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Abstract
Melanoma is a highly aggressive and life-threatening form of skin cancer that accounts for a significant proportion of cancer-
related deaths worldwide. Although conventional cancer therapies, such as surgical excision, chemotherapy, and radiation, 
have been used to treat malignant melanoma, their efficacy is often limited due to the development of resistance and adverse 
side effects. Therefore, there is a growing interest in developing alternative treatment options for melanoma that are more 
effective and less toxic. Terpenes, a diverse group of naturally occurring compounds of plant origin, have emerged as potential 
anticancer agents due to their ability to inhibit tumor growth and induce apoptosis in cancer cells. In this review, the current 
understanding of the anticancer effects of terpenes (including, thymoquinone, β-elemene, carvacrol, limonene, α-pinene, 
β-caryophyllene, perillyl alcohol, taxol, betulinic acid, α-bisabolol, ursolic acid, linalool, lupeol, and artesunate) was sum-
marized, with a special focus on their potential as therapeutic agents for malignant melanoma.
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Abbreviations
bFGF  Basic fibroblast growth factor
BRAF  V-raf murine sarcoma viral oncogene 

homolog B1
HDAC  Histone deacetylase activity
HIF-1α  Hypoxia-inducible factor 1-alpha
HPGD  15-Hydroxyprostaglandin 

dehydrogenase
IL-1β  Interleukin 1 beta
IL-6  Interleukin 6
MAPK/ERK  Mitogen-activated protein kinase 

(MAPK)/Extracellular signal-Regu-
lated Kinase (ERK)

MEK  Mitogen-activated protein kinase 
kinase

MMP-9  Matrix metallopeptidase 9
PI3K/AKT/mTOR  Phosphatidylinositol 3-kinase 

(PI3K)/protein kinase B (AKT)/
mammalian target of the rapamycin 
(mTOR)

TIMPs  Tissue inhibitors of 
metalloproteinases

TNF-α  Tumor necrosis factor α
VEGF  Vascular endothelial growth factor
Wnt  Wingless signaling

Introduction

Terpenes (also known as isoprenoids) are a diverse large 
class of organic compounds found in plants, fungi, and some 
animals [1], characterized by a specific carbon skeleton 
composed of multiple isoprene units (Fig. 1), which can be 
arranged in a linear, branched, or cyclic manner [2].

Terpenes play important roles in the biosynthesis of plant 
secondary metabolites, such as essential oils and pigments, 
and are involved in various physiological processes, includ-
ing growth and development, reproduction, and defense 
against biotic and abiotic stress [3, 4]. Terpenes are synthe-
sized by plants and other organisms through the mevalonate 
pathway and are often found in essential oils, resins, and 
other plant-derived materials [5]. Terpenes are the subject 
of biochemical and molecular research due to their numer-
ous biological activities, including, anticancer, anti-inflam-
matory, antimicrobial, and antiviral effects [6, 7]. Terpenes 
interact with specific biological targets, such as enzymes, 
receptors, ion channels, and can also modulate signaling 
pathways involved in various cellular processes, including 
apoptosis, proliferation, and cell differentiation [8].
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One of the most notable biological activities of terpenes 
is their anti-inflammatory effect. Many terpenes modulate 
the immune system and reduce inflammation by inhibit-
ing the activity of various enzymes and signaling pathways 
involved in the inflammatory response [9]. Some terpenes 
possess antioxidant activity, which can protect cells from 
damage caused by free radicals and oxidative stress [10].

Terpenes have also been reported to exhibit antimicrobial 
activity against a wide range of bacteria, fungi, and viruses 
[11]. This effect is thought to be due to the ability of some 
terpenes to disrupt the cell membrane of microorganisms, 
leading to their death.

The anticancer properties of terpenes have been widely 
studied in recent years [12]. Several preclinical studies have 
demonstrated the potential of terpenes as anticancer agents 
against various types of cancer, including melanoma [13]. 
In particular, the use of terpenes as adjuvant therapy in 
melanoma treatment has gained attention due to their abil-
ity to sensitize cancer cells to chemotherapeutic agents and 
reduce their toxicity [14]. This study aimed to present our 
expanding knowledge about the mechanisms of action of 

some terpenes involved in their anticancer effects on mela-
noma cells.

