Skip to main content
Log in

Intrathecal pramipexole and selegiline for sensory and motor block in rats

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The purpose of the study was to investigate spinal sensory and motor block by antiparkinsonian drugs (pramipexole and selegiline), and the combination of pramipexole and the local anesthetic lidocaine.

Methods

Using a technique of spinal blockade in rats, the effects of pramipexole, selegiline, and coadministration of pramipexole and lidocaine on spinal blockades of motor and sensory function were investigated.

Results

Under a concentration of 100 mM, pramipexole displayed more potent and had a longer duration of nociceptive, proprioceptive, and motor block than selegiline, whereas pramipexole and selegiline were less potent in comparison to lidocaine. Pramipexole produced spinal nociceptive, proprioceptive, and motor blocks in a dose-related manner. On the ED50 (50% effective dose) basis, the rank-order potency on nociceptive, proprioceptive, and motor block was pramipexole < lidocaine. The spinal block duration of pramipexole was greater than lidocaine at every equipotent dose tested (ED25, ED50, and ED75). Coadministration of lidocaine (ED50 or ED95) with pramipexole (4.5 μmol/kg) improved the effect (efficacy) and duration of the spinal block.

Conclusions

Pramipexole and selegiline were less potent than lidocaine to block sensory and motor responses. The duration of the spinal anesthetic effect of pramipexole was longer than lidocaine. At a non-effective dose, pramipexole increased the duration of efficacy of lidocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AUC:

Area under the curve

COMT:

Catechol-O-methyltransferase

ED25s:

25% Effective doses

ED50 :

50% Effective dose

FDA:

U.S. Food and Drug Administration

IASP:

International Association for the Study of Pain

MAO-B:

Monoamine oxidase B

% MPE:

Percent of the maximal possible effect

Nav channels:

Voltage-gated sodium channels

OUD:

Opioid use disorder

% PE:

Percent of the possible effect

SAS NLIN Procedures:

Statistical analysis system nonlinear procedures

Tukey’s HSD test:

Tukey’s honestly significant difference test

References

  1. Kitamura Y, Kakimura J, Taniguchi T. Antiparkinsonian drugs and their neuroprotective effects. Biol Pharm Bull. 2002;25:284–90.

    Article  CAS  PubMed  Google Scholar 

  2. Young BK, Camicioli R, Ganzini L. Neuropsychiatric adverse effects of antiparkinsonian drugs. Characteristics, evaluation and treatment. Drugs Aging. 1997;10:367–83.

    Article  CAS  PubMed  Google Scholar 

  3. Chen YW, Shieh JP, Chen YC, Leung YM, Hung CH, Wang JJ. Cutaneous analgesia after subcutaneous injection of memantine and amantadine and their systemic toxicity in rats. Eur J Pharmacol. 2012;693:25–30.

    Article  CAS  PubMed  Google Scholar 

  4. Tzeng JI, Kan CD, Wang JN, Wang JJ, Lin HT, Hung CH. Intrathecal amantadine for prolonged spinal blockade of sensory and motor functions in rats. Fundam Clin Pharmacol. 2016;30:357–63.

    Article  CAS  PubMed  Google Scholar 

  5. Lirk P, Hollmann MW, Strichartz G. The science of local anesthesia: basic research, clinical application, and future directions. Anesth Analg. 2018;126:1381–92.

    Article  CAS  PubMed  Google Scholar 

  6. Urru M, Muzzi M, Coppi E, Ranieri G, Buonvicino D, Camaioni E, et al. Dexpramipexole blocks Nav1.8 sodium channels and provides analgesia in multiple nociceptive and neuropathic pain models. Pain. 2020;161:831–41.

    Article  CAS  PubMed  Google Scholar 

  7. Lenkey N, Karoly R, Lukacs P, Vizi ES, Sunesen M, Fodor L, et al. Classification of drugs based on properties of sodium channel inhibition: a comparative automated patch-clamp study. PLoS ONE. 2010;5:e15568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mantouvalou M, Ralli S, Arnaoutoglou H, Tziris G, Papadopoulos G. Spinal anesthesia: comparison of plain ropivacaine, bupivacaine and levobupivacaine for lower abdominal surgery. Acta Anaesthesiol Belg. 2008;59:65–71.

    CAS  PubMed  Google Scholar 

  9. Moore JJ, Saadabadi A. Selegiline. StatPearls. Treasure Island (FL); 2021.

  10. Wilson SM, Wurst MG, Whatley MF, Daniels RN. Classics in chemical neuroscience: pramipexole. ACS Chem Neurosci. 2020;11:2506–12.

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg JF, Burdick KE, Endick CJ. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry. 2004;161:564–6.

