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Abstract
Second-generation antipsychotics are widely used for the treatment of schizophrenia. Aripiprazole (ARI) is classified as a 
third-generation antipsychotic drug with a high affinity for dopamine and serotonin receptors. It is considered a dopamine-
system stabilizer without severe side effects. In some patients the response to ARI treatment is inadequate and they require 
an effective augmentation strategy. It has been found that the response to the drug and the risk of adverse metabolic effects 
can be related to gene polymorphisms. A reduced dose is recommended for CYP2D6 poor metabolizers; moreover, it is pos-
tulated that other polymorphisms including CYP3A4, CYP3A5, ABCB1, DRD2, and 5-HTRs genes influence the therapeutic 
effect of ARI. ARI can increase the levels of prolactin, C-peptide, insulin, and/or cholesterol possibly due to specific genetic 
variants. It seems that a pharmacogenetic approach can help predict drug response and improve the clinical management of 
patients with schizophrenia.

Keywords  Antipsychotics · Aripiprazole · CYP450 system · Genetic polymorphism · Pharmacogenetics · Schizophrenia · 
Treatment response

Introduction

Antipsychotics are used to treat mental illnesses such as 
schizophrenia and other psychosis, as well as bipolar dis-
order and depression. These medications are divided into 
three groups: (1) first-generation antipsychotics (FGAs); 
(2) second-generation antipsychotics (SGAs); and (3) third-
generation antipsychotics (TGAs) [1, 2]. The main differ-
ence between FGAs, SGAs, and TGAs is their pharmaco-
logical target. FGAs, such as haloperidol, chlorpromazine, 
and thioridazine, act mainly on the dopaminergic system 
as antagonists for the dopamine type 2 (D2) receptors [3]. 
They alleviate positive symptoms of schizophrenia; how-
ever, D2 blockade often induces numerous side effects, the 

most prominent are extrapyramidal symptoms (EPS) [3]. In 
addition, the blockade of D2 receptors causes an increase 
in prolactin levels that correlates with the dose [4]. SGAs, 
including risperidone and clozapine, have a higher affinity 
for serotonin receptors (5-HT) than D2 receptors [5]. Due 
to 5-HT2A/D2 antagonist properties, they are also called 
dopamine-serotonin antagonists. Moreover, SGAs exhibit 
an action on muscarinic cholinergic receptors (M3), his-
tamine receptors (H1), and adrenergic receptors (α1 and 
α2) [6]. Although SGAs are associated with a lower risk of 
EPS they can cause metabolic effects, such as weight gain, 
diabetes mellitus, hyperlipidemia, QT modifications, and 
hyperprolactinemia [7]. TGAs, including aripiprazole (ARI), 
brexpiprazole, and cariprazine are partial dopamine receptor 
agonists and also act as antagonists or weak partial agonists 
on the serotonin receptors [1, 8–10].

ARI, apart from being described as an antipsychotic 
drug, is also a mood stabilizer. Antipsychotic medications 
are mainly used for treating schizophrenia; however, they 
are effective for other psychotic disorders and also other 
psychiatric disease entities, such as mania, bipolar affective 
disorder, depression, anxiety disorders, delusional disorders, 
irritability associated with autism, Tourette's syndrome, 
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disorders associated with problems with impulse control, 
and behavioral disturbances in dementias or in children and 
adolescents. Short-acting ARI is also used intramuscularly 
for rapid tranquillization in acute agitation associated with 
schizophrenia or bipolar disorder [11, 12]. Detailed infor-
mation about antipsychotic drug metabolism, mechanism of 
action, and adverse side effects is shown in Table 1.

