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Abstract
Background  Guanfacine (an alpha-2A receptor agonist) is a commonly used drug with recognized efficacy in the treatment 
of attention deficit hyperactivity disorder (ADHD). This study aimed to assess the effects of guanfacine on short-lasting 
(interictal) epileptiform discharges in cortical neurons. Moreover, we assessed the effects of guanfacine on voltage-gated 
sodium currents.
Methods  We conducted patch-clamp recordings in prefrontal cortex pyramidal neurons obtained from young rats. Interictal 
epileptiform events were evoked in cortical slices in a zero magnesium proepileptic extracellular solution with an elevated 
concentration of potassium ions.
Results  Interictal epileptiform discharges were spontaneous depolarisations, which triggered action potentials. Guanfacine 
(10 and 100 µM) inhibited the frequency of epileptiform discharges. The effect of guanfacine on interictal events persisted 
in the presence of alpha-2 adrenergic receptor antagonist idazoxan. The tested drug inhibited neuronal excitability. Tonic 
NMDA currents were not influenced by guanfacine. Recordings from dispersed neurons showed that the tested drug (10 and 
100 µM) inhibited persistent and fast inactivating voltage-gated sodium currents.
Conclusions  This study shows that guanfacine inhibits interictal discharges in cortical neurons independently of alpha-2A 
adrenergic receptors. This effect may be mediated by voltage-gated sodium currents. Inhibition of interictal activity by 
guanfacine may be of clinical importance because interictal events often occur in patients with ADHD and may contribute 
to symptoms of this disease.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is described 
as a persistent pattern of inattention and/or hyperactivity-
impulsivity that interferes with functioning or development 
[1]. Emerging evidence points to the involvement of the 
prefrontal cortex (PFC) in the pathogenesis of ADHD [2]. 
One study showed that children with ADHD present with 
a slowed or impaired development of the right lateral PFC 
[3]. Other authors have described a smaller volume of grey 

matter in the PFC of boys with ADHD as compared to age-
matched controls [4]. Consequently, the PFC is a target for 
ADHD medications [5]

Guanfacine, an alpha-2A-adrenergic receptor agonist, is 
an approved medication for ADHD, both in adults and chil-
dren [6]. It has been shown that guanfacine and other ADHD 
medications such as methylphenidate improve cognitive 
functions which are impaired in ADHD [5, 6]. In the PFC, 
guanfacine enhances cognition by stimulating post-synaptic 
alpha-2A-adrenergic receptors located in pyramidal neurons. 
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This leads to the inhibition of nearby cAMP-dependent K+ 
channels, which strengthens network connectivity and work-
ing memory [6]. Besides ADHD, guanfacine has been used 
“off-label” in several other conditions associated with pre-
frontal cortex pathology, such as autism spectrum disorders 
(ASD), schizophrenia, substance abuse, and post-traumatic 
stress disorder [6].

Several reports have linked epileptic seizures with a 
decline in cognitive performance, which is also a feature 
of attention and social disorders [7, 8]. Less attention has 
been focused on interictal epileptiform discharges (IEDs) 
or subclinical epileptiform activity which occurs in epileptic 
patients between seizures [7, 9]. These types of epileptiform 
events may also be present in patients without seizures [10]. 
Interictal epileptiform discharges are a relatively common 
finding in patients diagnosed with ADHD and are presumed 
to have a causal relationship with the symptoms of the dis-
ease [10–15]. Cognitive impairment is a common symptom 
of ADHD. From a pathophysiological standpoint, increased 
excitability associated with IEDs may hinder cognition 
through calcium excitotoxicity, remodeling of neuronal cir-
cuitry, or disruption of sleep-related memory consolidation 
processes [7] There have been reports suggesting that target-
ing epileptiform activity may alleviate cognitive problems 
[7, 11, 12].

