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Abstract
Background Long-term cocaine exposure leads to dysregulation of the reward system and initiates processes that ultimately 
weaken its rewarding effects. Here, we studied the influence of an escalating-dose cocaine regimen on drug-associated 
appetitive behavior after a withdrawal period, along with corresponding molecular changes in plasma and the prefrontal 
cortex (PFC).
Methods We applied a 5 day escalating-dose cocaine regimen in rats. We assessed anxiety-like behavior at the beginning 
of the withdrawal period in the elevated plus maze (EPM) test. The reinforcement properties of cocaine were evaluated in 
the Conditioned Place Preference (CPP) test along with ultrasonic vocalization (USV) in the appetitive range in a drug-
associated context. We assessed corticosterone, proopiomelanocortin (POMC), β-endorphin, CART 55–102 levels in plasma 
(by ELISA), along with mRNA levels for D2 dopaminergic receptor (D2R), κ-receptor (KOR), orexin 1 receptor (OX1R), 
CART 55–102, and potential markers of cocaine abuse: miRNA-124 and miRNA-137 levels in the PFC (by PCR).
Results Rats subjected to the escalating-dose cocaine binge regimen spent less time in the cocaine-paired compartment, and 
presented a lower number of appetitive USV episodes. These changes were accompanied by a decrease in corticosterone and 
CART levels, an increase in POMC and β-endorphin levels in plasma, and an increase in the mRNA for D2R and miRNA-
124 levels, but a decrease in the mRNA levels for KOR, OX1R, and CART 55–102 in the PFC.
Conclusions The presented data reflect a part of a bigger picture of a multilevel interplay between neurotransmitter systems 
and neuromodulators underlying processes associated with cocaine abuse.
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NAc  Nucleus accumbens
OX1R  Orexin 1 receptor
PARP-1  Poly [ADP-ribose] polymerase 1
PFC  Prefrontal cortex
POMC  Proopiomelanocortin
USV  Ultrasonic vocalization
VTA  Ventral tegmental area
miRNA  MicroRNA

Introduction

A common symptom in cocaine addicts is impairment of 
reward anticipation. We know so far that long-term dose-
escalating psychostimulant (cocaine) administration leads 
to dysregulation of the reward system and initiates processes 
that ultimately result in the weakening of the dopaminergic 
signal reflected by a decrease in the rewarding effect of a 
drug [1–7]. This phenomenon may lead to increased drug 
consumption, compulsive drug-seeking, and loss of control 
over drug use despite its adverse consequences [8, 9].

Cortical regions are implicated in the control of reward-
seeking behavior and reinforcement mechanisms associated 
with cue-potentiated behavior [10–16]. The bidirectional 
regulation occurs between the ventral tegmental area (VTA) 
dopaminergic neurons and its target, the medial prefrontal 
cortex (mPFC), playing an essential role in control over 
reward system activity [9, 17, 18].

Dysregulation of the hypothalamic–pituitary–adrenal 
(HPA) axis is also supposed to contribute to craving and 
early relapse-associated processes [19, 20]. A lot of research 
points to the role of neuromodulators related to the HPA axis 
and hypothalamic peptides, the cocaine and amphetamine-
regulated transcript (CART 55–102), and orexins, which 
are highly expressed in structures composing the HPA axis, 
as modulators of dopaminergic neurotransmission [12–14, 
16, 21–23]. Orexin neurons co-express the inhibitory opi-
oid dynorphin, and those two peptides are characterized by 
opposing actions on motivated behavior, namely, orexin is 
implicated in states of arousal and reward, whereas dynor-
phin is implicated in depressive-like states [24]. Orexin sign-
aling in the PFC is implicated in the reinstatement of reward 
seeking [25–28].

In the current study, we were looking for a molecular 
pattern associated with an altered appetitive response to 
cocaine after the withdrawal period following dose-esca-
lating administration. In humans, cocaine is usually con-
sumed in recurrent cycles, which occur over 1–7 days with 
a period of abstinence accompanied by depressive symptoms 
and anxiety [29–35]. In the current study, we applied an 
escalating-dose cocaine regimen in rats, which was modeled 
to mimic the human pattern of cocaine abuse. In the study, 
we assessed anxiety-like behavior in the early withdrawal 

period in the Elevated Plus Maze (EPM) test, as anxiety 
and depression-related behavior prevails typically during the 
initial period of abstinence [36]. The reinforcement prop-
erties of cocaine were evaluated in the Conditioned Place 
Preference (CPP) test [37, 38] along with ultrasonic vocali-
zation (USV) in the appetitive range (30–120 kHz, mainly 
referred to as 50 kHz) in the drug-associated context, often 
used to measure appetitive response to the context of various 
rewarding stimuli [39].

