Skip to main content

Advertisement

Log in

How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kavitha A, Chitra L, Kanaga R. Brain tumor segmentation using genetic algorithm with SVM classifier. Int J Adv Res Electr Electron Instrum Eng. 2016;5:1468–71.

    Google Scholar 

  2. Logeswari T, Karnan M. An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map. Int J Comput Theory Eng. 2010;2:591–5.

    Google Scholar 

  3. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. The Lancet. 2018;392:432–46.

    Google Scholar 

  4. McFaline-Figueroa JR, Lee EQ. Brain tumors. Am J Med. 2018;131:874–82.

    PubMed  Google Scholar 

  5. Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, et al. Protective role of natural products in glioblastoma multiforme: a focus on nitric oxide pathway. Curr Med Chem. 2021;28:377–400.

    CAS  PubMed  Google Scholar 

  6. Fults D, Pedone CA, Thomas GA, White R. Allelotype of human malignant astrocytoma. Cancer Res. 1990;50:5784–9.

    CAS  PubMed  Google Scholar 

  7. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61:215–25.

    PubMed  Google Scholar 

  8. Sasaki N, Toyoda M, Ishiwata T. Gangliosides as signaling regulators in cancer. Int J Mol Sci. 2021;22:5076. https://doi.org/10.3390/ijms22105076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong F, Li Q, Xu D, Xiu W, Zeng Q, Zhu X, et al. Differentiation between pilocytic astrocytoma and glioblastoma: a decision tree model using contrast-enhanced magnetic resonance imaging-derived quantitative radiomic features. Eur Radiol. 2019;29:3968–75.

    PubMed  Google Scholar 

  10. Buckner JC. Factors influencing survival in high-grade gliomas. Semin Oncol. 2003;30:10–4.

    PubMed  Google Scholar 

  11. Jalili-Nik M, Sadeghi MM, Mohtashami E, Mollazadeh H, Afshari AR, Sahebkar A. Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/3237983.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mohtashami E, Shafaei-Bajestani N, Mollazadeh H, Mousavi SH, Jalili-Nik M, Sahebkar A, et al. The current state of potential therapeutic modalities for glioblastoma multiforme: a clinical review. Curr Drug Metab. 2020;21:564–78.

    CAS  PubMed  Google Scholar 

  13. Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, et al. Glioblastoma Multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021. https://doi.org/10.1016/j.phrs.2021.105780.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Afshari AR, Jalili-Nik M, Abbasinezhad-Moud F, Javid H, Karimi M, Mollazadeh H, et al. Antitumor effects of curcuminoids in glioblastoma multiforme: an updated literature review. Curr Med Chem. 2021. https://doi.org/10.2174/0929867327666201111145212.

    Article  PubMed  Google Scholar 

  15. Maghrouni A, Givari M, Jalili-Nik M, Mollazadeh H, Bibak B, Sadeghi MM, et al. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: preclinical evidence and clinical interventions. Int Immunopharmacol. 2021;93: 107403. https://doi.org/10.1016/j.intimp.2021.107403.

    Article  CAS  PubMed  Google Scholar 

  16. Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, et al. Deciphering the role of glutamate signaling in glioblastoma multiforme: current therapeutic modalities and future directions. Curr Pharm Des. 2020;26:4777–88.

    CAS  PubMed  Google Scholar 

  17. Afshari AR, Mollazadeh H, Sahebkar A. Minocycline in treating glioblastoma multiforme: far beyond a conventional antibiotic. J Oncol. 2020. https://doi.org/10.1155/2020/8659802.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget. 2017;8:99179.

    PubMed  PubMed Central  Google Scholar 

  19. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996;8:47–52.

    CAS  PubMed  Google Scholar 

  20. Stark S, Sachse R, Liedl T, Hensen J, Rohde G, Wensing G, et al. Vardenafil increases penile rigidity and tumescence in men with erectile dysfunction after a single oral dose. Eur Urol. 2001;40:181–90.