Our previous publication showed that a common anti-
epileptic drug—valproate, a sodium channel blocker and 
a GABA receptor agonist, inhibits interictal activity in the 
prefrontal cortex [16]. In the current report, we aimed to 
assess the effect of guanfacine on interictal activity in the 
rat’s prefrontal cortex in vitro. Furthermore, we sought to 
investigate the mechanism of this effect.

Materials and methods

The experimental procedures used in this study adhered to 
the Polish and international guidelines on the ethical use of 
animals (Directive 2010/63/EU, Polish Legislation for the 
protection of animals used for scientific or educational pur-
poses 2015). Male Wistar Rats (3 week-old) were purchased 
from the Medical University of Warsaw animal house. The 
total number of animals used in this study was 20. Rats were 
bred at room temperature (3 rats per cage, 12 h/12 h light/
dark cycle) and fed with a standard laboratory chow. After 
decapitation, the brain was gently removed. Decapitation 
was the only procedure performed on animals in this study. 
Slices (300 µM) of the prefrontal cortex were prepared 
exactly the same way as shown in our previous publication 
[16]. After cutting, slices were incubated in a physiologi-
cal artificial cerebrospinal fluid (ACSF) of the following 
composition (in mM): NaCl (130), KCl (2.5), glucose (10), 
NaHCO3 (25), NaH2PO4 (1.25), MgCl2 (1), and CaCl2 (2), 

pH = 7.4, bubbled with carbogen. For the experiments in 
slices this solution was heated to 32 °C for the first 20 min 
of incubation and after that was maintained at room tempera-
ture. For the recordings from dispersed neurons, the incu-
bating solution was maintained at room temperature for the 
duration of the experiment (6–8 h).

Recordings in slices

Recordings were made from layer V pyramidal neurons in 
slices of the medial prefrontal cortex.

Action potentials and IEDs were recorded in the current-
clamp configuration. Action potentials were evoked once 
every 60 s by 250 pA rectangular current steps lasting 3 s 
in physiological ACSF (see above). Interictal epileptiform 
discharges (IEDs) were recorded in zero magnesium/5 mM 
potassium proepileptic extracellular solution which con-
tained (in mM): NaCl (130), KCl (5), glucose (10), NaHCO3 
(25), NaH2PO4 (1.25), and CaCl2 (2), pH = 7.4, bubbled 
with carbogen. IEDs were spontaneous discharges and were 
recorded in membrane potential recording mode.

Tonic NMDA currents were recorded in the voltage-
clamp configuration in zero magnesium extracellular solu-
tion which contained (in mM): NaCl (130), KCl (2.5), glu-
cose (10), NaHCO3 (25), NaH2PO4 (1.25), and CaCl2 (2), 
glycine (0.05), pH = 7.4, bubbled with carbogen. Magnesium 
ions were omitted and glycine was added to facilitate NMDA 
receptors. Moreover, this solution contained, tetrodotoxin 
(TTX) 0.25 µM, DNQX (6,7-Dinitroquinoxaline-2,3-dione) 
10 µM and picrotoxin 50 µM to block synaptic transmission. 
NMDA 2 µM was applied to the bath. After stable NMDA 
current was evoked, NMDA 2 µM and guanfacine 100 µM 
were coapplied (see results).

For all slice recordings, the intracellular solution in the 
patch pipette was composed of (in mM): potassium-glu-
conate (105), KCl (20), HEPES-Na + (10), EGTA (0, 1), 
MgATP (4), GTP (0.5), pH = 7.4. Neurons were visualized 
in DIC optics. Slice recording techniques were the same as 
in our previous study [16]. Positive pressure was applied to 
the pipette tip to blow away extracellular debris. After gigas-
eal formation, the patch membrane was ruptured. Recordings 
were made using a Multiclamp 700A amplifier and analyzed 
with pClamp software (Axon Instruments, USA). Patch-
pipettes had resistances between 4 and 5 MΩ. Recordings 
were obtained at 35 °C. Guanfacine was applied to the bath.