In search for a molecular pattern associated with altered 
response to cocaine we measured neuromodulators related to 
the HPA axis and hypothalamic peptides, namely corticos-
terone, proopiomelanocortin (POMC), β-endorphin, along 
with CART 55–102 levels in plasma, and mRNA levels for 
D2 dopaminergic receptor, κ-opioid receptor (KOR), orexin 
1 receptor (OX1R), CART 55–102, and previously sug-
gested markers of cocaine abuse: microRNA-124 (miRNA-
124) and microRNA-137 (miRNA-137) levels, in the PFC 
[40–42].

Materials and methods

Animals

Male Wistar adult rats (n = 20), 9-week old and weighing 
220–250 g at the beginning of the experiment, purchased 
from a licensed breeder (The Center for Experimental Medi-
cine of the Medical University, 24 A Skłodowskiej-Curie 
Street, Białystok, Poland) were used in the study. The ani-
mals were housed in environmentally enriched laboratory 
conditions (temperature 20 ± 2 °C; 12 h light/dark cycle, 
light on at 7 am; 45–55% humidity, the cages were enriched 
with wood for gnawing). The rats were housed per 4 in 
opaque plastic cages (55 × 33 cm floor size, H = 19.5 cm) 
with free access to standard laboratory rat chow and tap 
water.

The study was conducted following the European Com-
munities Council Directive 2010/63/UE. The Local Com-
mittee for Animal Care and Use at the Medical Univer-
sity of Warsaw, Poland, approved this study (Protocol No. 
WAW2/073/2018). All care was administered to minimize 
animal discomfort during experimental procedures. We con-
firm that the animals did not suffer unnecessarily at any stage 
of the experiments.

Experimental scheme (Fig. 1)

After 7 days of acclimatization to the vivarium, the natu-
ral place preference of the animals was assessed. Next, the 
cocaine ‘binge’ regimen was introduced for 5 days. Twenty-
four hours after the last cocaine injection, the EPM test 
was performed, and a withdrawal procedure was carried 
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out for 7 days. Subsequently, the rats were trained for the 
CPP for 4 days. Two rats were excluded from the experi-
ments for technical reasons. The day after, the place prefer-
ence in the cocaine-paired compartment was assessed, and 
50-kHz USVs were recorded simultaneously. Ninety minutes 
later, animals were decapitated.

Behavioral assessment

Escalating dose ‘binge’ cocaine regimen

The escalating-dose cocaine regimen consisted of 15 cocaine 
injections at increasing doses. Cocaine hydrochloride (TRC, 
Canada) was dissolved in a sterile aqueous 0.9% NaCl solu-
tion (Polpharma, Starogard Gdański, Poland) and injected 
intraperitoneally. Half of the animals (cocaine ‘binge’, CB 
group, n = 10) were injected with cocaine three times a day 
(at 7:45 am; 9:45 am; and 11:45 am) for 5 consecutive days 
in the following scheme: 1st day—three injections, 10 mg/
kg, 2nd day—three injections, 15 mg/kg; 3rd day—two 
injections, 20 mg/kg (an adjusted volume 2 ml/kg) and one 
injection, 25 mg/kg; 4th day—two injections, 25 mg/kg and 
one injection, 30 mg/kg; 5th day—three injections, 30 mg/
kg. Other animals (control group, n = 10) were given saline 
(sterile aqueous 0.9% NaCl solution) in the same regimen. 
The cocaine and saline injections were administered in dark 
cages (55 × 33 cm floor size, H = 19 cm) with no bedding 
for 40 min.

EPM test

The EPM apparatus was made of wood and consisted of 
two opposed open arms, two opposed walled arms (arm 
floor sizes, 50 × 10 cm), and an open square (10 × 10 cm) 
in the center, as it was described in our previous study [43]. 
The rats were transferred individually to the testing room, 
placed on the central square, facing an open arm, and had 
5 min access to explore the maze. The behavior was recorded 
with a ceiling-mounted EV-650CG video camera (Sony, 
Japan) connected to a PC equipped with the EthoVision XT 

VideoTracking System v.7 (Noldus Information Technology 
B.V., Wageningen, The Netherlands). Video recordings were 
then used to calculate the total time spent in the open arms 
by an independent observer.