Schizophrenia is a chronic, serious mental illness that 
affects about 1% of the world’s population. The pathomech-
anism of this disease is complex and still not sufficiently 
understood. It is plausible that genetic and environmental 
factors as well as other causes, such as brain chemistry, sub-
stance use, and autoimmune diseases or inflammation play 
a role in the risk of developing schizophrenia. The disease 
begins at a young age (usually before the age of 18) and 
causes different symptoms: (1) positive (e.g., hallucinations, 
delusions, disorganized behavior); (2) negative (e.g., social 
withdrawal, apathy, lack of energy, anhedonia, flattened 
affect); and (3) cognitive (e.g., memory and learning impair-
ments or attention deficiencies) [9, 11]. Several SGAs are 
currently available for the treatment of schizophrenia includ-
ing clozapine, olanzapine, and risperidone. However, these 
drugs can cause metabolic adverse effects, in turn, a TGA 
drug, ARI, appeared to have general advantages regarding 
side effects [13]. ARI is generally well-tolerated, it has a low 
propensity for EPS and causes lower incidences of excessive 
weight gain, glucose dysregulation, hypercholesterolemia, 
and hyperprolactinemia [14, 15]. The latter seems to be very 
important for women because high prolactin levels increase 
the risk of developing breast cancer [16, 17]. A study car-
ried out on female patients with schizophrenia showed that 
long-term exposure to ARI (prolactin-sparing antipsychotic) 
was not associated with an increased risk of breast cancer 
[18]. Moreover, a clinically significant property is that ARI 
is not associated with impaired glucose tolerance, which is 
particularly important in pregnant women [19]. It is well 
known that the disturbance in glucose during pregnancy 
can increase the risk of gestational mellitus diabetes [20]. 
Several studies have shown that ARI, both oral form, and 
long-acting injection, was not associated with an increased 
risk of major congenital defects and neurological malfor-
mations [21–23]. Surprisingly, it was established that ARI 
(10–20 mg/day) has the potency to normalize significantly 
elevated levels of serum prolactin caused by antipsychotic-
induced prolactinemia [24, 25]. Although the severity of 
ARI side effects, including EPS and metabolic syndromes, 
is less frequent than with other antipsychotics, some patients 
have experienced adverse drug effects.

The purpose of this review is to highlight the role of 
various genetic polymorphisms in the pharmacokinetics 
and pharmacodynamics of ARI. This review also offers a 
brief discussion of the relationship between genetic vari-
ants and metabolic side effects. Understanding the role of 

polymorphisms in the efficacy and safety of aripiprazole 
therapy may in the future result in the translation of phar-
macogenomic knowledge into clinical practice.

Mechanism of action of ARI

ARI was approved in the USA in 2002, in Europe in 2004, 
and in Japan in 2006 for indication of schizophrenia [71]. It 
acts as a partial D2 dopamine and serotonin 5-HT1A recep-
tors agonist as well as a serotonin 5-HT2A receptor antago-
nist. Furthermore, the affinity of ARI for other crucial nerv-
ous system receptors has been demonstrated (Table 2).

ARI is defined as a dopamine-system stabilizer 
(DSS) because of its higher affinity for the D2 recep-
tor (Ki = 0.34 nM) than for 5-HT1A and 5-HT2A receptors 
(Ki = 1.7 nM and Ki = 3.4 nM, respectively) and its stabi-
lizing effect on dopamine (DA) neurotransmission [72]. 
DSS partially activates DA receptors stabilizing the bal-
ance between stimulation and blockade of DA receptors 
[73]. DSS blocks D2 receptors in brain regions where DA 
activity needs to be reduced, at the same time, it does not 
reduce dopamine activity in brain regions where normal DA 
levels are needed [74]. Indeed, a positron emission tomog-
raphy (PET) performed in healthy men who received sin-
gle doses of ARI (3–9 mg) has shown that ARI decreases 
or increases DA synthesis in individuals with high or low 
baseline DA levels, respectively [75]. Thus, these findings 
suggest that the therapeutic effects of ARI may be related 
to a stabilizing effect on DA synthesis capacity and dopa-
minergic neurotransmission. Although the ARI occupancy 
rate on D2 receptors needs to be greater than 90% to have to 
achieve a therapeutic effect, it does not produce EPS [76]. 
Because ARI has lower intrinsic activity than a full agonist 
(i.e., endogenous dopamine), therefore signal transmission 
is lower than that of dopamine, but not completely blocked 
as with an antagonist (i.e., conventional antipsychotics) 
(Fig. 1A).

