes and extracellular lipid matrix of the stratum 
corneum, thereby contributing to antioxidant defense mecha-
nisms. However, a significant portion of topically applied 
vitamin E is susceptible to degradation in the skin upon 
exposure to UV light [147], indicating its inherent instabil-
ity and tendency for loss from the skin. Thus, enhancing the 
stability of topical vitamin E formulations becomes crucial. 
One approach to improve the stability of topical vitamin E 
solutions involves the use of vitamin E conjugates, commer-
cially produced esters of tocopherol that exhibit resistance to 
oxidation while retaining the ability to penetrate the layers of 
the skin. However, it is important to note that vitamin E con-
jugates do not possess antioxidant functions, and the efficacy 
of these formulations can vary considerably depending on 
the specific compound and the model system utilized [153].

Vitamin E is known to render an increased immune 
response through two mechanisms (Fig. 4). First, due to its 
antioxidant properties, it can protect the cell membranes of 
macrophages from oxidative stress. Second, it plays a role 
in curbing the production of prostaglandins [154, 155]. A 
study on AD patients demonstrated an inverse relationship 
between serum vitamin E and IgE levels in the treatment 
group. The evaluation groups showed improvement in con-
ditions associated with AD, like facial erythema or licheni-
fication after supplementation with vitamin E [156]. Since 
enhanced production of IgE is thought to be a significant 
factor in the development of AD, these findings suggest the 
role vitamin E can play in improving AD symptoms. Simi-
larly, various studies dealing with the effect of Vitamin E 
in managing AD have demonstrated a negative association 
between serum IgE levels and alpha-TP, thus supporting the 
theory mentioned earlier [157–159].

In acne vulgaris, where the colonization of Cutibacte-
rium acnes is the known causative organism [160], the pro-
duction of ROS and lipid peroxides (LPO) is a part of the 
progression of the disease. The oxygen acquires unpaired 
electrons during the generation of ROS and forms free radi-
cals that cause lipid peroxidation and cytokine production. 
This ultimately results in inflammation, and the skin remains 
exposed to chronic oxidative stress [161, 162]. Addition-
ally, the generation of oxidants during lipid peroxidation 
can also rupture the follicular walls. Studies have indicated 
a negative correlation between serum vitamin E levels and 
the severity of acne vulgaris [163]. Supplementation of vita-
min E in patients with acne vulgaris showed positive results 
in reducing the severity of acne for eight weeks. Further, 
there was a decrease in the number of inflammatory and 

Fig. 4   Anti-inflammatory and immune-boosting properties of Vita-
min E in maintaining skin health
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non-inflammatory lesions two weeks into the treatment. 
These findings establish the role of vitamin E in neutraliz-
ing oxidants generated during inflammatory conditions like 
acne vulgaris [162].

Tocotrienol was found to inhibit the production of nitric 
oxide, prostaglandin E2 (PGE2), cytokines tumor necrosis 
factor-α, interleukin (IL)-4, IL-8, induced nitric oxide syn-
thase (iNOS), cyclooxygenase (COX)-2 and NF-ĸB expres-
sion in THP-1 monocytes challenged with Candida albi-
cans [164, 165]. THP-1 monocytes are involved in the innate 
immune response to fungal infections and found that the cell 
wall components of Candida enhance the secretion of TNF-
alpha, IL-8, and IL-1β. Vitamin E is shown to downregulate 
the pathways involved in the release of IL-1α, IL-1β, IL-10, 
IL-8, IL-6, and IL-12. Further, it also plays a role in sup-
pressing the expression of cytokines, such as interferons and 
TNF-α, which are produced by fibroblasts in response to the 
fungal virulence factors [165].

An interesting study conducted on prosthetics also high-
lighted the role of vitamin E in decreased septic failure 
caused by implants. The ultra-high molecular weight poly-
ethylene (UHMWPE) components used in prosthetics can be 
a source of bacterial infections due to the physicochemical 
interactions between the material and the microbe [166]. 
Since microbial adhesion is the primary step in the patho-
genesis of the disease, vitamin E stabilized with UHMWPE 
(VEPE) can play a role in decreasing bacterial adhesion 
[167]. The VEPE showed increased resistance toward Staph-
ylococcus epidermis, Staphylococcus aureus, Escherichia 
coli, and Candida albicans, thus inciting further research on 
extrapolating the antioxidant effect of vitamin E in modu-
lating skin microbial adhesion and ultimately preventing 
diseases [166–168].