CPP procedure

The apparatus consisted of a plywood box (with 34 cm high 
walls) divided into two main compartments (35.5 × 20 cm 
floor size) separated by a smaller compartment (10 × 20 cm 
floor size). The apparatus and procedure were previously 
described by Taracha et al., 2014 [44]. Two CPP appara-
tuses were used simultaneously, thoroughly cleaned after 
each rat. The apparatuses were separated with a 1.1 × 0.7 m 
(L × H) sound-attenuating wall made of a 2-cm thick particle 
board with a black veneer on both sides. Rats’ behaviors 
in non-preferred and preferred areas were recorded with a 
ceiling-mounted EV-650CG video camera (Sony, Japan) and 
analyzed by the computerised system EthoVision XT Vide-
oTracking System v.7 (Noldus Information Technology B.V., 
Wageningen, The Netherlands). Natural place preference 
was determined in a 15 min pre-test at the beginning of the 
experiment. The CCP training was carried out for 4 consecu-
tive days. On the first day, the rats were given an i.p. saline 
injection and were instantly confined to the preferred section 
of the apparatus for 40 min. On the next day, designated rats 
received a cocaine injection and were immediately confined 
to the non-preferred section of the apparatus for 40 min. The 
10 mg/kg cocaine (an adjusted volume 2 ml/kg) dose was 
used in all CPP training sessions. The training procedure was 
repeated over the next two days. The cocaine injections were 
performed between 7:45 am and 11:45 am. On the 5th day, 
all the rats were given access to the open CPP apparatus for 
20 min (of which the first 15 min were for CPP analysis) to 
examine place preference and USVs response. The training 
sessions (conditioning) and the testing were performed at the 
same time of day. The CPP was calculated as the difference 
between the times spent in the drug-paired compartment 
during the test and pre-test [44, 45].

1         7          8            9                    13  14 21                     24 25            day

Acclima�sa�on 90 min decapita�on

CPP test
USV recordingPP

cocaine ‘binge’ (CB) group

control (saline) group

cocaine ‘binge’

EPM      
withdrawal

CPP training

Fig. 1  The experimental scheme. PP natural place preference assessment, EPM elevated plus maze test, CPP condition place preference, USV 
ultrasonic vocalization
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50‑kHz USV recording

The USVs were recorded during the CPP test session. The 
USVs were recorded with a single CM16 condenser micro-
phone (Avisoft Bioacoustics, Berlin, Germany) placed 
face down 35 cm above the testing box floor and centrally 
above the rat-accessible area. The microphone was sensitive 
to frequencies of 15–180 kHz, had a flat response charac-
teristic (± 6 dB) within the 25–140 kHz frequency range 
and was connected to a custom-made amplifier of 600 Ω 
input impedance, 16 v/v (12 dB) voltage gain, and ± 0.1 dB 
(30 Hz–100 kHz) frequency response. The amplified signal 
was passed to an adjacent (observer-occupied) room, pro-
cessed with a custom-made antialiasing filter, and then sent 
to a PC equipped with a model PCI-703-16A (Eagle Tech-
nology, Eagle River, WI, USA) acquisition board (14-bit, 
400 kHz) and custom-written software (Rat-Rec Pro 5.0), 
as previously described [45]. The sound proofing method 
was validated [45, 46]. The recorded data were processed 
using the RAT-REC PRO 5.0 software (custom-made, War-
saw, Poland) and displayed as colour spectrograms. We did 
not observe the 22-kHz calls. Frequency-modulated (FM) 
and non-FM (‘flat’) 50-kHz calls were identified using the 
characteristics specified in earlier studies by an independent 
observer. Each 50-kHz signal was manually marked by the 
section label to be included in the automatic calls’ counting 
[44–46].

Biochemical and molecular analysis

Tissue preparation for ELISA and real‑time PCR

After decapitation, the trunk blood samples were taken and 
stored at − 20 °C for ELISA assay, while the brains were 
removed. The PFC (4.7 to 4.2 anterior to bregma), desig-
nated for mRNA assessment, was crudely dissected from 
the brain. The obtained tissue was placed in stayRNA (A@A 
Biotechnology, Poland), frozen and stored at − 70 °C for 
further analyses.