Recordings in dispersed neurons

Sections of slices containing the prefrontal cortex were 
enzymatically dispersed using protease type XIV (0.5 mg/
ml) and mechanically dispersed using Pasteur pipettes 
exactly the same way as in our previous publication [17]. 
Dispersed neurons were transferred to a recording chamber. 
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Recordings were made from pyramidal neurons which were 
visualized under an inverted microscope.

Persistent voltage-gated sodium currents were recorded 
in an external solution that contained the following (in mM): 
NaCl (120), CaCl2 (2), MgCl2 (2), TEA-Cl (30), 4-AP (3), 
HEPES (10), glucose (15), CdCl2 (0.4), LaCl3 (0.005), 
pH 7.4. Fast activating and fast inactivating voltage-gated 
sodium currents were recorded in an external solution of the 
following composition (in mM): NaCl (30), choline chlo-
ride (90), TEA-Cl (30), CaCl2 (2), MgCl2 (2), glucose (15), 
HEPES (10), CdCl2 (0.4) and LaCl3 (0.005), at pH 7.4. Volt-
age-gated calcium currents were blocked by cadmium and 
lanthanum ions in the extracellular solution. Voltage-gated 
potassium currents were blocked by TEA-CL in the extracel-
lular solution. Moreover, potassium ions were absent in the 
intracellular solution. The pipette (intracellular) solution was 
the same for fast and persistent sodium currents and con-
tained the following (in mM): CsF (110), NaCl (7), EGTA 
(3), HEPES-Cl (10), MgCl2 (2), Na2ATP (4), pH was 7.4.

Recording techniques were exactly the same as in our 
previous study [17]. After gigaseal formation, the mem-
brane was ruptured. The access resistance ranged from 5 
to 7 MΩ. A series resistance compensation of 80% was 
applied. The currents were leak subtracted. All recordings 
were performed at room temperature (21–22 °C). Currents 

were recorded using an Axopatch 1D amplifier and analyzed 
with pClamp software (Axon Instruments, USA). Guanfa-
cine was applied to the bath.

Guanfacine was purchased from Sigma-Aldrich (product 
number G1043). DNQX, picrotoxin NMDA and idazoxan 
were also purchased from Sigma-Aldrich (product numbers 
D0540, P1675, M3262 and I6138, respectively). Tetrodo-
toxin (TTX) was purchased from Abcam (product number 
ab120055). Other chemical compounds were purchased 
from Polskie Odczynniki Chemiczne Avantor or from 
Sigma-Aldrich.

Statistical analysis

Normally distributed values are presented as means ± SEM, 
whereas non-normally distributed values are as medians 
[IQR]. Differences between more than two groups were 
evaluated using one-way ANOVA for repeated measures 
followed by the Tukey post hoc test if the data passed the 
normality test. If the data did not pass the normality test 
nonparametric equivalent of one-way ANOVA for repeated 
measures (Friedman’s test) followed by  Dunn’s post hoc 
test was used. Depending on the results of the normality 
test, the Students t  test or Wilcoxon matched-pairs test 
were used to evaluate differences between the two groups. 

Fig. 1   Induction of interictal epileptiform events (IEDs) in prefrontal 
cortex pyramidal neurons. A IEDs were induced in a zero magnesium 
and high potassium proepileptic extracellular solution as shown by a 
dashed line. The membrane potential was initially recorded in physi-
ological artificial cerebrospinal fluid, as shown by the grey dashed 

arrow. Application of the proepileptic extracellular solution depolar-
ized the membrane potential because of an increased potassium ions 
concentration, as shown by the black solid arrow. B Two IEDs are 
shown on an expanded time scale. The same vertical scale is used for 
(A) and (B)
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Kolmogorov–Smirnov test was used to assess normality 
(GraphPad InStat software v3.06).