    Article  PubMed  Google Scholar 

  12. Holman AJ, Myers RR. A randomized, double-blind, placebo-controlled trial of pramipexole, a dopamine agonist, in patients with fibromyalgia receiving concomitant medications. Arthritis Rheum. 2005;52:2495–505.

    Article  CAS  PubMed  Google Scholar 

  13. Singh R, Parmar M. Pramipexole. StatPearls. Treasure Island (FL); 2020.

  14. Cassano P, Lattanzi L, Soldani F, Navari S, Battistini G, Gemignani A, et al. Pramipexole in treatment-resistant depression: an extended follow-up. Depress Anxiety. 2004;20:131–8.

    Article  CAS  PubMed  Google Scholar 

  15. Chen YW, Chiu CC, Lin HT, Wang JJ, Hung CH. Adding dopamine to proxymetacaine or oxybuprocaine solutions potentiates and prolongs the cutaneous antinociception in rats. Anesth Analg. 2018;126:1721–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tobe M, Suto T, Saito S. The history and progress of local anesthesia: multiple approaches to elongate the action. J Anesth. 2018;32:632–6.

    Article  PubMed  Google Scholar 

  17. Chou AK, Chiu CC, Han MM, Chen YW, Wang JJ, Hung CH. Intrathecal pramoxine causes long-lasting spinal sensory and motor block in rats. J Pharm Pharmacol. 2018;70:543–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tzeng JI, Chiu CC, Wang JJ, Hung CH, Chen YW. Spinal sensory and motor blockade by intrathecal doxylamine and triprolidine in rats. J Pharm Pharmacol. 2018;70:1654–61.

    Article  CAS  PubMed  Google Scholar 

  19. Chen YW, Chiu CC, Liu KS, Hung CH, Wang JJ. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats. Fundam Clin Pharmacol. 2015;29:567–74.

    Article  CAS  PubMed  Google Scholar 

  20. Chen YW, Chiu CC, Wang JN, Hung CH, Wang JJ. Ifenprodil for prolonged spinal blockades of motor function and nociception in rats. Pharmacol Rep. 2016;68:357–62.

    Article  CAS  PubMed  Google Scholar 

  21. Chen YW, Tzeng JI, Chen YC, Hung CH, Wang JJ. Intrathecal orphenadrine elicits spinal block in the rat. Eur J Pharmacol. 2014;742C:125–30.

    Article  CAS  Google Scholar 

  22. Tzeng JI, Lin HT, Chen YW, Hung CH, Wang JJ. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats. Eur J Pharmacol. 2015;752C:55–60.

    Article  CAS  Google Scholar 

  23. Tzeng JI, Wang JN, Wang JJ, Chen YW, Hung CH. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats. Neurosci Lett. 2016;618:94–8.

    Article  CAS  PubMed  Google Scholar 

  24. Leung YM, Chu CC, Kuo CS, Chen YW, Hung CH, Wang JJ. Isobolographic analysis of interaction between nisoxetine- and mepivacaine-induced spinal blockades in rats. Fundam Clin Pharmacol. 2014;28:88–94.

    Article  CAS  PubMed  Google Scholar 

  25. Hung CH, Chu CC, Chen YC, Chen YW, Wang JJ. Rimantadine and 2-adamantanamine elicit local anesthesia to cutaneous nociceptive stimuli in a rat model. Fundam Clin Pharmacol. 2014;28:199–204.

    Article  CAS  PubMed  Google Scholar 

  26. Chiu CC, Chen JY, Chen YW, Wang JJ, Hung CH. Subcutaneous brompheniramine for cutaneous analgesia in rats. Eur J Pharmacol. 2019;860: 172544.

    Article  CAS  PubMed  Google Scholar 

  27. Chang YJ, Liu KS, Wang JJ, Hung CH, Chen YW. Chloroquine for prolonged skin analgesia in rats. Neurosci Lett. 2020;735: 135233.

    Article  CAS  PubMed  Google Scholar 

  28. Chiu CC, Liu KS, Chen YW, Hung CH, Wang JJ. Chlorpheniramine produces cutaneous analgesia in rats. Pharmacol Rep. 2020;72:827–32.

    Article  CAS  PubMed  Google Scholar 

  29. Chou AK, Chiu CC, Chen YW, Wang JJ, Hung CH. Phentolamine reverses epinephrine-enhanced skin antinociception of dibucaine in rats. Anesth Analg. 2019;128:1336–43.

    Article  CAS  PubMed  Google Scholar 

  30. Ukponmwan OE, Rupreht J, Dzoljic M. An analgesic effect of enkephalinase inhibition is modulated by monoamine oxidase-B and REM sleep deprivations. Naunyn Schmiedebergs Arch Pharmacol. 1986;332:376–9.