ELISA analyses

Plasma corticosterone levels Plasma corticosterone con-
centrations were analyzed by Corticosterone rat/mouse 
ELISA kit (Demeditec Diagnostics GmbH., Germany). We 
used 10 μl plasma per well for the assay. The sensitivity of 
the corticosterone assay was 11.83 nmol/l. The corticoster-
one antibody cross-reactivity with other naturally occurring 
adrenal steroids was not detectable, except for 11-deoxy-
corticosterone (2.4%), progesterone (0.7%), cortisol (0.3%), 
and aldosterone (0.2%). The inter-and intra- assay coeffi-
cients of variance were 8.2 and 5.3%, respectively [47].

Plasma CART levels Plasma CART concentrations were 
analyzed by CART Enzyme Immunoassay Kit, RayBiotech, 
sensitivity (minimum detectable concentration was 7.2 pg/
ml, Standard curve range was 1–10.000  ng/ml). We used 
10 μl of plasma per well, for the assay. All samples were 
twofold diluted as recommended by the kit manufacturer; 
the dilution factor was included in the analysis software. 
The inter-intra assay coefficients of variance were < 15% 
and 10%, respectively.

Plasma β‑endorphin levels Plasma β-endorphin concentra-
tions were analyzed by Rat Beta-Endorphin, SunRed, sen-
sitivity 3. 127 ng/L, Assay range was 5 ng/L–900 ng/L. We 
used 10 μl of plasma per well, volume-dissolved 1:5 in PBS 
for the assay (according to the previous examination).

Plasma POMC levels Plasma POMC concentrations were 
analyzed by Rat for Proopiomelanocortin, BioSource, sen-
sitivity 33 pg/mL, Detection (Assay) 78–5.000 pg/mL. We 
used 10 μl of plasma per well, volume-dissolved 1:2 in PBS 
for the assay, according to the prescription. The inter-and 
intra assay coefficients of variance were < 12 and 10%, 
respectively.

Real‑time PCR

The total RNA was extracted using the miRNeasy Mini 
Kit (Qiagen, Germany), according to the manufacturer’s 
instructions. The concentration and purity of total RNA 
were determined using spectrophotometry (NanoDrop 
2000/2000c, Thermo Scientific, USA). All samples had Abs 
260/280 > 1.9 and 260/230 > 1.4.

Reverse transcription of mRNA was performed using 
the RevertAid First Strand cDNA Synthesis Kit (Thermo 
Scientific, USA) in a total volume of 20 μl according to the 
manufacturer’s instructions. Reverse transcription of miRNA 
was performed using  TaqMan® MicroRNA Reverse Tran-
scription Kit and  TaqMan® Gene Expression Assays specific 
primers (Thermo Scientific, USA). Real-time PCR analysis 
was performed using PikoReal™ Real-Time PCR System 
(Thermo Fisher Scientific) with PowerSYBR® Green PCR 
Master Mix (Applied Biosystems). The PCR-specific prim-
ers used in this study are as follows: D2 dopamine receptor 
mRNA (5′ → 3′, F:CAA CAA TAC AGA CCA GAA TGAG; 
R:CAG CAG AGT GAC GAT GAA ), CART mRNA (5′ → 3′, 
F:GAT CGG GAA GCT GTG TGA CT; R:ATT TTG AAG CAG 
CAG GGA AA), KOR mRNA (5′ → 3′, F:GGC AGC AAG 
TGT GAA GAA CA; R:GGT GCC CAG TAA GTT TTG GA), 
OX1R mRNA (5′ → 3′, F:GCG CGA TTA TCT CTA TCC 
GAA; R:AAG GCT ATG AGA AAC ACG GCC). Housekeep-
ing reference genes: glyceraldehyde-3-phosphate dehydro-
genase (GAPDH, 5′ → 3′, F:ATG ACA ATG AAT ATG GCT 
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ACA; R:CTC TTG CTC TCA GTA TCC TT) and peptidylpro-
lyl isomerase A (PPIA, 5′ → 3′, F:AAT GGC ACT GGT GGC 
AAG TC; R:GCC AGG ACC TGT ATG CTT CAG. cDNA (con-
centration 5 ng/μl) was amplified for each sample in a total 
volume of 10 μl.