Results

Induction of interictal epileptiform events in PFC 
pyramidal neurons

Interictal epileptiform discharges (IEDs) were evoked in 
a zero magnesium, high potassium proepileptic extracel-
lular solution similar to our previous study [16]. Firstly, 
the membrane potential was stabilized in a physiological 

ACSF for a few minutes. After switching to the proepilep-
tic solution, the membrane potential depolarised because 
of increased potassium ions concentration (− 66.6 ± 2.3 mV 
and − 59.8 ± 3.2 mV in a physiological and proepileptic solu-
tion, respectively, n = 6 recordings, the paired Students t test, 
p = 0.0362, t5 = 2.8, as shown by the black solid arrow in 
Fig. 1A). After 10–30 min of applying the zero magnesium, 
high potassium proepileptic extracellular solution, IEDs 
were evoked which were brief depolarisations capped by 
action potentials (Fig. 1A and B). The events lasted less than 
2 s [9, 16]. Two single epileptiform events are shown on an 
expanded time scale in Fig. 1B.

Fig. 2   Guanfacine inhibits interictal epileptiform events (IEDs) in 
prefrontal cortex pyramidal neurons. Aa Original recordings of IEDs 
in control, in the presence of guanfacine 100 µM and after wash-out. 
Ab Normalized frequency of IEDs in the control and in the presence 
of guanfacine: 10  µM (paired t test [control vs drug application], 
p < 0.05) and 100 µM (one-way ANOVA for repeated measures [con-
trol, drug application, wash-out], p < 0.0001, followed by Tukey’s 
post hoc test [control vs drug application], p < 0.001). Bars represent 
means and whiskers represent SEM. *p < 0.05 and **p < 0.001. Ba 

Original recordings of IEDs in the control and after application of 
guanfacine 100 µM (alpha-2 adrenergic receptor antagonist idazoxan 
20  µM was present in all extracellular solutions). Bb Normalized 
frequency of IEDs in the control and in the presence of guanfacine. 
Idazoxan was present in all extracellular solutions (Friedman’s test 
[control, drug application, wash-out], p = 0.0046, followed by Dunn’s 
post hoc test [control vs drug application], p < 0.05). Inset in (Aa) 
applies to (Ba). Bars represent medians and whiskers represent IQR. 
*p < 0.05
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Guanfacine inhibits interictal epileptiform events 
in PFC pyramidal neurons

After a steady control frequency of the IEDs was recorded, 
the influence of guanfacine on the membrane potential and 
the frequency of interictal events were assessed. Guanfacine 
was applied for 7–10 min. The tested compound (100 μM) 
did not change the membrane potential (− 58.8 ± 2.3 mV in 
the control and − 59.7 ± 2.7 mV after the application of the 
drug, n = 5 recordings, the paired Students t test, p > 0.05, 
t4 = 1.04).

The control frequency of the IEDs was 0.12 ± 0.02 Hz 
(n = 15). Guanfacine inhibited the frequency of the IEDs. 
Example recordings are shown in Fig. 2Aa. The normal-
ized frequency of the IEDs was 1.0 ± 0.0 in the control, 
0.08 ± 0.04 in the presence of guanfacine (100 μM), and 
0.33 ± 0.04 after wash-out (3 animals, n = 6 recordings, 
one-way ANOVA for repeated measures, F3,17 = 324.72 
(p < 0.0001) followed by Tukey’s post hoc test (p < 0.001 
control vs guanfacine), Fig. 2Ab). As expected, a lower con-
centration of guanfacine (10 μM) inhibited the normalized 
frequency of the IEDs to a smaller extent (1.0 ± 0.0 in the 
control compared to 0.69 ± 0.05 after the application of the 
drug, n = 5 recordings, 2 animals, the paired Students t test, 
p = 0.0042, t4 = 5.9, Fig. 2Ab).