Gut–skin axis and vitamins

The potential role of the gut microbiome has evolved as an 
emerging topic in the research fraternity, particularly the 
gut–brain axis, the gut–lung axis, and the gut–skin axis. 
The analogous nature of gut and skin in terms of function-
ality and purpose confirms their potential role in associ-
ated pathological conditions. Innervated and vascularized 
nature, epithelial cells, AMPs, phagocytes in the innate 
immune system, and higher cellular turnover rate are the 
common characteristics shared by both gut and skin tissues 
[188]. Modulation in the immune system is responsible for 
establishing the link between the gut and skin homeostasis 
because of their capability to host a wide range of microor-
ganisms to balance with the human system. So, disturbance 
in the balance may lead to impairment in the gut–skin axis 
[189]. Vitiligo is a type of skin disease characterized by the 
loss of melanocytes with the appearance of patchy white 

skin. A direct correlation between gut and skin was proved 
by developing a preclinical model of vitiligo where the mice 
have been subjected to antibiotic-induced depletion of gut 
microbiota, which resulted in skin depigmentation [190]. 
This was also supported by the clinical evidence where viti-
ligo patients found gut dysbiosis with reduced Bacteroides 
compared to the healthy controls [191].

Different studies have reported the role of gut microbes 
in skin inflammatory diseases by regulating the immune 
system [192, 193]. The IL-23/IL-17 inflammatory pathway 
in psoriasis is reported to be regulated by both skin and gut 
microbiota [194]. Administration of different probiotics like 
Bifidobacterium infantis, Lactobacillus pentosus was found 
to have beneficial effects in psoriatic patients. The same was 
also reported in the imiquimod-induced psoriasis model of 
mice. This was mainly evidenced by the reduction in various 
pro-inflammatory mediators like TNF-α and IL-6 by probi-
otics [195, 196]. Similarly, gut dysbiosis manifested by the 
decrease in microbiome diversity was observed in acne vul-
garis patients [197], and probiotics consumption prevented 
the occurrence of AD in different patient populations [198]. 
Apart from these, skin pathological conditions like rosacea 
[199], dandruff, and seborrheic dermatitis [200] were also 
associated with gut dysbiosis, which was then ameliorated 
by administering the administration of probiotics.

As the gut microbiome serves as the source of different 
vitamins, gut dysbiosis might alter their levels, contribut-
ing to skin dysbiosis [201]. However, there is a dearth of 
evidence on the role of vitamins modulating the gut–skin 
axis. Therefore, vitamin’s impact on the gut–skin axis needs 
to be studied for establishing their plausible connect in skin 
disorders. The occurrence of microbiota in the gut and skin 
sharing common characteristics and functions may enable us 
to understand critical microorganisms and their mechanisms 
of action responsible for each skin disorder.

Conclusion

The skin serves as a crucial organ for innate immunity. Dis-
ruption of this barrier and immune function has been linked 
to various skin diseases, such as AD, psoriasis, and acne. 
Recent advancements in understanding the skin microbiota 
have shed light on the intricate communication between 
these microbiota and skin immune cells. Vitamins, known 
for their antioxidant, anti-inflammatory, and anti-microbial 
properties, have emerged as potential modulators of immune 
signals and hold promise for improving skin health and man-
aging skin diseases (Table 1). Further, the status of a few 
clinical trials has been listed (Table 2), which indicates the 
ongoing testing of these vitamins for the treatment of skin 
diseases. Thus, examining the potential of specific vitamins 
(A, B3, C, D, and E) when consumed as drug/nutritional 
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Table 1   Summarized role of vitamins in maintaining skin immunity and health with their mode of action in different dermatological conditions

Vitamin Mode of action Skin diseases

Vitamin A Keratinocyte proliferation
and differentiation, mast
cell proliferation, expression of TLRs and AMPs

Acne vulgaris, AD, psoriasis

Vitamin B3 Antioxidant, antibacterial, anti-inflammatory, and photo-protective effects AD, acne vulgaris, psoriasis, rosacea
Vitamin C Anti-inflammatory and antioxidant effects, collagen stabilization, and 

ceramide synthesis
Acne vulgaris, photo-aging

Vitamin D Keratinocyte differentiation, antibacterial, anti-inflammatory Psoriasis, acne vulgaris
Vitamin E Skin immunity, antioxidant, antibacterial, and anti-inflammatory effects AD, acne vulgaris

Table 2   Clinical trials investigating the effects of vitamins A, B3, C, D, and E on skin conditions