Melanoma is a type of skin cancer that originates in mel-
anocytes, which are pigment-producing cells located in the 
basal layer of the epidermis [15]. It is the most aggressive 
form of skin cancer, with a high potential for metastasis and 
a poor prognosis if not detected and treated in its early stages 
[16]. Melanoma accounts for only 1% of all skin cancers, 
but it is responsible for the majority of skin cancer-related 
deaths [17].

Melanoma is caused by the accumulation of genetic muta-
tions that disrupt the normal function of melanocytes and 
promote their uncontrolled proliferation [18]. Exposure to 
ultraviolet radiation from the sun or artificial sources, such 
as tanning beds, is the primary environmental risk factor for 
melanoma [19]. Other risk factors include fair skin, a history 
of sunburns, a family or personal history of melanoma, and 
certain genetic mutations [20].

The clinical presentation of melanoma varies depending 
on the location, stage, and subtype of the tumor. The most 
common presentation is a pigmented lesion on the skin that 

Fig. 1  Structural formulas of 
selected naturally occurring 
terpenes (ACD/ChemSketch 
vers. 2021.2.1 software)
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changes in size, shape, or color over time [21]. Other signs 
and symptoms may include itching, bleeding, or ulceration 
of the lesion, or the appearance of new moles or skin lesions 
[22].

Melanoma is a particularly challenging type of cancer 
to treat due to its propensity to metastasize, leading to 
poor survival rates for patients with advanced disease [23]. 
Treatment options for melanoma depend on the stage and 
location of the tumor, as well as the patient's overall health 
and preferences. Surgery is the primary treatment option 
for early-stage melanoma, while more advanced cases may 
require additional therapies, such as chemotherapy, radiation 
therapy, immunotherapy, or targeted therapy, especially, if 
melanoma metastases occur [24]. In recent years, there has 
been a growing interest in the use of natural products, such 
as terpenes, as adjuvant therapy for melanoma treatment, 
due to their potential to enhance the efficacy and reduce the 
toxicity of conventional pharmacotherapy [25, 26]. Addi-
tionally, some terpenes inhibit the growth of melanoma cells 
both in vitro and in vivo [27, 28].

One of the mechanisms by which terpenes may exert 
their anticancer effects is based on the ability of terpenes to 
modulate various signaling pathways involved in cell pro-
liferation, apoptosis, and angiogenesis. Another potential 
mechanism by which terpenes may exhibit their antican-
cer effects is based on the induction of oxidative stress and 
DNA damage in cancer cells [29]. This effect can lead to the 
activation of the cell's apoptosis machinery, resulting in the 
death of cancer cells.

Terpenes and cancer: preclinical studies

Preclinical studies have shown that terpenes can induce 
apoptosis, inhibit cell proliferation, and suppress tumor 
growth in animal models [30]. For example, β-elemene (a 
terpene found in plants such as Curcuma wenyujin) induces 
apoptosis in melanoma cells in vitro and inhibits tumor 
growth in melanoma-bearing mice in vivo [31]. Similarly, 
carvacrol (a monoterpenoid phenol found in oregano and 
thyme) inhibits the growth of melanoma cells in vitro and 
in vivo by inducing cell cycle arrest and apoptosis [32]. 
Limonene (a monocyclic monoterpene in citrus fruits) inhib-
its tumor growth and induces apoptosis in melanoma cells 
in both, in vitro and in vivo studies [33], while α-pinene (a 
terpene found in pine trees) induces apoptosis and inhibits 
cell proliferation in melanoma cells in vitro [34].

In addition to their direct anticancer effects, terpenes 
enhance the efficacy of conventional chemotherapy in pre-
clinical models. For example, β-caryophyllene (a terpene 
found in many essential oils) sensitizes melanoma cells to 
doxorubicin by inhibiting the drug efflux pump responsible 
for drug resistance [35].