The most commonly described mechanism of action 
of guanfacine is the stimulation of alpha-2A adrenergic 
receptors [18]. For this reason, we assessed the influence 

of guanfacine 100 μM on the frequency of IEDs in the con-
stant presence of the alpha-2 adrenergic receptor antago-
nist idazoxan in all extracellular solutions. With idazoxan 
(20 μM) in the bath, guanfacine 100 μM inhibited the fre-
quency of the IEDs to the same extent as without idazoxan 
in the bath (see above). Example recordings are shown in 
Fig. 2Ba and normalized results are shown as medians in 
Fig. 2Bb 1.0 [1.0–1.0] in the control, 0.06 [0.00–0.11] after 
the application of guanfacine 100 μM and 0.36 [0.26–0.52]) 
after wash-out, 2 animals, n = 4 recordings, nonparametric 
repeated measures ANOVA (Friedman’s test), Friedman’s 
statistic = 8, p = 0.0046 followed by Dunn’s post hoc test 
(p < 0.05, control vs guanfacine)). Thus, the effect of guan-
facine on IEDs in PFC pyramidal neurons is independent of 
alpha-2A adrenergic receptors.

Guanfacine inhibits neuronal excitability 
and voltage‑gated sodium currents in PFC 
pyramidal neurons

In the next series of experiments, we recorded action poten-
tials in PFC pyramidal neurons in physiological ACSF. 
Excitability was defined as the number of action potentials 
per depolarisation step lasting 3 s. We found that guanfacine 
100 μM inhibited neuronal excitability (29.0 [26.5–32.3] in 
the control, 14.0 [8.0–19.0] in the presence of the tested drug 
and 27.0 [24.5–30.5] after wash-out, 2 animals, n = 4 record-
ings, nonparametric repeated measures ANOVA (Friedman’s 

Fig. 3   Guanfacine inhibits neuronal excitability in prefrontal cortex 
pyramidal neurons. Aa Example recordings of action potentials in 
the control, in the presence of guanfacine 100 µM and after wash-out. 
Ab Excitability (number of action potentials per current step) in the 

control, after application of the tested drug and after wash-out (Fried-
man’s test [control, drug application, wash-out], p = 0.0046, followed 
by Dunn’s post hoc test [control vs drug application], p < 0.05). Bars 
represent medians and whiskers represent IQR. *p < 0.05
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test), Friedman’s statistic = 8, p = 0.0046 followed by Dunn’s 
post hoc test (p < 0.05, control vs guanfacine)). Example 
recordings and averaged results are shown in Fig. 3Aa and 
b, respectively.

We hypothesized that guanfacine may inhibit persistent 
sodium currents because it has been found that the inhibi-
tion of these currents substantially contributes to decreasing 

excitability in central neurons [19]. Persistent voltage-gated 
sodium currents were evoked once every 20 s by short ramp 
depolarisations from − 65 mV to 10 mV lasting 100 ms. 
Control recordings were conducted for 2 min, guanfacine 
was applied for 3 min and after that wash-out was recorded. 
A dose-dependent effect was observed. A higher concentra-
tion of the tested drug (100 μM) inhibited persistent sodium 
currents (example recordings are shown in Fig.  4Aa). 

Fig. 4   Guanfacine blocks persistent and fast inactivating sodium cur-
rents in prefrontal cortex pyramidal neurons. Aa Example recordings 
of slowly inactivating (persistent) sodium currents in the control, in 
the presence of guanfacine 100  µM and after wash-out. Persistent 
sodium currents were evoked by ramp depolarizations shown above 
current traces. Ab Normalized maximal persistent sodium current 
amplitudes in the control and after application of two concentrations 
of guanfacine: 10  µM (Friedman’s test [control, drug application, 
wash-out], p = 0.0046, followed by Dunn’s post hoc test [control vs 
drug application], p < 0.05, bars represent medians and whiskers rep-
resent IQR) and 100  µM (One-way ANOVA for repeated measures 
[control, drug application, wash-out], p < 0.0001, followed by Tukey’s 
post hoc test [control vs drug application], p < 0.001, bars represent 
means and whiskers represent SEM). *p < 0.05 and **p < 0.001. Ba 