S. no. Name of intervention Skin condition/disease Status/outcome References

1 Niacinamide (4%) and virgin coconut oil 
(30%) moisturizing cream

Contact dermatitis of hands Not completed [169]

2 Topical application of nicotinamide + cal-
cipotriol

Psoriasis Additional benefits to psoriasis patients [170]

3 Niacinamide (4%) and desonide (0.05%) Hyperpigmentation Significant depigmenting improvement 
versus placebo

[171]

4 Evaluation of acceptability, skin barrier 
restoration, and balance of atopic skin 
using moisturizer

AD Not completed [172]

5 Nicotinamide + antibacterial adhe-
sive + zinc-pyrrolidone carboxylic acid 
cream

Acne vulgaris Reduced lesions [173]

6 Retinyl palmitate-loaded topical etho-
somes

Facial acne vulgaris Effective in controlling acne and tolerable 
to skin

[174]

7 Topical vitamin A (all-trans retinol) 
cream

Skin aging Improvement in natural aging associated 
fine wrinkles

[175]

8 Topical vitamin A with or without 
azithromycin

Acne vulgaris Not completed [176]

9 Micro-needling with topical vitamin C Acne scars of acne vulgaris Ineffective outcome [177]
10 Ascorbic acid versus diode laser Gingival hyper-pigmentation Not completed [178]
11 Vitamin c injection versus the conven-

tional surgical depigmentation
Melanin hyper-pigmentation Comparable results with both techniques [179]

12 Topical tranexamic acid and topical vita-
min C with microneedling

Facial melasma Effective and safe outcomes [180]

13 Glycolic acid (70%) peel with vitamin C Acne scars Well-tolerated treatment of acne scarring 
in Asian skin

[181]

14 Combination of phototherapy and oral 
vitamin D

Vitiligo autoimmune disease skin Not accessible [182]

15 Blue light (453 nm) treatment over three 
months compared to vitamin D

Psoriasis vulgaris Completed [183]

16 Vitamin D neoadjuvant with photody-
namic therapy (PDT)

Actinic keratosis Improved PDT efficiency clinically [184]

17 Active vitamin D Acne vulgaris Improvement of the clinical status of acne 
patients

[137]

18 Bioactivity of vitamin D in the skin after 
oral supplementation

Healthy, no evidence of skin disease Variability in vitamin D receptor expres-
sion

[185]

19 Oral lactoferrin with vitamin E and zinc Acne vulgaris Significant reduction in acne lesions [186]
20 Oral vitamin E AD Improved symptoms [187]
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supplements will highlight their future therapeutic/prevent-
ing potential in the studies related to skin immunity, health, 
and diseases.

This review may serve as a navigational tool for keen 
researchers to gain exhaustive knowledge. By elucidating the 
effects of these vitamins on skin immunity, new therapeutic 
avenues can be explored for enhancing the understanding of 
the intricate interplay between vitamins, the skin microbi-
ome, and immune responses. Although the present review 
dealt with specific vitamins and their role in skin health, the 
impact and contribution of vitamins toward skin homeostasis 
is enormous. The limitation of the present review includes 
a dearth of direct evidence on the vitamins’ role in gut–skin 
axis. The review is also limited to a few major vitamins i.e., 
vitamins A, B3, C, D, and E. The vitamin dosage schedules, 
their bioavailability, the factors influencing skin microbi-
ome, and their pro/anti-microbial properties can also be 
reviewed and is the limitation of this review. Thus, there is 
a vast scope of reviewing pharmacological and dermatologi-
cal drug development considering the vitamins’ impact in 
skin diseases and the gut–skin axis.

Future perspectives

Counteracting the generation of free radicals by acting as 
antioxidants makes vitamins an important part of skin immu-
nity. Vitamins exert a wide range of biological functions in 
maintaining skin health and support the endogenous defense 
system in combating pathological conditions. The increased 
uptake of vitamins in recent times for boosting immunity 
formed an integral part of the human diet whose absence 
could significantly hamper biological functions. The bidi-
rectional link between the changes in gut microenvironment 
and skin immunity in the development of different dermato-
logical conditions may introduce therapeutic strategies that 
could balance gut–skin homeostasis. Even though different 
vitamins are proven to be efficacious in various skin patholo-
gies, the involvement of these substances and their isoforms 
in gut microbiota in improving the alterations need to be 
explored. This could probably evolve as a mechanistic path-
way that can link various aspects of skin immunity and gut 
microbiome that eventually identifies new treatment avenues 
and reducing stigmatization in people with skin disorders.
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