The amplification reaction included 40 cycles with a 
95 °C denaturation step for 5 s and a 61 °C annealing step 
for 45 s and was preceded by 95 °C initial denaturation for 
1 min. A dissociation stage was performed to assess the 
specificity of primers. Each sample was run in a triplicate. 
Real-time PCR assays of total RNA were performed to 
measure the expression levels of miRNA-124 and miRNA-
137. Relative levels were normalized to U6 snRNA (Con-
trol Sequence: GTG CTC GCT TCG GCA GCA CAT ATA CTA 
AAA TTG GAAC GAT ACA GAG AAG ATT AGC ATG GCC 
CCT GCG CAA GGA T GAC ACG CA ATT CGT GAA GCG 
TTC CAT ATTTT) and 4.5S RNA(H) (Control Sequence: 
GCC GGT TGT GGT GGC GCA CAC CGG TAG GAT TTGC 
TGA AGG AGG CAG AG GCA GGA GGA TCA CGA GTT CGA 
GGC CAG CCT GG GCT ACA CATTT).

Analysis of miRNAs was also performed using Piko-
Real™ Real-Time PCR System (Thermo Fisher Scien-
tific, USA) with  TaqMan® Universal Master Mix II, no 
UNG(Applied Biosystems), specific  TaqMan® Probes 
(TaqMan™ miRNA Assays, Termofisher Scientific, in 
Table 1) and products of reverse transcription. Each sample 
was run in triplicate. Analysis of all real-time PCR data was 
performed using the comparative ΔΔCT method [48].

Statistical analysis

The statistical analyses were performed using Statistica v.12 
software. We used the Shapiro–Wilk test to assess the data 
distribution. Some variables presented a normal distribution, 
namely the time spent in the open arms in the EPM test, the 
total distance in the CPP test, β-endorphin levels, miRNA-
124, and miRNA-137 levels in the PFC. We performed sta-
tistical analysis using the Student’s t test for variables with 
normal distribution. The data sets that did not present the 
normal distribution were analyzed with the Mann–Whitney 
U test. The data are presented as the mean + the standard 
error of the mean (SEM).

Results

Behavioral analysis: EPM test and CPP test (Fig. 2)

The CB rats spent significantly less time in the open arms 
in the EPM test compared to the control group (t16 = 3.12, 
p = 0.006), whereas no differences in the locomotor activ-
ity measured as the total distance crossed during the test 
were observed between groups (U = 37, N1 = 9, N2 = 9, 
p = 0.791).

Mann–Whitney U test revealed that the CB rats spent 
significantly less time in the cocaine-paired compartment 
(U = 4.0, N1 = 7, N2 = 9, p = 0.004) and demonstrated less 
episodes of 50-kHz USV compared to the control rats 
(U = 15.0, N1 = 8, N2 = 9, p = 0.048). No significant differ-
ences between the experimental groups were found in the 
total distance crossed in the CPP test (t14 = 0.86, p = 0.401).

Corticosterone, POMC, CART 55–102, 
and β‑endorphin levels in the plasma (Fig. 3)

The CB rats showed significantly lower plasma corticoster-
one concentrations (U = 12, N1 = 8, N2 = 8, p = 0.04) and 
CART 55–102 levels (U = 13.0, N1 = 9, N2 = 9, p = 0.017), 
while plasma concentrations of β-endorphin (t16 = -2.8, 
p = 0.013) and POMC (U = 14, N1 = 9, N2 = 9, p = 0.021) 
were significantly higher when compared to the control 
group.

mRNA levels for D2R, OX1R, KOR, and CART 55–102 
in the PFC (Fig. 4)

Mann–Whitney U test revealed that the CB rats presented 
higher D2R mRNA (U = 12.0, N1 = 8, N2 = 8, p = 0.04), 
lower OX1R mRNA (U = 11, N1 = 8, N2 = 9, p = 0.018), 
lower CART 55–102 mRNA (U = 13.5, N1 = 8, N2 = 9, 
p = 0.034), and lower KOR mRNA levels (U = 16, N1 = 9, 
N2 = 9, p = 0.034), compared to the control rats.

miRNA‑124 and miRNA‑137 levels in the PFC (Fig. 5)

The CB rats presented higher miRNA-124 levels compared 
to the control rats (t16 = 3.12, p = 0.006). No differences 
were observed between the groups in the miRNA-137 levels 
(t16 = 0.26, p = 0.8).