Example recordings of fast inactivating (transient) sodium currents in 
the control, after application of guanfacine 100 µM and after wash-
out. Sodium currents were evoked by rectangular voltage steps shown 
above current traces. Bb Normalized maximal transient sodium cur-
rent amplitudes in the control and after application of two concentra-
tions of guanfacine: 10  µM (Friedman’s test [control, drug applica-
tion, wash-out], p = 0.0046, followed by Dunn’s post hoc test [control 
vs drug application], p < 0.05, bars represent medians and whiskers 
represent IQR) and 100  µM (One-way ANOVA for repeated meas-
ures, [control, drug application, wash-out] p < 0.0001, followed 
by Tukey’s post hoc test [control vs drug application], p < 0.001, 
bars represent means and whiskers represent SEM). *p < 0.05 and 
**p < 0.001
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Normalized, maximal current amplitudes were 1.0 in the 
control, 0.17 ± 0.04 in the presence of guanfacine 100 μM 
and 0.66 ± 0.08 after wash-out (3 animals, n = 7 recordings, 
one-way ANOVA for repeated measures, F3,20 = 119.44 
(p < 0.0001) followed by Tukey’s post hoc test (p < 0.001 
control vs guanfacine)). Furthermore, normalized maximal 
current amplitudes were 1.0 [1.0–1.0], 0.62 [0.51–65] and 
0.78 [0.55–0.82] in the control, after the application of guan-
facine 10 μM and after wash-out, respectively (2 animals, 
n = 4 recordings, nonparametric repeated measures ANOVA 
(Friedman’s test), Friedman’s statistic = 8, p = 0.0046 fol-
lowed by Dunn’s post hoc test (p < 0.05, control vs guan-
facine)). Normalized results are depicted as medians in 
Fig. 4Ab.

In the next series of experiments, the influence of 
guanfacine on fast-activating and fast-inactivating volt-
age-gated sodium channels was tested. The currents 
were evoked once every 10 s by rectangular voltage steps 
to − 10 mV. Control recordings were conducted for 2 min, 
the tested drug was applied for 2 min and after that wash-
out was recorded. Example recordings of fast inactivating 
sodium currents are shown in Fig. 4Ba. After the appli-
cation of guanfacine 100 μM, the maximal, normalized 
sodium current amplitude was 0.38 ± 0.08 as compared to 
control 1.0 (Fig. 4Bb). It was possible to obtain wash-out 
(0.73 ± 0.08, 2 animals, n = 5 recordings, one-way ANOVA 
for repeated measures, F3,14 = 40.95 (p < 0.0001) followed 
by Tukey’s post hoc test (p < 0.001 control vs guanfacine)). 

A lower concentration of guanfacine (10 μM) was also 
tested and the maximal, normalized sodium current ampli-
tudes were 1.0 [1.0–1.0] in the control, 0.53 [0.52–0.59] 
after application of the tested drug and 0.66 [0.64–0.71] 
after wash-out (2 animals, n = 4 recordings, nonparamet-
ric repeated measures ANOVA (Friedman’s test), Fried-
man’s statistic = 8, p = 0.0046 followed by Dunn’s post hoc 
test (p < 0.05, control vs guanfacine), Fig. 4Bb). We also 
assessed the time-dependent inactivation of fast voltage-
gated sodium currents. Tau constants of time-dependent 
inactivation were not significantly different in control and 
in the presence of guanfacine 100 µM (1.6 ± 0.12 ms and 
1.74 ± 0.22 ms, respectively, n = 4 recordings, paired t test 
p > 0.05, t3 = 0.6).

Guanfacine does not influence tonic NMDA currents 
in PFC pyramidal neurons

Recordings were conducted in an extracellular solution that 
contained no magnesium ions, glycine 50 µM, TTX 0.25 µM, 
DNQX 10 µM and picrotoxin 50 µM (see Methods). NMDA 
2 µM without guanfacine was applied for 8–10 min. After 
evoking stable NMDA currents, NMDA 2 µM and guanfa-
cine 100 µM were coapplied for 7 min. The amplitude of 
the control NMDA currents was 127.0 [99.3–146.3] pA, as 
shown by the left grey arrow in Fig. 5Aa. The amplitude 
of the NMDA currents after the application of guanfacine 
100 µM was 139.5 [117.0 -162.0] pA as shown by the right 