    Article  CAS  PubMed  Google Scholar 

  31. Andrabi SS, Ali M, Tabassum H, Parveen S, Parvez S. Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. Dis Model Mech. 2019;12:dmm033860.

  32. Deng C, Zhu J, Yuan J, Xiang Y, Dai L. Pramipexole inhibits MPP(+)-induced neurotoxicity by miR-494-3p/BDNF. Neurochem Res. 2020;45:268–77.

    Article  CAS  PubMed  Google Scholar 

  33. Han SC, Katus L, Frucht S. Dramatic response to pramipexole in delayed-onset parkinsonism from osmotic demyelinating syndrome. Tremor Other Hyperkinet Mov (N Y). 2020;10:9.

    Article  Google Scholar 

  34. Naoi M, Maruyama W, Shamoto-Nagai M. Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate alpha-synuclein cytotoxicity in disease-modifying therapy for Parkinson’s disease. J Neural Transm (Vienna). 2020;127:131–47.

    Article  CAS  Google Scholar 

  35. Tzeng JI, Wang JN, Wang JJ, Chen YW, Hung CH. Cutaneous synergistic analgesia of bupivacaine in combination with dopamine in rats. Neurosci Lett. 2016;620:88–92.

    Article  CAS  PubMed  Google Scholar 

  36. Goldblum E, Atchabahian A. The use of 2-chloroprocaine for spinal anaesthesia. Acta Anaesthesiol Scand. 2013;57:545–52.

    Article  CAS  PubMed  Google Scholar 

  37. Fanelli A, Ghisi D, Allegri M. Is spinal anaesthesia a suitable technique for ultra-short outpatient procedures? Acta Biomed. 2013;84:76–80.

    PubMed  Google Scholar 

  38. Zhao X, Sun Y, Li Z. Topical anesthesia therapy using lidocaine-loaded nanostructured lipid carriers: tocopheryl polyethylene glycol 1000 succinate-modified transdermal delivery system. Drug Des Devel Ther. 2018;12:4231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turabekova MA, Rasulev BF, Dzhakhangirov FN, Toropov AA, Leszczynska D, Leszczynski J. Aconitum and delphinium diterpenoid alkaloids of local anesthetic activity: comparative QSAR analysis based on GA-MLRA/PLS and optimal descriptors approach. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2014;32:213–38.

    Article  CAS  PubMed  Google Scholar 

  40. Escalona R, Fawcett J, Rush AJ. Pramipexole augmentation of buprenorphine improves pain and depression in opioid use disorder: a case report. Prim Care Companion CNS Disord. 2020;22:20l02598.

  41. Hung CH, Chiu CC, Liu KS, Chen YW, Wang JJ. Synergistic effects of serotonin or dopamine combined with lidocaine at producing nociceptive block in rats. Reg Anesth Pain Med. 2017;42:351–6.

    Article  CAS  PubMed  Google Scholar 

  42. Job CA, Fernandez MA, Dorph DJ, Betcher AM. Inguinal hernia repair. Comparison of local, epidural, and general anesthesia. N Y State J Med. 1979;79:1730–3.

    CAS  PubMed  Google Scholar 

  43. Lemoine S, Rouet R, Manrique A, Hanouz JL. Effect of long-chain triglyceride lipid emulsion on bupivacaine-induced changes in electrophysiological parameters of rabbit Purkinje cells. Fundam Clin Pharmacol. 2014;28:481–8.

    Article  CAS  PubMed  Google Scholar 

  44. Cameron AE, Cross FW. Pain and mobility after inguinal herniorrhaphy: ineffectiveness of subcutaneous bupivacaine. Br J Surg. 1985;72:68–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mahajan A, Derian A. Local anesthetic toxicity. StatPearls. Treasure Island (FL); 2020.

  46. Swain A, Nag DS, Sahu S, Samaddar DP. Adjuvants to local anesthetics: current understanding and future trends. World J Clin Cases. 2017;5:307–23.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Opperer M, Gerner P, Memtsoudis SG. Additives to local anesthetics for peripheral nerve blocks or local anesthesia: a review of the literature. Pain Manag. 2015;5:117–28.

    Article  PubMed  Google Scholar 

  48. Singh R, Parmar M. Pramipexole. StatPearls. Treasure Island (FL); 2021.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the grant (MOST 110-2314-B-039-014-MY3; MOST 109-2918-I-039-001) from the Ministry of Science and Technology (Taiwan) and by the grant (CMU110-MF-110) from the China Medical University (Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsia Hung.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, CC., Chiu, CC., Wang, JJ. et al. Intrathecal pramipexole and selegiline for sensory and motor block in rats. Pharmacol. Rep 74, 470–480 (2022). https://doi.org/10.1007/s43440-022-00368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00368-x

Keywords

Navigation