    CAS  PubMed  Google Scholar 

  21. Corbin JD, Beasley A, Blount MA, Francis SH. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun. 2005;334:930–8.

    CAS  PubMed  Google Scholar 

  22. Sebkhi A, Strange JW, Phillips SC, Wharton J, Wilkins MR. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation. 2003;107:3230–5.

    CAS  PubMed  Google Scholar 

  23. Ashour A. Phosphodiesterase-5 inhibitors in the management of cancer. Asian J Biomed Pharm Sci. 2013;3:1–5.

    Google Scholar 

  24. Mostafa T. Oral phosphodiesterase type 5 inhibitors: nonerectogenic beneficial uses. J Sex Med. 2008;5:2502–18.

    CAS  PubMed  Google Scholar 

  25. Catalano S, Panza S, Augimeri G, Giordano C, Malivindi R, Gelsomino L, et al. Phosphodiesterase 5 (PDE5) is highly expressed in cancer-associated fibroblasts and enhances breast tumor progression. Cancers. 2019;11:1740. https://doi.org/10.3390/cancers11111740.

    Article  CAS  PubMed Central  Google Scholar 

  26. Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)—selective PDE5 inhibitors as anticancer agents. Ecancermedicalscience. 2018. https://doi.org/10.3332/ecancer.2018.824.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, et al. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Front Oncol. 2021;11:208. https://doi.org/10.3389/fonc.2021.627229.

    Article  Google Scholar 

  28. Li Q, Shu Y. Pharmacological modulation of cytotoxicity and cellular uptake of anticancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res. 2014;31:86–96.

    PubMed  Google Scholar 

  29. Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discovery. 2006;5:660–70.

    CAS  PubMed  Google Scholar 

  30. Prickaerts J, Van Staveren W, Şik A, Markerink-van Ittersum M, Niewöhner U, Van der Staay F, et al. Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience. 2002;113:351–61.

    CAS  PubMed  Google Scholar 

  31. Santos AI, Carreira BP, Nobre RJ, Carvalho CM, Araújo IM. Stimulation of neural stem cell proliferation by inhibition of phosphodiesterase 5. Stem Cells Int. 2014. https://doi.org/10.1155/2014/878397.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Black KL, Yin D, Ong JM, Hu J, Konda BM, Wang X, et al. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 2008;1230:290–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lyday RW, Etters AM, Kim C, Magana F, Pontipiedra GM, Singh NK, et al. PDE5 inhibitors offer novel mechanisms in combination and solo cancer therapy. Curr Cancer Ther Rev. 2017;13:107–19.

    CAS  Google Scholar 

  34. Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300. https://doi.org/10.3389/fphar.2018.01300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petrelli A, Valabrega G. Multitarget drugs: the present and the future of cancer therapy. Expert Opin Pharmacother. 2009;10:589–600.

    CAS  PubMed  Google Scholar 

  36. Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20:416–29.

    CAS  PubMed  Google Scholar 

  37. Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, et al. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother. 2017;94:541–56.

    CAS  PubMed  Google Scholar 

  38. Francis SH, Busch JL, Corbin JD. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peak TC, Richman A, Gur S, Yafi FA, Hellstrom WJ. The role of PDE5 inhibitors and the NO/cGMP pathway in cancer. Sex Med Rev. 2016;4:74–84.

    PubMed  Google Scholar 

  40. Huang W, Sundquist J, Sundquist K, Ji J. Use of phosphodiesterase 5 inhibitors is associated with lower risk of colorectal cancer in men with benign colorectal neoplasms. Gastroenterology. 2019;157:672–81 (e4).

    CAS  PubMed  Google Scholar 

  41. Barone I, Panza S, Giordano C, Gyorffy B, Augimeri G, Gelsomino L, et al. Role of phosphodiesterase 5 (PDE5) in breast cancer stroma: implications for targeted therapy. FASEB J. 2019;33:496. https://doi.org/10.1096/fasebj.2019.33.1_supplement.496.1.