Fig. 5   Guanfacine does not influence tonic NMDA currents. Aa 
Example recording of NMDA current evoked by application of 
NMDA 2  µM to the whole bath. Dashed lines indicate control cur-
rent and current after application of NMDA 2 µM. Left vertical arrow 
indicates the NMDA current before the application of guanfacine and 

the right vertical arrow indicates the NMDA current after the applica-
tion of guanfacine 100  µM. Ab NMDA current without guanfacine 
and NMDA current after application of guanfacine 100 µM (Wilcox-
on’s matched-pairs test [control vs drug application], p > 0.05). Bars 
represent medians and whiskers represent IQR. ns nonsignificant
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grey arrow in Fig. 5Aa, which was not significantly different 
from the control NMDA currents (Fig. 5Ab n= 4 recordings, 
2 animals, Wilcoxon’s matched-pairs test, p > 0.05). It was 
shown in our previous study [20] that tonic NMDA currents 
were fully inhibited by a selective NMDA inhibitor, AP-5.

Discussion

The epileptiform discharges recorded in this study may be 
regarded as interictal events because of their short duration 
(less than 2 s) [9]. They do not cause seizures but are often 
recorded in EEG between seizures in epilepsy patients [9]. 
They can also be present in non-epileptic patients with dif-
ferent neuropsychiatric disorders [7, 10, 13–15].

In this study, IEDs were recorded with the use of the 
patch-clamp technique in PFC pyramidal neurons in a zero 
magnesium, elevated potassium pro-epileptic solution. 
Such composition of the extracellular solution enhances the 
effects of glutamate on NMDA receptors/channels because 
magnesium ions are removed from the NMDA channels 
pore. Furthermore, more glutamate is released from pre-
synaptic terminals in the presence of increased potassium 
concentration because presynaptic axons are depolarized. 
Thus, the zero magnesium, elevated potassium extracellular 
solution increases the glutaminergic transmission that gener-
ates IEDs [16, 21].

We found that guanfacine blocks IEDs. The tested drug, 
however, did not exert this effect via the inhibition of glu-
taminergic NMDA receptors/channels, because we showed 
that they were not influenced by guanfacine. We recorded 
both synaptic and extra-synaptic NMDA currents simultane-
ously since the recordings were made from the whole plasma 
membrane, and NMDA was applied to the whole bath [22].

Glutamate release is caused by the opening of presyn-
aptic voltage-gated sodium and calcium channels [23, 24]. 
Consequently, guanfacine may inhibit IEDs by targeting pre-
synaptic voltage-gated sodium and calcium channels, thus 
lowering increased glutamate release, which generates IEDs. 
Additionally, guanfacine may block IEDs by suppressing 
postsynaptic sodium and calcium channels, as they were also 
reported to be involved in the generation of IEDs [25, 26]. 
There are two types of voltage-gated sodium currents: fast 
inactivating (transient) and slowly inactivating (persistent) 
sodium currents [19]. In this study, we recorded both fast 
and persistent voltage-gated sodium channels from dispersed 
PFC pyramidal neurons and found that guanfacine inhibits 
these channels, which may substantially contribute to the 
blocking of IEDs by the tested drug.

Few reports assess guanfacine’s influence on the elec-
trophysiological properties of neurons. It was found that 
guanfacine suppressed excitatory postsynaptic currents in 

PFC pyramidal neurons [18, 27]. Similarly, in vivo experi-
ments showed that the application of guanfacine reduced 
field excitatory post-synaptic potentials in PFC neurons 
[18]. The reports cited above suggest that guanfacine inhib-
its glutaminergic transmission in PFC neurons via the α2A 
adrenergic receptors [18, 27]. The authors hypothesized 
that this mechanism may improve PFC functioning (work-
ing memory) during excessive stress. Different authors 
performed in-vivo experiments and found that guanfacine 
improved working memory by enhancing neuronal activity 
in the PFC during the delay period of a working memory 
task [28]. This effect was also abolished by the alpha-2 adr-
energic receptor antagonist. The authors suggested that this 
mechanism may explain guanfacine’s beneficial effects in 
treating ADHD [28].