It is postulated that the positive symptoms of schizo-
phrenia are related to hyperactive dopamine transmission in 
the mesolimbic brain regions in turn, hypoactive dopamine 
transmission in the mesocortical system underlies the nega-
tive symptoms [77]. Due to the unique dopamine-dependent 
action of ARI, it helps to control both positive and negative 
symptoms of schizophrenia (Fig. 1B, C).

However, the unique mechanism of action is more com-
plex possibly due to the functional selectivity of ARI. 
Indeed, studies indicate that ARI is a functional selective D2 
ligand that exerts an effect on intracellular signaling path-
ways [76, 78]. An in vitro study showed that ARI caused the 
activation of mitogen-activated protein kinases (MAPK) and 
arachidonic acid pathways [78]. In addition, an in vivo func-
tional selectivity study revealed different effects on protein 
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kinase A (PKA), protein kinase B (Akt) and glycogen syn-
thase kinase 3 beta (GSK3β) depending on brain regions 
[79]. It is worth emphasizing that elevated PKA levels in the 
nucleus accumbens correlated with increased expression of 
the GABAA (β-1) receptor as well as GSK3β signaling prob-
ably modulating NMDA and GABAA expression [80–82]. 
A study in patients with schizophrenia suggested that ARI 
increased GABA transmission in the prefrontal regions and 
this may have clinical benefits in terms of improved social 
competence [83]. Another study on the effects of ARI expo-
sure on NMDA and GABAA receptor binding levels revealed 
that ARI modulates the neurotransmission of both receptors 
in juvenile rats [84].

To summarize, different properties such as partial ago-
nism and functional selectivity as well as actions at other 
receptor systems may be responsible for the action of ARI 
and the effective management of positive and negative symp-
toms in schizophrenia.

Metabolism of ARI

The bioavailability of the tablet formulation of ARI is 87%, 
maximum plasma concentrations (Cmax) occur 2.8–6.8 h 
after drug intake (depending on the dose), and its pharma-
cokinetics is linear [9]. ARI is metabolized by the hepatic 
cytochrome P450 (CYP450) enzyme system via three bio-
transformation pathways: dehydrogenation, hydroxylation, 
and N-dealkylation [85]. The two isoenzymes, CYP2D6 
and CYP3A4, are mainly involved in the metabolism and 
elimination of ARI. However, the CYP3A4 shows a less sig-
nificant influence on the metabolism of ARI [9]. The active 
metabolite dehydro-aripiprazole (D-ARI) arises as a result 
of a dehydrogenation pathway mediated by both isoenzymes. 
D-ARI accounts for approximately 40% of the drug concen-
tration in plasma [10]. Although ARI and D-ARI exhibit 
similar pharmacological properties, their half-lives differ 
significantly (ARI—75 h versus D-ARI—94 h). Several 
studies have shown the impact of genetic polymorphisms on 
the pharmacokinetic and pharmacodynamic parameters of 
ARI. The Food Drug Administration (FDA) and the Dutch 
Pharmacogenetics Working group (DPWG) recommend 
adjusting the dose of ARI based on the CYP2D6 genotype. 
Applying a pharmacogenetic approach to ARI management 
can help determine a specific dosage for a patient, to ensure 
maximum efficacy with minimal side effects.

Pharmacogenetics

The cytochrome P450 monooxygenases metabolize approxi-
mately 70–80% of all used drugs, including antipsychotic 
drugs. Their expression depends on both genetic and Ta

bl
e 

1  
(c

on
tin

ue
d)