Table 1  TaqManTM MicroRNA Assays: mmu-miR-124a, hsa-miR-137

Assay name miRBase ID miRBase accession numbers Mature miRNA sequence

mmu-miR-124a mmu-miR-124-3p MIMAT0000134 UAA GGC ACG CGG UGA AUG CC
hsa-miR-137 hsa-miR-137-3p MIMAT0000429 UUA UUG CUU AAG AAU ACG CGUAG 
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Discussion

In our study, we demonstrated that the CB rats exposed 
to an escalating-dose cocaine regimen showed enhanced 

anxiety at the beginning of the withdrawal period defined 
as a decrease in the number of visits in the open arms in 
the EPM test, and diminished cocaine-associated appeti-
tive response after the withdrawal period measured as less 
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91Molecular pattern of a decrease in the rewarding effect of cocaine after an escalating‑dose…

1 3

time spent in the cocaine-paired compartment and a lower 
number of appetitive USV episodes. The changes in appeti-
tive behavior were accompanied by molecular alterations in 
plasma and the PFC. Specifically, we observed a decrease in 
corticosterone and CART 55–102 levels, and an increase in 
β-endorphin and POMC levels in the plasma of the CB rats, 
along with an increase in the mRNA for D2R, but a decrease 
in the mRNA levels for OX1R, KOR, and CART55-102 in 
the PFC. We also found an increase in the miRNA-124 level 
in the PFC of the CB rats.

At the beginning of the withdrawal period that followed 
cocaine binge, we observed enhanced anxiety-like behavior 

in the CB rats, similarly to other studies [49, 50]. Also in 
human cocaine abusers, discontinuation of drug intake usu-
ally produces a variety of adverse withdrawal symptoms 
among which anxiety and depression-related behaviors 
are prevailing during the initial period of abstinence [36]. 
Moreover, the CB rats showed a weaker place preference 
following cocaine’s 7 day withdrawal period, most pos-
sibly because of an increase in reward threshold [51]. In 
other studies, the rewarding effect of cocaine was reported 
to have been restored 14 days after cocaine withdrawal 
[38]. The sensitization process is observed in the early 
period of cocaine use, while tolerance appears over time 
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of administration, phenomena established in both rodents 
and humans [52, 53]. Although it is a passive paradigm of 
cocaine administration compared to self-administration, the 
escalating dose regimen seems to at least partly mimic the 
cocaine binge, namely, the increase in cocaine intake. The 
studies of Calipari et al. [54, 55] regarding differences in 
dopamine signaling in different patterns of cocaine self-
administration, suggest that tolerance depends not on the 
pattern of administration, but on the total cocaine intake 
within sessions. Similar patterns of behavior were demon-
strated in our previous study regarding amphetamine self-
administration [56].

In our study, we observed lower corticosterone con-
centration accompanied by an increase in POMC and 
β-endorphin levels in the plasma of the CB rats. The esca-
lating-dose cocaine administration has been proved to lead 
to dysregulation of the HPA axis [57–59]. An increase in 
plasma corticosterone level was observed at the beginning 
of the chronic binge cocaine administration, while it was 
reduced on the 14th day of the applied regimen followed 
by a return to its basal level after 10 days of the withdrawal 
period [57]. In the study by García-Fuster et al. [59] corti-
costerone levels progressively decreased during the course 
of withdrawal from extended daily access of cocaine 
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self-administration, and normalized following 28 days 
of withdrawal. An enhanced secretion of corticotropin-
releasing factor (CRF) and adrenocorticotropic hormone 
(ACTH), and decreased cortisol levels were observed dur-
ing the withdrawal period in humans and linked to depres-
sion and anxiety symptoms [60, 61]. Here, we can assume 
that lower corticosterone level may be the result of dys-
regulation of the HPA axis activity in response to cocaine 
binge and be related to the diminished cocaine-associated 
appetitive response after the withdrawal period.