    Article  Google Scholar 

  42. Sponziello M, Verrienti A, Rosignolo F, De Rose RF, Pecce V, Maggisano V, et al. PDE5 expression in human thyroid tumors and effects of PDE5 inhibitors on growth and migration of cancer cells. Endocrine. 2015;50:434–41.

    CAS  PubMed  Google Scholar 

  43. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520.

    CAS  PubMed  Google Scholar 

  44. Thompson WJ, Piazza GA, Li H, Liu L, Fetter J, Zhu B, et al. Exisulind induction of apoptosis involves guanosine 3′, 5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Can Res. 2000;60:3338–42.

    CAS  Google Scholar 

  45. Li H, Liu L, David ML, Whitehead CM, Chen M, Fetter JR, et al. Pro-apoptotic actions of exisulind and CP461 in SW480 colon tumor cells involve β-catenin and cyclin D1 down-regulation. Biochem Pharmacol. 2002;64:1325–36.

    CAS  PubMed  Google Scholar 

  46. Tinsley HN, Gary BD, Keeton AB, Lu W, Li Y, Piazza GA. Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin–mediated transcription in human breast tumor cells. Cancer Prev Res. 2011;4:1275–84.

    CAS  Google Scholar 

  47. Das A, Xi L, Kukreja RC. Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3β∗. J Biol Chem. 2008;283:29572–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarfati M, Mateo V, Baudet S, Rubio M, Fernandez C, Davi F, et al. Sildenafil and vardenafil, types 5 and 6 phosphodiesterase inhibitors, induce caspase-dependent apoptosis of B-chronic lymphocytic leukemia cells. Blood J Am Soc Hematol. 2003;101:265–9.

    CAS  Google Scholar 

  49. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10:63–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77:38–52.

    PubMed  Google Scholar 

  51. Hamilton TK, Hu N, Kolomitro K, Bell EN, Maurice DH, Graham CH, et al. Potential therapeutic applications of phosphodiesterase inhibition in prostate cancer. World J Urol. 2013;31:325–30.

    CAS  PubMed  Google Scholar 

  52. Brewer ME, Kim ED. Penile rehabilitation therapy with PDE-V inhibitors following radical prostatectomy: proceed with caution. Adv Urol. 2009. https://doi.org/10.1155/2009/852437.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aoun F, Slaoui A, Albisinni S, Assenmacher G, de Plaen E, Azzo J-M, et al. Association between phosphodiesterase type 5 inhibitors and prostate cancer: a systematic review. Prog Urol. 2018;28:560–6.

    PubMed  Google Scholar 

  54. Machen GL, Rajab MH, Pruszynski J, Coffield KS. Phosphodiesterase type 5 inhibitors usage and prostate cancer: a match-paired analysis. Transl Androl Urol. 2017;6:879.

    PubMed  PubMed Central  Google Scholar 

  55. Goluboff ET, Shabsigh A, Saidi JA, Weinstein IB, Mitra N, Heitjan D, et al. Exisulind (sulindac sulfone) suppresses growth of human prostate cancer in a nude mouse xenograft model by increasing apoptosis. Urology. 1999;53:440–5.

    CAS  PubMed  Google Scholar 

  56. Goluboff ET, Prager D, Rukstalis D, Giantonio B, Madorsky M, Barken I, et al. Safety and efficacy of exisulind for treatment of recurrent prostate cancer after radical prostatectomy. J Urol. 2001;166:882–6.

    CAS  PubMed  Google Scholar 

  57. Narayanan BA, Reddy BS, Bosland MC, Nargi D, Horton L, Randolph C, et al. Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence. Clin Cancer Res. 2007;13:5965–73.

    CAS  PubMed  Google Scholar 

  58. Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M, Kukreja RC, et al. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther. 2014;15:758–67.