D
ru

g
M

et
ab

ol
is

m
M

ec
ha

ni
sm

 o
f a

ct
io

n
Re

co
m

m
en

de
d 

do
se

A
dv

er
se

 si
de

 e
ffe

ct
s

Re
fe

re
nc

es

Th
ird

-g
en

er
at

io
n 

dr
ug

s

 A
rip

ip
ra

zo
le

de
hy

dr
og

en
at

io
n,

 h
yd

ro
xy

la
tio

n,
 

N
-d

ea
lk

yl
at

io
n 

ca
ta

ly
ze

d 
by

 
cy

to
ch

ro
m

e 
P4

50
 e

nz
ym

es

D
2,

 D
3,

 5
-H

T1
A

, 5
-H

T2
A

, 
5-

H
T2

C
 a

nd
 5

-H
T7

 p
ar

tia
l 

ag
on

ist
5-

H
T2

B
 a

go
ni

st
α1

A
 a

dr
en

er
gi

c,
 H

1 
an

d 
5-

H
T6

 
an

ta
go

ni
st 

α2
 a

dr
en

er
gi

c,
 M

1 
lo

w
 

affi
ni

ty

10
–3

0 
m

g/
da

y
Ex

tra
py

ra
m

id
al

 e
ffe

ct
s, 

he
ad

ac
he

, 
ag

ita
tio

n,
 in

so
m

ni
a,

 a
nx

ie
ty

, 
na

us
ea

 a
nd

 v
om

iti
ng

, a
ka

th
is

ia
, 

lig
ht

-h
ea

de
dn

es
s, 

co
ns

tip
at

io
n

[9
, 6

4–
66

]
D

ru
gB

an
k 

O
nl

in
e

[h
ttp

s:
//​g

o.
​dr

ug
b​a

nk
.​c

om
/​d

ru
gs

/​
D

B
01

2​3
8]

D
ru

gs
.c

om
[h

ttp
s:

//​w
w

w.
​dr

ug
s.​c

om
/​d

os
ag

e/
​

ar
ip

i​p
ra

zo
​le

.​h
tm

l]
 B

re
xp

ip
ra

zo
le

S-
ox

id
at

io
n 

ca
ta

ly
ze

d 
by

 C
Y

P3
A

4 
an

d 
C

Y
P2

D
6

5-
H

T1
A

, D
2 

ag
on

ist
, 5

H
T2

A
, α

2C
, 

α1
B

-a
dr

en
er

gi
c 

an
ta

go
ni

st
2–

4 
m

g/
da

y
W

ei
gh

t g
ai

n,
 e

xt
ra

py
ra

m
id

al
 

sy
m

pt
om

s, 
pr

ol
ac

tin
 e

le
va

tio
n,

 
se

da
tio

n,
 a

nt
ic

ho
lin

er
gi

c 
eff

ec
ts

, 
dy

sl
ip

id
em

ia

[3
7,

 6
7–

69
]

D
ru

gB
an

k 
O

nl
in

e
[h

ttp
s:

//​g
o.

​dr
ug

b​a
nk

.​c
om

/​d
ru

gs
/​

D
B

09
1​2

8]
 C

ar
ip

ra
zi

ne
C

Y
P3

A
4,

 a
nd

 le
ss

 e
xt

en
t b

y 
C

Y
P2

D
6

M
os

tly
 ta

rg
et

 D
2 

an
d 

5-
H

T2
A

 
re

ce
pt

or
s, 

al
so

 p
ar

tia
l 5

-H
T1

A
 

ag
on

ist
, 5

-H
T2

B
 a

nd
 5

-H
T2

A
 

an
ta

go
ni

st,
 h

ist
am

in
e 

H
1 

re
ce

p-
to

rs
 a

nt
ag

on
ist

1.
5–

6 
m

g/
da

y
Ex

tra
py

ra
m

id
al

 sy
m

pt
om

s, 
ak

at
hi

si
a

[6
7,

 7
0]

D
ru

gB
an

k 
O

nl
in

e
[h

ttp
s:

//​g
o.

​dr
ug

b​a
nk

.​c
om

/​d
ru

gs
/​

D
B

06
0​1

6]
D

ru
gs

.c
om

 h
ttp

s:
//​w

w
w.