Preclinical in vitro studies have demonstrated that vari-
ous terpenes, such as limonene, β-caryophyllene, and per-
illyl alcohol, can induce apoptosis, inhibit proliferation, and 
sensitize melanoma cells to conventional chemotherapy 
[12, 36]. Moreover, several terpenes have been found to 
exhibit anti-inflammatory effects, which can also contribute 
to their anticancer activity. For example, α-pinene inhib-
its the production of pro-inflammatory cytokines, such as 
TNF-α (Tumor Necrosis Factor α) and IL-6 (Interleukin 6), 
in melanoma cells [37]. In addition, β-elemene sensitizes 
melanoma cells to radiation by inhibiting the DNA dam-
age repair pathway and inducing apoptosis [38]. Limonene 
enhances radiation-induced DNA damage and cell death in 
melanoma cells [39], and sensitizes vemurafenib-resistant 
melanoma cells to the drug by downregulating the expres-
sion of the drug efflux pump ABCB1 [40]. Similarly, perillyl 
alcohol overcomes resistance to BRAF and MEK inhibitors 
in melanoma cells by inducing apoptosis and inhibiting the 
MAPK signaling pathway [41].

Accumulating evidence indicates that terpenes exert their 
anticancer effects not only on melanoma, but also on various 
human cancers. For instance, taxol (paclitaxel—a diterpene) 
exerts its anticancer effect by binding to microtubules, stabi-
lizing them, and inhibiting their depolymerization, leading 
to cell cycle arrest and apoptosis [42]. Thymoquinone (a 
monoterpenoid found in the seeds of Nigella sativa (black 
seed)), limonene, carvacrol, betulinic acid (a triterpenoid 
found in the bark of various trees) and α-bisabolol (a ses-
quiterpene alcohol found in chamomile) induce apoptosis, 
inhibit cell proliferation, and suppress angiogenesis in vari-
ous human cancers [43–52].

Mechanisms of action of terpenes in cancer 
cells

Accumulating evidence suggests that terpenes exert their 
effects through multiple molecular mechanisms, includ-
ing regulation of apoptosis, induction of autophagy, inhi-
bition of cellular signaling pathways, modulation of gene 
expression, inhibition of angiogenesis, and modulation of 
inflammation [53, 54]. More specifically, terpenes inhibit 
the expression of anti-apoptotic proteins, such as Bcl-2 and 
Bcl-xL, while upregulating pro-apoptotic proteins, such as 
Bax and caspases, which finally leads to the activation of 
the apoptotic pathway, promoting cell death [55–58]. Thy-
moquinone has shown effective results in treating melanoma 
(MDA-MB-435) by activating the intrinsic apoptosis path-
way, while suppressing Akt phosphorylation, and increasing 
the Bax/Bcl-2 ratio (Fig. 2). This mechanism contributes to 
the inhibition of cancer cell growth. The presence of highly 
expressed caspase 3 is associated with the inhibitory effect 
observed. In addition, in silico target determination has 
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indicated that thymoquinone induces DNA damage by spe-
cifically targeting histone deacetylase activity (HDAC) and 
human 15-hydroxyprostaglandin dehydrogenase (HPGD) 
[59, 60]. Betulinic acid activates the intrinsic apoptotic 
pathway and downregulates anti-apoptotic proteins [61]. 
α-Bisabolol activates the extrinsic apoptotic pathway [62]. 
The mechanism of action of ursolic acid in B16F-10 mela-
noma cells involves its inhibitory effect on cell growth by 
upregulating the expression of p53, Bax, and p21 proteins 
(Fig. 3). This upregulation leads to the activation of caspase 
3-dependent apoptosis, which ultimately results in the pro-
grammed cell death of melanoma cells [63].

Terpenes can induce autophagy, a cellular process that 
helps degrade damaged proteins and organelles, leading to 
the inhibition of tumor growth [64].

Terpenes inhibit crucial signaling pathways involved in 
cancer cell proliferation and survival. One of these is the 
PI3K/Akt/mTOR pathway, which plays a significant role in 
cell proliferation and survival. Inhibition of this pathway by 

terpenes leads to apoptosis induction and inhibition of cell 
proliferation [47, 65]. Terpenes also inhibit the MAPK/ERK 
signaling pathway, which regulates proliferation, survival, 
and cell differentiation [66].