    PubMed  PubMed Central  Google Scholar 

  59. Das A, Durrant D, Mitchell C, Mayton E, Hoke NN, Salloum FN, et al. Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci. 2010;107:18202–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Das A, Durrant D, Mitchell C, Dent P, Batra SK, Kukreja RC. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget. 2016;7:4399–413.

    PubMed  Google Scholar 

  61. Booth L, Roberts JL, Cruickshanks N, Conley A, Durrant DE, Das A, et al. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol Pharmacol. 2014;85:408–19.

    PubMed  PubMed Central  Google Scholar 

  62. Booth L, Roberts JL, Cruickshanks N, Grant S, Poklepovic A, Dent P. Regulation of osu-03012 toxicity by ER stress proteins and ER stress–inducing drugs. Mol Cancer Ther. 2014;13:2384–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu N, Mei L, Fan X, Tang C, Ji X, Hu X, et al. Phosphodiesterase 5/protein kinase G signal governs stemness of prostate cancer stem cells through Hippo pathway. Cancer Lett. 2016;378:38–50.

    CAS  PubMed  Google Scholar 

  64. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63–79.

    CAS  PubMed  Google Scholar 

  65. Di Cara F, Maile T, Parsons B, Magico A, Basu S, Tapon N, et al. The Hippo pathway promotes cell survival in response to chemical stress. Cell Death Differ. 2015;22:1526–39.

    PubMed  PubMed Central  Google Scholar 

  66. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hansen CG, Moroishi T, Guan K-L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    CAS  PubMed  Google Scholar 

  69. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    CAS  PubMed  Google Scholar 

  70. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 2014;25:166–80.

    CAS  PubMed  Google Scholar 

  71. Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE, et al. Tumor-propagating cells and Y ap/T az activity contribute to lung tumor progression and metastasis. EMBO J. 2014;33:468–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen LT, Tretiakova MS, Silvis MR, Lucas J, Klezovitch O, Coleman I, et al. ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors. Cancer Cell. 2015;27:797–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157:1324–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. van Rensburg HJJ, Azad T, Ling M, Hao Y, Snetsinger B, Khanal P, et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res. 2018;78:1457–70.

    Google Scholar 

  76. Danley KT, Tan A, Catalona WJ, Leikin R, Helenowski I, Jovanovic B, et al. The association of phosphodiesterase-5 inhibitors with the biochemical recurrence-free and overall survival of patients with prostate cancer following radical prostatectomy. Urol Oncol. 2021. https://doi.org/10.1016/j.urolonc.2021.05.031.

    Article  PubMed  Google Scholar 

  77. Michl U, Molfenter F, Graefen M, Tennstedt P, Ahyai S, Beyer B, et al. Use of phosphodiesterase type 5 inhibitors may adversely impact biochemical recurrence after radical prostatectomy. J Urol. 2015;193:479–83.

    CAS  PubMed  Google Scholar 

  78. Gallina A, Bianchi M, Gandaglia G, Cucchiara V, Suardi N, Montorsi F, et al. A detailed analysis of the association between postoperative phosphodiesterase type 5 inhibitor use and the risk of biochemical recurrence after radical prostatectomy. Eur Urol. 2015;68:750–3.

    CAS  PubMed  Google Scholar 

  79. Jamnagerwalla J, Howard LE, Vidal AC, Moreira DM, Castro-Santamaria R, Andriole GL, et al. The association between phosphodiesterase type 5 inhibitors and prostate cancer: results from the REDUCE study. J Urol. 2016;196:715–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chavez AH, Coffield KS, Rajab MH, Jo C. Incidence rate of prostate cancer in men treated for erectile dysfunction with phosphodiesterase type 5 inhibitors: retrospective analysis. Asian J Androl. 2013;15:246–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghahremanloo A, Javid H, Afshari AR, Hashemy SI. Investigation of the role of neurokinin-1 receptor inhibition using aprepitant in the apoptotic cell death through PI3K/Akt/NF-κB signal transduction pathways in colon cancer cells. BioMed Res Int. 2021. https://doi.org/10.1155/2021/1383878.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rahmani F, Hashemzehi M, Avan A, Barneh F, Asgharzadeh F, Marjaneh RM, et al. Rigosertib elicits potent antitumor responses in colorectal cancer by inhibiting Ras signaling pathway. Cell Signal. 2021;85: 110069. https://doi.org/10.1016/j.cellsig.2021.110069.