​dr
ug

s.​c
om

/​
m

tm
/​c

ar
ip

​ra
zi

ne
.​h

tm
l

https://go.drugbank.com/drugs/DB01238
https://go.drugbank.com/drugs/DB01238
https://www.drugs.com/dosage/aripiprazole.html
https://www.drugs.com/dosage/aripiprazole.html
https://go.drugbank.com/drugs/DB09128
https://go.drugbank.com/drugs/DB09128
https://go.drugbank.com/drugs/DB06016
https://go.drugbank.com/drugs/DB06016
https://www.drugs.com/mtm/cariprazine.html
https://www.drugs.com/mtm/cariprazine.html


24	 A. Stelmach et al.

1 3

non-genetic factors, such as age, sex, comorbidities, and 
other medications [86]. The CYP450 system-mediated drug 
conversion can lead to detoxification, creating new, reactive 
molecules accelerating the process of toxic compounds elim-
ination, and hence, general response to the therapy may dif-
fer according to the individual metabolic capacity presented 
by patients [87]. Thus, the overall response to therapy may 
vary depending on the patient's individual metabolic rate.

A recent study, performed in a population of healthy 
volunteers receiving a single oral dose of ARI, confirmed 
that the pharmacokinetic parameters are influenced by the 
polymorphisms of genes encoding metabolizing enzymes 
(CYP2D6, CYP3A4, and CYP3A5) and in the drug trans-
porter (ABCB1) [66]. It is postulated that the pharmacody-
namics of ARI can be affected by polymorphisms in dopa-
mine D2- and serotonin-5-HT2A receptors [88].

Gene polymorphisms and drug response

CYP2D6

Although CYP2D6 constitutes only 2% of the hepatic 
CYPs, it is an essential isoform involved in the metabolism 

of approximately 20–25% of drugs, including antidepres-
sants, antipsychotics, β-blockers, analgesics, and tamoxifen 
[89]. The CYP2D6 gene is highly polymorphic and more 
than 130 allelic variants have been identified so far. These 
variants include single nucleotide polymorphisms (SNPs), 
small insertions/deletions (Ins/Del) of nucleotides, deletion 
of the entire CYP2D6 gene, gene duplication or multiplica-
tions as well as hybrid alleles [90, 91]. The activity of the 
enzyme encoded by each allele, as defined by the clinical 
pharmacogenomics implementation consortium (CPIC), 
can be either normal, reduced, or absent. The CYP2D6*1 
allele is considered as a wild-type (so-called normal) allele 
that encodes enzyme with normal activity. An individual 
with two or one 2D6*1 alleles has a normal metabolic rate 
and is classified as a normal metabolizer (NM) or extensive 
metabolizer (EM). It is possible to predict metabolizer sta-
tus based on the specific combination of alleles: ≥ 3 normal 
function gene copies—ultrarapid metabolizer (UM); 1 or 
2 normal function alleles—normal metabolizer (NM); ≥ 2 
decreased function alleles or 1 decreased function and 1 
no function allele—intermediate metabolizer (IM); ≥ 2 no 
function alleles—poor metabolizer (PM) [92, 93]. It is well 
known that the frequency of CYP2D6 alleles varies among 

Table 2   Aripiprazole affinity for 
human receptors

Ki the binding affinities were assessed in vitro
# Abilify Maintena prescribing information [ABILIFY MAINTENA—Accessdata.fda.gov]
## SHAPIRO et al. 2003 [121]

Types Affinity Affinity Ki (nmol/L) Biological action Pharma-
cological 
action

Dopamine receptors
 D2  +  +  +  +  Very high 0.34# Partial agonist Yes
 D3  +  +  +  +  Very high 0.8# Unknown
 D4  +  Moderate 44# Unknown

Serotonin receptors
 5-HT2B  +  +  +  +  Very high 0.36## Inverse agonist Unknown
 5-HT1A  +  +  +  High 1.7# Partial agonist Unknown
 5-HT2A  +  +  Moderate 3.4# Antagonist/partial agonist Yes
 5-HT2C  +  Limited 15# Partial agonist Unknown
 5-HT7  +  +  +  High 39# (10##) Partial agonist Unknown
 5-HT1D  +  +  Moderate 68## Antagonist Unknown
 5-HT6  +  Limited 570## Antagonist Unknown
 5-HT1B  +  Limited 830## Antagonist Unknown