Terpenes inhibit cell cycle progression in melanoma 
by targeting different regulators. For instance, taxol sta-
bilizes microtubules and blocks cell division, inhibiting 
cell cycle progression [67]. Carvacrol induces cell cycle 
arrest at the G0/G1 phase by downregulating cyclin D1 
and CDK4/6 [68]. Artesunate exhibits its antitumor activ-
ity in uveal melanoma cells by inhibiting the accumu-
lation of β-catenin and activating specific downstream 
genes, including c-Myc and CDK1 (Fig. 4), leading to the 
suppression of cancer cell growth and proliferation [69]. 
Lupeol demonstrated the ability to suppress the growth 
of melanoma cells (Mel-928, Mel-1241, Mel-1011) by 
interfering with the Wnt (Wingless signaling)/β-catenin 
pathway. It achieves this by effectively blocking the Wnt 
signaling pathway, a crucial pathway involved in cell 

Fig. 2  Schematic mechanisms 
involved in the anticancer effect 
of thymoquinone on melanoma 
cells (Canva for Windows)

Fig. 3  Schematic mechanisms 
involved in the anticancer effect 
of ursolic acid on melanoma 
cells (Canva for Windows)
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proliferation and survival (Fig. 5). This inhibition of the 
Wnt/β-catenin pathway contributes to the antitumor effects 
of lupeol on melanoma cells [70].

Terpenes modulate the expression of several genes 
involved in the regulation of cell growth and survival, 
including the tumor suppressor gene p53 [71]. Terpenes 
exhibit anti-angiogenic effects by suppressing the expression 
of pro-angiogenic factors, such as VEGF (vascular endothe-
lial growth factor) and bFGF (basic fibroblast growth factor). 
Inhibition of angiogenesis is critical for preventing tumor 
growth and metastasis [35, 66].

Terpenes inhibit angiogenesis in melanoma cells through 
various molecular pathways. For example, limonene down-
regulates VEGF and MMP-9 (matrix metallopeptidase 9) 
expression [72], but betulinic acid suppresses the expres-
sion of VEGF and MMP-2 (matrix metallopeptidase 2) [73], 
whereas thymoquinone downregulates HIF-1α (Hypoxia-
inducible factor 1-alpha) and VEGF [74].

Terpenes can modulate chronic inflammation in mela-
noma cells by targeting different inflammatory pathways. For 
instance, α-bisabolol inhibits the expression of TNF-α and 
IL-1β [75]. Furthermore, terpenes such as β-elemene, perillyl 
alcohol, and limonene inhibit melanoma cell proliferation and 
induce apoptosis [76–78]. They can also inhibit melanoma 
cell migration and invasion by regulating the expression of 
matrix metalloproteinases (MMPs) and tissue inhibitors of 
metalloproteinases (TIMPs) [79–81]. Additionally, certain 
terpenes can enhance the antitumor activity of conventional 
chemotherapeutic agents, such as doxorubicin, cisplatin, and 
temozolomide, through various mechanisms [82–84].

Fig. 4  Schematic mechanisms 
involved in the effect of artesu-
nate on melanoma cells (Canva 
for Windows)

Fig. 5  Schematic mechanisms 
involved in the effect of lupeol 
on melanoma cells (Canva for 
Windows)
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Advantages and limitations of using 
terpenes as anticancer agents

Terpenes have gained increasing attention as potential anti-
cancer agents due to their various pharmacological proper-
ties, including their ability to induce apoptosis, inhibit pro-
liferation, sensitize cancer cells to chemotherapy drugs, and 
overcome resistance to targeted therapies. Furthermore, ter-
penes are widely distributed in plants and are easy to extract, 
making them a relatively inexpensive source of potential 
anticancer agents.