    Article  CAS  PubMed  Google Scholar 

  83. Mosier E, Jackson CS, Cox GA, Browning D, Vega KJ. S0295 Regular sildenafil use appears to lower the incidence of colon polyps and colorectal cancer. Official J Am College Gastroenterol. 2020;115:S144. https://doi.org/10.14309/01.ajg.0000703228.18929.1b.

    Article  Google Scholar 

  84. Liu L, Li H, Underwood T, Lloyd M, David M, Sperl G, et al. Cyclic GMP-dependent protein kinase activation and induction by exisulind and CP461 in colon tumor cells. J Pharmacol Exp Ther. 2001;299:583–92.

    CAS  PubMed  Google Scholar 

  85. Tinsley HN, Gary BD, Thaiparambil J, Li N, Lu W, Li Y, et al. Colon tumor cell growth–inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev Res. 2010;3:1303–13.

    CAS  Google Scholar 

  86. Rice PL, Goldberg RJ, Ray EC, Driggers LJ, Ahnen DJ. Inhibition of extracellular signal-regulated kinase 1/2 phosphorylation and induction of apoptosis by sulindac metabolites. Can Res. 2001;61:1541–7.

    CAS  Google Scholar 

  87. Rice PL, Beard KS, Driggers LJ, Ahnen DJ. Inhibition of extracellular-signal regulated kinases 1/2 is required for apoptosis of human colon cancer cells in vitro by sulindac metabolites. Can Res. 2004;64:8148–51.

    CAS  Google Scholar 

  88. Aono Y, Horinaka M, Iizumi Y, Watanabe M, Taniguchi T, Yasuda S, et al. Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2. Biochem Biophys Res Commun. 2018;505:1203–10.

    CAS  PubMed  Google Scholar 

  89. Mei X-L, Yang Y, Zhang Y-J, Li Y, Zhao J-M, Qiu J-G, et al. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am J Cancer Res. 2015;5:3311–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li N, Chen X, Zhu B, Ramírez-Alcántara V, Canzoneri JC, Lee K, et al. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10. Oncotarget. 2015;6:27403–15.

    PubMed  PubMed Central  Google Scholar 

  91. Lin F, Hoogendijk L, Buil L, Beijnen JH, van Tellingen O. Sildenafil is not a useful modulator of ABCB1 and ABCG2 mediated drug resistance in vivo. Eur J Cancer. 2013;49:2059–64.

    CAS  PubMed  Google Scholar 

  92. Bhagavathula AS, Tesfaye W, Vidyasagar K. Phosphodiesterase type 5 inhibitors use and risk of colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis. 2021;36:2577–84.

    PubMed  Google Scholar 

  93. Huang W, Sundquist J, Sundquist K, Ji J. Phosphodiesterase-5 inhibitors use and risk for mortality and metastases among male patients with colorectal cancer. Nat Commun. 2020;11:3191. https://doi.org/10.1038/s41467-020-17028-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Browning DD. The enduring promise of phosphodiesterase 5 inhibitors for colon cancer prevention. Transl Gastroenterol Hepatol. 2019;4:83. https://doi.org/10.21037/tgh.2019.12.10.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sutton SS, Magagnoli J, Cummings TH, Hardin JW. The association between phosphodiesterase-5 inhibitors and colorectal cancer in a national cohort of patients. Clin Transl Gastroenterol. 2020;11: e00173. https://doi.org/10.14309/ctg.0000000000000173.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cea Soriano L, Garcia Rodriguez LA. No association between use of phosphodiesterase 5 inhibitors and colorectal cancer in men with erectile dysfunction. Pharmacoepidemiol Drug Saf. 2020;29:605–8.