Noradrenaline receptors
 α1A  +  +  Moderate 57# (26##) Antagonist No
 α1B  +  +  Moderate 35## Antagonist No
 α2C  +  +  Moderate 38## Antagonist No
 α2A  +  +  Moderate 74## Antagonist No
 α2B  +  Limited 103## Antagonist No

Histamine receptors
 H1  +  +  Moderate 61# (25##) Antagonist No
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racial and ethnic groups [94]. A study by Gaedigk and col-
leagues predicted phenotypes in major populations from 
allele frequency data [95]. The frequencies of the CYP2D6 
alleles and genetically predicted phenotypes are presented 
in Fig. 2.

Interestingly, the frequency of UM phenotypes is much 
higher in South-East compared to North-West Europe (6% 
in Greece and Turkey to 1% in Sweden and Denmark, except 
Finland—3.4%). Inversely, the frequency of loss-of-function 
alleles (2D6*4 and 2D6*5) was lower in Mediterranean 
countries and highest in Northern Europe [96].

CYP2D6 metabolizer phenotype influences the half-life 
of ARI, patients with PM phenotype have almost double 
extended mean elimination half-life (146 versus 75 h) [10], 
as they cannot metabolize ARI. It has been observed that 
when the number of active CYP2D6 alleles decreased, AUC​
0-t and T1/2 were higher for ARI, and AUC​0-t and Cmax were 
decreased for D-ARI [66]. As recommended by the FDA and 
the DPWG, the standard dose should be reduced by 50% or 
67% (respectively), regardless of the administration route 
(oral and long-acting injectable). Moreover, a quarter of the 
usual dose should be used in poor metabolizers (PM) tak-
ing strong inhibitors of the CYP3A4 enzyme. In addition, 
no action is recommended for IM or UM; however, recent 

studies have suggested that IM patients may require a lower 
dose of ARI [97, 98]. Surprisingly, a recent study in Chinese 
subjects has shown that CYP2D6 rs1058164 and rs28371699 
also affected the pharmacokinetics of ARI, T1/2, and AUC​
0-∞ but differed significantly between CYP2D6 NM and IM 
[99]. Due to the relatively high frequency of these SNPs in 
the Chinese population dose adjustment should probably be 
considered for IM.

CYP3A4

There are two main allelic variants of CYP3A4, *20 and *22, 
involved in the metabolism of ARI [66]. The CYP3A4*20 
loss-of-function allele resulted in a higher AUC​0-t of 
ARI, and a lower AUC​0-t of D-ARI, thereby increasing 
the patient's plasma levels of ARI [66]. It seems that the 
CYP3A4*22 reduced functioning allele can also affect the 
metabolism of antipsychotics [100], but this allele did not 
affect the pharmacokinetics of either ARI or D-ARI [66].

CYP3A5

The role of CYP3A5 in ARI metabolism is much less sig-
nificant in comparison to CYP2D6 [66]. However, a study 

Fig. 1   Mechanism of action 
of ARI. A ARI, as a partial 
agonist, reduces dopamine-
mediated transmission but does 
not block it like an antagonist. 
B Hyperactive dopamine trans-
mission in mesolimbic brain 
regions mediates positive symp-
toms. ARI works as a function 
antagonist in areas of too high 
dopamine levels. C Hypoactive 
dopamine transmission in meso-
cortical brain regions mediates 
negative symptoms. ARI works 
as a function agonist in areas of 
too-low dopamine levels. DA 
dopamine, ARI aripiprazole, 
ANT antagonist, D2R dopamine 
D2 receptor
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has shown that the CYP3A5*3 allele may influence D-ARI/
ARI ratio—lower values of this parameter were observed 
in individuals with genotype *3/*3 (no CYP3A5 enzyme 
production) compared to *1/*1 and *1/*3 genotypes [66].