As stated above guanfacine enhances neuronal activity 
in the PFC during the delay period of a working memory 
task via alpha-2 adrenergic receptors [28]. It may be argued 
that mentioned result contradicts our study that shows that 
guanfacine inhibits neuronal excitability and IEDs via direct 
inhibition of sodium channels. It may, however, be hypoth-
esized that a lower concentration of guanfacine may enhance 
neuronal activity via alpha-2 adrenergic receptors as shown 
previously [28] and a higher concentration of the tested drug 
may inhibit sodium channels and consequently block IEDs 
and neuronal excitability, as shown in the present study. The 
concentrations of guanfacine that we used were 10 µM and 
100 µM and were higher than the therapeutic plasma con-
centration of guanfacine [29]. They were, however, similar 
to previous patch-clamp studies [18, 30, 31].

The most commonly described mechanism of action of 
guanfacine is stimulating G-protein-coupled alpha-2A adr-
energic receptors [18, 27, 28]. Guanfacine, however, may 
also have other, alpha-2 adrenergic receptor-independent 
mechanisms of action. In other words, guanfacine may 
influence ionic channels either directly or via G-protein-
coupled alpha-2 adrenergic receptors. We hypothesize that 
in our experiments, the effects of guanfacine were medi-
ated via direct action on ionic channels due to the fol-
lowing reasons. Firstly, our experiments in slices showed 
that the tested drug inhibited IEDs in the presence of the 
selective alpha-2 adrenergic receptor antagonist. Secondly, 
in our experiments in dispersed neurons, guanfacine most 
likely directly inhibited sodium channels since fluoride 
ions in the patch pipette disrupted G-protein-mediated 
signalling [32]. The important finding of this study is that 
guanfacine may act not only by stimulating alpha-2A adr-
energic receptors but also by an additional mechanism, 
which is the direct inhibition of sodium channels. Interest-
ingly, the chemical structure of guanfacine, with an aro-
matic ring linked to an amine group by an amide bond, 
resembles local anaesthetics (sodium channel inhibitors). 
This strengthens our hypothesis that guanfacine directly 
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influences sodium channels. There are reports showing 
that other alpha-2 adrenergic receptor agonists such as 
clonidine and dexmedetomidine block sodium channels 
in peripheral neurons and in cell lines in an adrenergic 
receptor-independent fashion [33–35].

IEDs occur more often in patients with ADHD and may 
contribute to symptoms of this disease [10–15]. There are 
clinical studies suggesting that antiepileptic drugs (sodium 
and calcium channel inhibitors) reduce ADHD symptoms. 
For example, it was found that the calcium channel inhibi-
tor levetiracetam inhibits IEDs and reduces symptoms of 
ADHD in children suffering from this disease [11, 12]. 
Another study showed that sodium channel inhibitor lamo-
trigine decreases ADHD symptoms in epileptic patients 
with ADHD. This effect correlated with EEG normaliza-
tion and a reduction of epilepsy symptoms [36]. It was also 
found that sodium channel inhibitor carbamazepine inhib-
its IEDs in children with ADHD. This effect correlated 
with clinical improvement [37]. It could be speculated that 
in some patients guanfacine may reduce ADHD symptoms 
by inhibiting interictal epileptic events. Thus, guanfacine 
may exert beneficial effects in ADHD not only by stimulat-
ing alpha-2 adrenergic receptors as shown previously [6] 
but also in an additional mechanism which is the inhibition 
of sodium channels and consequently inhibition of IEDs.

This study shows that guanfacine inhibits IEDs in 
prefrontal cortex pyramidal neurons independently of 
alpha-2A adrenergic receptors. Sodium channel blockade 
by guanfacine is likely involved in this effect. This novel 
mechanism may be important clinically as inhibition of 
IEDs by guanfacine may reduce symptoms of ADHD.
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