POMC is synthesized in the pituitary gland in the brain 
and in several peripheral tissues. During posttranslational 
processing, it can be tissue-specifically cleaved to hor-
mones and neuropeptides with very different biological 
activities [62]. In the anterior pituitary, POMC is pro-
cessed predominantly to ACTH, β-lipotropin (β-LPH), and 
to β-endorphin to a lesser extent [62]. In the study by Zhou 
and Kreek [63], the increased hypothalamic POMC expres-
sion was persistent during the withdrawal period along 
with an increase in β-endorphin biosynthesis and release, 
which authors associated with enhanced cocaine seeking. 
However, continuously increased levels of β-endorphin in 
plasma were reported not only in abstinent human cocaine 
addicts, but also during cocaine binges [64]. Except for the 
postulated role of β-endorphin in mediating the rewarding 
or reinforcing effects of cocaine, it is also known to be 
released in response to physical stress [65, 66]. In normal 
human subjects a decline in ACTH and cortisol plasma 
levels was associated with elevated β-endorphin, which 
suggests feedback loop inhibition of pituitary ACTH 

release or suppression of hypothalamic CRF release by 
β-endorphin [67]. This observation may also partially 
explain our results, namely lower corticosterone concen-
trations along with an increase in β-endorphin and POMC 
levels in the plasma of the CB rats. However, in the current 
experimental design, it is difficult to assess to what extent 
effects of these two processes, namely cocaine withdrawal 
and cocaine re-exposure, may somehow overlap.

CART 55–102 is known for its properties to modulate 
the activity of the mesolimbic dopaminergic pathway and to 
affect reward-seeking behavior [68, 69]. Furthermore, com-
pelling evidence has shown that CART 55–102 is involved 
in the HPA axis regulation associated with stress response 
[70–75]. CART 55–102 stimulates CRF and glucocorti-
coid secretion, whereas CRF and glucocorticoids increase 
the transcriptional activity of the CART gene [76–78]. The 
administration of CART 55–102 upregulates ACTH and 
corticosterone levels through a CRF-dependent mechanism 
[73, 74]. In light of these data, decreased CART 55–102 
levels in plasma and corresponding decreased CART 55–102 
mRNA levels in the PFC may be linked to the HPA axis 
dysregulation and diminished cocaine-associated appetitive 
response. In the study of Rakovska et al. [69], CART 55–102 
administration was associated with a decrease in dopamine 
in the mouse nucleus accumbens (NAc) and attenuation of 
cocaine-induced effects on dopamine release.

Drug-withdrawal after chronic cocaine administration 
decreases dopamine signaling, in contrast to the positive 
reinforcement induced by the substance [51]. Diminished 
dopaminergic signaling after repeated cocaine intake may 
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increase the risk of anxiety and dysphoria and lead to depres-
sive-like behavior [79–81]. In our experiment, we detected 
a rise in the D2R mRNA in the PFC of the CB rats, simi-
lar to the study by Frankowska et al. [82], which presents 
an increased D2R expression in the PFC in the withdrawal 
period after cocaine self-administration. These phenomena 
may reflect adaptive changes in D2R expression in the cortex 
(probably following lower dopamine levels in the cortical-
limbic system after exposure to the binge cocaine paradigm 
and withdrawal), and can be associated with lower appetitive 
response to cocaine [31].

The modulatory control of the dynorphin/KOR system 
over dopamine signaling in mesolimbic areas contributes 
to the development of negative affective states and changes 
in the perception of reinforcing and aversive stimuli [83]. 
Chronic cocaine exposure elevates the neuropeptide dynor-
phin levels, an endogenous ligand at KOR that suppresses 
dopamine release in the NAc and elicits negative affective 
states upon drug withdrawal [84–87]. Infusion of a KOR 
agonist into the PFC decreased dopamine levels in wild-
type mice but not in KOR-knock-out mice (a model of a 
specific deletion of KOR in dopaminergic neurons), confirm-
ing KOR-mediated control of dopaminergic transmission in 
the PFC [88].

In our study, we observed a decrease in the KOR mRNA 
in the PFC of the CB rats. Although we are aware of some 
limitations of this study, namely changes in the level of tran-
scripts were not confirmed at the protein level, we suggest 
that the reduced KOR mRNA may be associated with the 
lower appetitive response to cocaine-associated context. This 
speculation is supported by the study by Wee et al. [89] on 
the effects of KOR blockade on cocaine seeking and con-
sumption in different animal models of cocaine exposure. 
The KOR blockade selectively reduced cocaine seeking 
but not cocaine consumption in animals with a history of 
extended cocaine administration, but not in animals that 
self-administered it on a short access procedure [89]. These 
data link the decreased KOR function with lower appetitive 
response upon withdrawal from chronic cocaine exposure.