CYP1A2 and UGT1A1

Although ARI is not a substrate for CYP1A2 and UGT 
enzymes, a recent study suggested that polymorphism in 
CYP1A2 and UGT1A1 genes may be involved in ARI and 
D-ARI pharmacokinetics [101]. However, this study was 
performed on a small number of healthy volunteers, and 
thus, more studies are needed including studies in patients 
with schizophrenia, in order to confirm the involvement of 
these polymorphisms in ARI metabolism.

ABCB1

ABCB1 gene encodes the membrane-associated protein 
(P-glycoprotein), a member of the superfamily of ATP-
binding cassette (ABC) transporters, responsible for ATP-
dependent active transport of drugs. ABCB1 protein is 
involved in processes, such as drug absorption, distribu-
tion, and elimination. It is postulated that the synonymous 
C1236T polymorphism influenced the expression level of 
the ABCB1 gene [102, 103]; however, the results are con-
tradictory and further studies are needed to evaluate the 
association between the C1236T polymorphism and gene 
expression. Interestingly, the pharmacokinetic parameters of 
ARI and D-ARI were influenced by the synonymous C1236T 

polymorphism in the ABCB1 gene. The clearance of ARI, 
AUC​0-t, and Cmax for D-ARI as well as the D-ARI/ARI ratio 
had higher values in C/C subjects compared to T/T subjects 
[66].

DRD2

There are many variants of the DRD2 gene, including − 141 
Ins/Del, Ser311Cys, C957T, and Taq1A, that may affect 
antipsychotic response. The − 141 Ins/Del polymorphism 
is a deletion of one nucleotide (cytosine) at position − 141 
of the 5' promoter region. Imaging studies in healthy vol-
unteers showed that carriers of the − 141 Del allele have 
increased striatal D2 receptor density [104]. PGx testing 
indicated that carriers of the Del allele had reduced response 
to antipsychotic drugs [105]. The Ser311Cys DRD2 poly-
morphism results in a substitution of an amino acid at posi-
tion 311 (serine to cysteine). Patients with schizophrenia 
and the Ser311 allele are more resistant to treatment with 
risperidone than patients carrying the Cys311 allele [106]. 
Although the C957T polymorphism is a synonymous vari-
ant and does not change the amino acid sequence of the 
resulting protein, it can alter mRNA stability [107]. Reduced 
translation and mRNA stability were associated with the 
T allele [108], moreover, the T allele showed a protective 
effect against schizophrenia [109]. The Taq1A polymor-
phism is a missense variant (cytosine is replaced with thy-
mine) resulting in an amino acid substitution at position 
713 (Glu713Lys, glutamic acid to lysine). The Taq1A*1A 
polymorphism seems to be especially important regarding 

Fig. 2   The frequencies of CYP2D6 alleles and predicted phenotypes 
in the five populations. The sum of allelic frequencies is not 100% as 
they are average values in the given population. I increased function-
ing allele, N-F non-functioning allele, R reduced functioning allele, 

F functioning (normal) allele, UM ultrarapid metabolizer, PM poor 
metabolizer, IM intermediate metabolizer, NM normal metabolizer. 
(Diagrams have been prepared based on data provided by Gaedigk 
et al. 2017 [95])
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the effectiveness of antipsychotic treatments. The risk allele, 
A1 (thymine) allele that reduce the expression of the DRD2 
gene decreases D2 receptor density in the striatum [104]. A 
further study performed on healthy volunteers, found that 
the A1/A1 subjects showed increased metabolic activity in 
the frontal lobe compared to the A2/A2 (wild-type) subjects. 
Thus, patients with the A1/A1 genotype may respond bet-
ter to ARI treatment [110]. Another study in patients with 
schizophrenia evaluated an association between the response 
to ARI treatment and four polymorphisms in the DRD2 gene 
mentioned above [108]. The carriers of the A1 allele with 
positive symptoms respond much better to ARI relative to 
individuals with A2/A2 genotype. Furthermore, regarding 
the C957T polymorphism, patients with T/T genotype had 
better ARI response for excitement symptoms compared to 
C/C genotype. This study also revealed no association with 
the ARI response and two polymorphisms (− 141 Ins/Del 
and Ser311Cys) [108].