However, the use of terpenes as anticancer agents also has 
some limitations. One of the major limitations is their low 
bioavailability, which can limit their efficacy in vivo [85]. 
Terpenes are highly hydrophobic molecules, poorly soluble 
in water, and difficult to absorb and distribute in the body. 
Several strategies have been proposed to enhance the bio-
availability of terpenes, such as encapsulation in liposomes 
or cyclodextrins [86, 87].

Another limitation of terpenes in anticancer therapy is 
their potential toxicity. Although terpenes are generally 
considered safe, some terpenes can exhibit cytotoxic effects 
on normal cells (i.e., eugenol at high concentrations) [88]. 
Therefore, it is important to carefully evaluate the safety and 
toxicity of terpenes before their clinical use.

Finally, the regulatory status of terpenes as drugs can also 
pose a challenge to their development as anticancer agents. 
Terpenes are classified as natural products and are subject to 
less stringent regulations than synthetic drugs. However, this 
can also limit their commercial potential due to the lack of 
intellectual property protection and the challenges in obtain-
ing regulatory approval [89].

Clinical studies on the use of terpenes 
for melanoma treatment

Quite recently, some clinical studies have investigated the 
efficacy of terpenes in the treatment of melanoma. For 
instance, perillyl alcohol and limonene were studied in 
phase II of clinical trials, when evaluating their safety and 
efficacy in patients with advanced melanoma. Of note, both 
terpenes (perillyl alcohol and limonene) were well-tolerated, 
with no dose-limiting toxicities observed but, no objective 
responses were observed, with a median time to progres-
sion of 2 months [46, 90]. Similarly, a phase I clinical trial 
revealed that thymoquinone was well-tolerated, with no 
dose-limiting toxicities observed. However, no objective 
responses were observed, and the median time to progres-
sion was 2 months [91].

Terpenes may have potential as adjuvants to standard 
treatments, such as chemotherapy and immunotherapy.

Potential use of terpenes in combination 
with other anticancer therapies

Combination therapy, using two or more agents with differ-
ent mechanisms of action, has become an important strategy 
in cancer treatment. In recent years, there has been increas-
ing interest in using terpenes in combination with other 
anticancer therapies to enhance their efficacy and overcome 
drug resistance. For example, β-caryophyllene enhanced the 
antitumor activity of doxorubicin in melanoma cells [92]. 
Similarly, α-humulene enhanced the antitumor activity of 
cisplatin in melanoma cells [93]. Linalool potentiated the 
antitumor activity of temozolomide in melanoma cells [94].

Immunotherapy, such as immune checkpoint inhibitors, 
has revolutionized the treatment of melanoma. However, not 
all patients respond to immunotherapy and there is a need 
to improve its efficacy. Terpenes have been shown to have 
immunomodulatory effects and may enhance the efficacy of 
immunotherapy. For example, β-caryophyllene enhanced the 
antitumor activity of anti-PD-1 immunotherapy in a mouse 
model of melanoma [95]. Similarly, β-elemene enhanced the 
antitumor activity of anti-PD-1 immunotherapy in a mouse 
model of melanoma by increasing T-cell infiltration and 
activation [96].

Radiation therapy is used in the treatment of melanoma, 
but its efficacy is limited by radiation resistance. Terpenes 
enhanced the radiosensitivity of cancer cells, potentially 
improving the efficacy of radiation therapy. For example, 
β-elemene enhanced the radiosensitivity of melanoma cells 
by inducing cell cycle arrest and apoptosis [97]. Similarly, 
thymoquinone enhanced the radiosensitivity of melanoma 
cells by inducing apoptosis and inhibiting DNA repair [98].

Targeted therapies, including BRAF and MEK inhibitors, 
have shown promise in the treatment of melanoma. How-
ever, resistance to these therapies is a major clinical prob-
lem. It has been shown that terpenes exert synergistic effects 
with targeted therapies, potentially overcoming resistance. 
For example, β-caryophyllene enhanced the antitumor activ-
ity of vemurafenib, a BRAF inhibitor, in melanoma cells 
[99]. Similarly, α-humulene enhanced the antitumor activity 
of trametinib, a MEK inhibitor, in melanoma cells [100].