In the current study, we also observed a decrease in the 
OX1R mRNA in the PFC of the CB rats. Orexin neurons, 
localized mainly in the lateral hypothalamus and projecting 
through the cortex and limbic system, initiate arousal states 
and modulate reward system activity [90]. Much evidence 
supports the important role of OX1R in the prelimbic cor-
tex in addiction-related states [10, 14, 22, 24, 91–93], spe-
cifically, the significance of signaling at OX1R in relapse 
to cocaine-seeking [94]. The OX1R gene was induced in 
the PFC by cocaine exposure [95]. Systemic administration 
of OX1R antagonist attenuated cue-induced reinstatement 
of extinguished cocaine-seeking [96], but did not attenuate 
reinstatement of responding induced by a priming injection 
of cocaine [97]. In animals that underwent abstinence from 

chronic self-administration, the OX1R antagonism reduced 
the reinstatement of cocaine-seeking [98]. Based on those 
data, we can assume that lower OX1R mRNA levels in the 
PFC may be related to lower appetitive response to cocaine-
associated context and decreased cortical activity following 
the withdrawal period.

Repeated intake of drugs of abuse, such as cocaine, pro-
motes alterations in gene expression that underlie addiction-
related processes [99–101]. Several studies have shown 
that cocaine can influence the activity of small non-coding 
RNAs, miRNAs, known to regulate gene expression on post-
transcriptional level [102–104]. Among them, miRNA-124 
is considered as a promising biomarker of cocaine abuse as 
it was down-regulated in a dopaminergic neuron-like model 
after acute cocaine exposure [105], and found elevated in 
the blood of cocaine-addicted women during the with-
drawal period [106]. In our study, the CB rats that presented 
lower appetitive vocalization in the cocaine-associated con-
text after the withdrawal period showed also an increased 
miRNA-124 level in the PFC. Chandrasekar et al. [107] 
found that lentiviral vector (LV)-miRNA-124 expression in 
the NAc attenuated cocaine CPP, whereas silencing miRNAs 
by corresponding LV-miRNA silencers inversed this effect. 
We are aware of the pleiotropic effects of miRNAs as they 
can target many different molecular pathways in cell- and 
tissue-specific manner, thus further research is needed to 
confirm the targets of these miRNAs in this context. So far, 
other studies identified PARP-1 [108] and BDNF [109] as 
plausible direct targets of miRNA-124 in neuronal cells.

Another promising marker of diseases associated with 
dopaminergic dysfunction is miRNA-137, which regulates 
DAT expression at the post-transcriptional level [40]. Addic-
tion-prone rats showed elevated miRNA-137 expression 
in the CNS after extinction and relapse testing following 
cocaine self-administration [41]. However, we observed no 
differences in miRNA-137 between the CB and control rats 
in our study.

Conclusions

Our study shows that the escalating-dose cocaine regimen 
resulted in anxiety-like behavior at the beginning of the 
withdrawal period and reduced cocaine-associated appetitive 
response afterwards. This behavioral pattern was accompa-
nied by dysregulation of the HPA axis activity followed by 
changes in related neuromodulators in the plasma, and alter-
ations in mRNA levels for D2, KOR, OX1R, CART 55–120, 
and miRNA-124, a postulated marker of cocaine abuse, in 
the PFC. Our observations are in line to a large extent with 
results of other studies, thereby confirming the impact of 
cocaine on the HPA axis activity and systems that mediate 
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reinforcing effects of the drug and related affective states. To 
conclude, the obtained data reflect a part of a bigger picture 
of a multilevel interplay between neurotransmitter systems 
and post-transcriptional regulation of gene expression under-
lying processes associated with cocaine abuse. However, in-
depth characteristics of molecular processes in this model 
require more detailed “cause-and-effect” exploration.

Limitations

The major limitation of this study is that the levels of tran-
scripts in the PFC were not confirmed at the protein level, 
however, the obtained data are generally consistent with 
those presented by other authors. Moreover, target-specific 
studies regarding plausible miRNA-regulated molecular 
pathways associated with cocaine biological effects should 
be undertaken.
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