5‑HTR2A and 5‑HTR1A

Among various polymorphisms of the 5-HTR2A gene, the 
T102C variant is the most studied. The C allele decreases 
receptor expression and receptor binding potentials [111, 
112]. A study by Lane et al. showed that patients with the 
C/C genotype respond better to risperidone treatment (espe-
cially for negative symptoms of schizophrenia) [113]. Like-
wise, a significantly better response to olanzapine treatment 
was observed in patients with positive symptoms of schizo-
phrenia and the C/C genotype [114]. In contrast, another 
study identified that the C allele is associated with less effec-
tive ARI treatment on negative symptoms of schizophrenia 
[115]. Another polymorphism, C1354T, is a missense vari-
ant of the 5-HTR2A gene resulting in an amino acid substi-
tution at position 452 (Hys452Tyr, histidine to tyrosine). 
This polymorphism may alter the tertiary structure of the 
protein and thus may disrupt the function of the receptor. 
The homozygous (His/His) respond better to olanzapine 

treatment, this association was noticed in terms of positive 
symptoms [114].

The − 1019C/G polymorphism in the promoter region 
of the 5HTR1A gene increases its expression level both in 
animal models and humans. Individuals with G/G genotype 
have increased density of 5-HT1A receptor density in presyn-
aptic raphe neurons [116]. In patients with the C/C geno-
type olanzapine or perospirone more effectively improved 
the cognitive deficit of schizophrenia (attention) than in 
patients having G/C and G/G genotypes [116]. Previous 
studies showed that the response to treatment with various 
antipsychotics was limited when the G allele was present, 
possibly due to the increased receptor density, which may 
result in the lower efficacy of antipsychotic drugs [117, 118].

Gene polymorphisms and metabolic side effects

Generally, ARI is well tolerated and not associated with sig-
nificant EPS or raised prolactin concentrations. However, 
in some patients, it can cause side effects, such as increased 
blood glucose or cholesterol levels. Typically, ARI leads to 
low prolactin elevation, but in less than 5% of patients can 
sometimes cause hyperprolactinemia [119]. A recent study 
performed on healthy volunteers revealed that polymor-
phisms in specific genes can affect the levels of prolactin, 
C-peptide, insulin, and cholesterol [120]. Table 3 presents 
the relationship between metabolic parameters and gene pol-
ymorphisms identified after 5 days of ARI administration.

Conclusions

In this review, we discuss the possible association between 
gene polymorphisms and ARI response. Although the FDA 
and DPWG recommended dosage adjustments for patients 
who are CYP2D6 poor metabolizers, it seems that other 
genetic variations are also related to pharmacokinetic, phar-
macodynamics, and side effects of the drug. The specific 
genetic profile of a patient can determine the effectiveness 

Table 3   Metabolic effects 
of aripiprazole in healthy 
volunteers

The table is based on information from a study in healthy volunteers [120]

Metabolic parameters Gene Polymor-
phisms/phe-
notype

Effects

Prolactin CYP3A4 PM ↑ Concentrations compared to IM and NM phenotypes
ABCB1 rs10280101

rs12720067
rs11983225

↑ Concentrations in subjects with A-C-T haplotype

C-peptide COMT rs4680 ↑ Levels in G/G genotype
rs13306278 ↑ Levels in T allele carriers

Insulin BDNF rs6265 Greater increment in C/C genotype
Cholesterol HTR2A rs6314 ↑ Concentrations in C/C genotype
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and tolerability of ARI. We believe that more targeted phar-
macogenetics testing prior to prescribing ARI will provide 
the opportunity for personalized medicine to treat schizo-
phrenia, thereby improving clinical outcomes and patient 
satisfaction. However, extensive pharmacogenetic studies 
are needed to assess the relevance of specific gene poly-
morphisms in response to the drug, which will be included 
in future diagnostic panels.
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