    CAS  PubMed  Google Scholar 

  97. Zhang Y, Lo C-H, Giovannucci EL. Phosphodiesterase 5 inhibitor use and risk of conventional and serrated precursors of colorectal cancer. Cancer Epidemiol Prevent Biomarkers. 2021;30:419–21.

    CAS  Google Scholar 

  98. Zhu B, Strada SJ. The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmonary/cardiovascular vessels. Curr Top Med Chem. 2007;7:437–54.

    CAS  PubMed  Google Scholar 

  99. Tinsley HN, Gary BD, Keeton AB, Zhang W, Abadi AH, Reynolds RC, et al. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Mol Cancer Ther. 2009;8:3331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Marino N, Collins JW, Shen C, Caplen NJ, Merchant AS, Gökmen-Polar Y, et al. Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metas. 2014;31:771–86.

    CAS  Google Scholar 

  101. Catalano S, Campana A, Giordano C, Győrffy B, Tarallo R, Rinaldi A, et al. Expression and function of phosphodiesterase type 5 in human breast cancer cell lines and tissues: implications for targeted therapy. Clin Cancer Res. 2016;22:2271–82.

    CAS  PubMed  Google Scholar 

  102. Pusztai L, Zhen JH, Arun B, Rivera E, Whitehead C, Thompson WJ, et al. Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J Clin Oncol. 2003;21:3454–61.

    CAS  PubMed  Google Scholar 

  103. Di X, Gennings C, Bear HD, Graham LJ, Sheth CM, White KL, et al. Influence of the phosphodiesterase-5 inhibitor, sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res Treat. 2010;124:349–60.

    CAS  PubMed  Google Scholar 

  104. Lin S, Wang J, Wang L, Wen J, Guo Y, Qiao W, et al. Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC. Am J Cancer Res. 2017;7:41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Najjar YG, Finke JH. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol. 2013;3:49. https://doi.org/10.3389/fonc.2013.00049.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203:2691–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li W-Q, Qureshi AA, Robinson KC, Han J. Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern Med. 2014;174:964–70.

    PubMed  PubMed Central  Google Scholar 

  108. Lian Y, Yin H, Pollak MN, Carrier S, Platt RW, Suissa S, et al. Phosphodiesterase type 5 inhibitors and the risk of melanoma skin cancer. Eur Urol. 2016;70:808–15.

    CAS  PubMed  Google Scholar 

  109. Loeb S, Folkvaljon Y, Lambe M, Robinson D, Garmo H, Ingvar C, et al. Use of phosphodiesterase type 5 inhibitors for erectile dysfunction and risk of malignant melanoma. JAMA. 2015;313:2449–55.

    CAS  PubMed  Google Scholar 

  110. Matthews A, Langan SM, Douglas IJ, Smeeth L, Bhaskaran K. Phosphodiesterase type 5 inhibitors and risk of malignant melanoma: matched cohort study using primary care data from the UK clinical practice research datalink. PLoS Med. 2016;13: e1002037. https://doi.org/10.1371/journal.pmed.1002037.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Han X, Han Y, Zheng Y, Sun Q, Ma T, Dai L, et al. Use of phosphodiesterase type 5 inhibitors and risk of melanoma: a meta-analysis of observational studies. Onco Targets Ther. 2018;11:711–20.

    PubMed  PubMed Central  Google Scholar 

  112. Christie A, Vera PL, Higgins M, Kumar S, Lane M, Preston D. Erectile dysfunction medications and skin cancer: an analysis in US veterans. Urology. 2019;126:116–20.