Future directions for research on terpenes 
and melanoma treatment

There is growing interest in the potential use of terpenes for 
the treatment of melanoma, and future research in this area is 
likely to focus on several key areas. In in vivo melanoma mod-
els, terpenoids have shown the ability to increase the median 
overall survival time of animals with tumors, reduce tumor 
volume, decrease the expression of metastasis-associated 



1121Anticancer effect of terpenes: focus on malignant melanoma  

1 3

chemokines and receptors, as well as lymph node metasta-
sis, decrease the number and size of metastatic foci, alter the 
tumor microenvironment and the surrounding adipose tissue of 
lymph nodes and inhibit angiogenesis. Notably, plant-derived 
terpenoids generally exhibit lower-to-no toxicity towards non-
cancerous cells or even enhance their photoprotection [57]. 
Further preclinical and clinical studies are needed to fully 
evaluate the safety and efficacy of terpenes in combination 
with other therapies for the treatment of melanoma. Although 
early studies have shown promising results, more extensive 
research is needed to establish the optimal doses, treatment 
regimens, and potential side effects of terpene-based thera-
pies [98, 101–103]. One key advantage they possess over tra-
ditional chemotherapeutic agents is their lower cytotoxicity. 
Research conducted over the past eight years has revealed 
several effects of plant terpenoids on in vitro melanoma mod-
els. These include: demonstrating dose-dependent cytotoxic-
ity, inducing apoptosis, necrosis, or autophagy, triggering the 
increased generation of reactive oxygen species, oxidative 
stress, and disruption of mitochondrial membrane potential, 
reducing oxygen consumption rate, extracellular acidification 
rate, oxidative phosphorylation, and the maximal respiratory 
capacity of the electron transport system, inducing endoplas-
mic reticulum stress, causing cell cycle arrest, inducing DNA 
damage, decreasing the expression and activity of proteins 
involved in melanogenesis, interfering with cell signaling 
pathways responsible for cell growth, proliferation, migration, 
adhesion, and invasion, reducing the expression of angiogene-
sis-related cytokines, inhibiting epithelial-mesenchymal transi-
tion, exhibiting radio- and photosensitization properties and 
displaying synergistic effects with other natural compounds 
or chemotherapeutics [57].

Despite the numbers of experiments, there is a need to 
explore the mechanisms underlying the effects of each ter-
pene on melanoma cells. Further research in this area could 
provide valuable insights into the potential therapeutic appli-
cations of terpenes [98, 101–103]. There is a need to inves-
tigate the potential use of terpenes as adjuvant therapies in 
combination with immunotherapy. Terpenes may modulate 
immune responses and may therefore have the potential to 
enhance the effectiveness of immunotherapy for melanoma 
[104, 105]. Additionally, there is a need to explore the poten-
tial use of terpenes as chemopreventive agents for mela-
noma. Future research could investigate the potential use of 
these compounds for the prevention of melanoma [25, 106].

Conclusions

In recent years, there has been increasing interest in using 
terpenes in combination with other anticancer therapies to 
enhance their efficacy and overcome drug resistance. In com-
bination with chemotherapy, β-caryophyllene, α-humulene, 

and linalool enhance the efficacy of chemotherapy agents in 
melanoma cells. Terpenes due to their immunomodulatory 
effects may enhance the efficacy of immunotherapy, espe-
cially, β-caryophyllene and β-elemene, which enhanced the 
antitumor activity of anti-PD-1 immunotherapy in mouse 
models of melanoma. In combination with radiation therapy, 
β-elemene, and thymoquinone may enhance the radiosensi-
tivity of melanoma cells. Given the efficacy of terpenoids, 
future research must focus on conducting thorough pre-
clinical evaluations of toxicity, bioavailability, pharmaco-
dynamics, biomarkers, and comprehensive investigations 
into tumor suppression. Future studies are likely to focus on 
exploring the optimal use of terpenes in combination with 
other therapies, investigating the underlying mechanisms of 
their effects on melanoma cells, and exploring their potential 
use as adjuvant therapies or chemopreventive agents.
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