    PubMed  Google Scholar 

  113. Shkolyar E, Li S, Tang J, Eisenberg ML. Risk of melanoma with phosphodiesterase type 5 inhibitor use among patients with erectile dysfunction, pulmonary hypertension, and lower urinary tract symptoms. J Sex Med. 2018;15:982–9.

    PubMed  Google Scholar 

  114. Lu YP, Fan S, Liang Z, Song Y, Liu K, Zhou K, et al. Phosphodiesterase type 5 inhibitors and risk of skin cancers in men: a meta-analysis and trial sequential analysis involving 7,479,852 subjects. World J Men’s Health. 2021;39:683–96.

    Google Scholar 

  115. Feng S, Zhou L, Liu Q, He Q, Liao B, Wei X, et al. Are phosphodiesterase type 5 inhibitors associated with increased risk of melanoma?: A systematic review and meta-analysis. Medicine. 2018;97: e9601. https://doi.org/10.1097/MD.0000000000009601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hankey W, Sunkel B, Yuan F, He H, Thomas-Ahner JM, Chen Z, et al. Prostate cancer cell phenotypes remain stable following PDE5 inhibition in the clinically relevant range. Transl Nncol. 2020;13: 100797. https://doi.org/10.1016/j.tranon.2020.100797.

    Article  Google Scholar 

  117. Fiscus RR, Johlfs MG. Protein kinase G (PKG): involvement in promoting neural cell survival, proliferation, synaptogenesis, and synaptic plasticity and the use of new ultrasensitive capillary-electrophoresis-based methodologies for measuring PKG expression and molecular actions. Protein Kinase Technol. 2012;68:319–47.

    CAS  Google Scholar 

  118. Teich AF, Sakurai M, Patel M, Holman C, Saeed F, Fiorito J, et al. PDE5 exists in human neurons and is a viable therapeutic target for neurologic disease. J Alzheimers Dis. 2016;52:295–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen JJ, Sun YL, Tiwari AK, Xiao ZJ, Sodani K, Yang DH, et al. PDE 5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C 10) transporter. Cancer Sci. 2012;103:1531–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Giordano D, Giorgi M, Sette C, Biagioni S, Augusti-Tocco G. cAMP-dependent induction of PDE5 expression in murine neuroblastoma cell differentiation. FEBS Lett. 1999;446:218–22.

    CAS  PubMed  Google Scholar 

  121. Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, Steers WD, Wicker PA. Oral sildenafil in the treatment of erectile dysfunction. N Engl J Med. 1998;338:1397–404.

    CAS  PubMed  Google Scholar 

  122. Smith W, McCaslin I, Gokce A, Mandava S, Trost L, Hellstrom W. PDE5 inhibitors: considerations for preference and long-term adherence. Int J Clin Pract. 2013;67:768–80.

    CAS  PubMed  Google Scholar 

  123. García-Barroso C, Ricobaraza A, Pascual-Lucas M, Unceta N, Rico AJ, Goicolea MA, et al. Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology. 2013;64:114–23.

    PubMed  Google Scholar 

  124. Liebenberg N, Harvey BH, Brand L, Wegener G, Brink CB. Chronic treatment with the phosphodiesterase type 5 inhibitors sildenafil and tadalafil display anxiolytic effects in Flinders Sensitive Line rats. Metab Brain Dis. 2012;27:337–40.

    CAS  PubMed  Google Scholar 

  125. Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, et al. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002;33:2675–80.

    CAS  PubMed  Google Scholar 

  126. Booth L, Roberts JL, Tavallai M, Nourbakhsh A, Chuckalovcak J, Carter J, et al. OSU-03012 and viagra treatment inhibits the activity of multiple chaperone proteins and disrupts the blood-brain barrier: implications for anti-cancer therapies. J Cell Physiol. 2015;230:1982–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cesarini V, Martini M, Vitiani LR, Gravina GL, Di Agostino S, Graziani G, et al. Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome. Oncotarget. 2017;8:13223–39.

    PubMed  PubMed Central  Google Scholar 

  128. Hu J, Ljubimova JY, Inoue S, Konda B, Patil R, Ding H, et al. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLoS One. 2010;5: e10108. https://doi.org/10.1371/journal.pone.0010108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mensch J, Oyarzabal J, Mackie C, Augustijns P. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J Pharm Sci. 2009;98:4429–68.

    CAS  PubMed  Google Scholar 

  130. Gresser U, Gleiter C. Erectile dysfunction: comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil-review of the literature. Eur J Med Res. 2002;7:435–46.

    CAS  PubMed  Google Scholar 

  131. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar R-T, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  132. Elbardisy B, Galal S, Abdelmonsif DA, Boraie N. Intranasal Tadalafil nanoemulsions: formulation, characterization and pharmacodynamic evaluation. Pharm Dev Technol. 2019;24:1083–94.

    CAS  PubMed  Google Scholar 

  133. Refai H, Hassan D, Abdelmonem R. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate. Drug Deliv. 2017;24:278–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang P, Zhang Y, Ding X, Xiao C, Chen X. Enhanced nanoparticle accumulation by tumor-acidity-activatable release of sildenafil to induce vasodilation. Biomater Sci. 2020;8:3052–62.

    CAS  PubMed  Google Scholar 

  135. De Rose RF, Cristiano MC, Celano M, Maggisano V, Vero A, Lombardo GE, et al. PDE5 inhibitors-loaded nanovesicles: physico-chemical properties and in vitro antiproliferative activity. Nanomaterials. 2016;6:92. https://doi.org/10.3390/nano6050092.

    Article  CAS  PubMed Central  Google Scholar 

  136. Ghorbani M, Zarei M, Mahmoodzadeh F, Roshangar L, Nikzad B. Improvement of delivery and anticancer activity of doxorubicin by sildenafil citrate encapsulated with a new redox and pH-responsive nanogel. Int J Polym Mater Polym Biomater. 2020;70:893–902.

    Google Scholar 

  137. Zhang J, Guo J, Zhao X, Chen Z, Wang G, Liu A, et al. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res. 2013;250:230–7.

    CAS  PubMed  Google Scholar 

  138. Titus D, Oliva A, Wilson N, Atkins C. Phosphodiesterase inhibitors as therapeutics for traumatic brain injury. Curr Pharm Des. 2015;21:332–42.

    CAS  PubMed  Google Scholar 

  139. Sugita M, Black KL. Cyclic GMP-specific phosphodiesterase inhibition and intracarotid bradykinin infusion enhances permeability into brain tumors. Cancer Res. 1998;58:914–20.

    CAS  PubMed  Google Scholar 

  140. Shi Z, Tiwari AK, Patel AS, Fu L-W, Chen Z-S. Roles of sildenafil in enhancing drug sensitivity in cancer. Cancer Res. 2011;71:3735–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu C-P, Lusvarghi S, Tseng P-J, Hsiao S-H, Huang Y-H, Hung T-H, et al. MY-5445, a phosphodiesterase type 5 inhibitor, resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. Am J Cancer Res. 2020;10:164–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang R, Chen W, Zhang Q, Liu Y, Qiao X, Meng K, et al. Phosphodiesterase type 5 inhibitor Tadalafil increases Rituximab treatment efficacy in a mouse brain lymphoma model. J Neurooncol. 2015;122:35–42.

    CAS  PubMed  Google Scholar 

  143. Iratni R, Ayoub MA. Sildenafil in combination therapy against cancer: a literature review. Curr Med Chem. 2021;28:2248–59.

    CAS  PubMed  Google Scholar 

  144. Kashgari FK, Ravna A, Sager G, Lyså R, Enyedy I, Dietrichs ES. Identification and experimental confirmation of novel cGMP efflux inhibitors by virtual ligand screening of vardenafil-analogues. Biomed Pharmacother. 2020;126: 110109. https://doi.org/10.1016/j.biopha.2020.110109.

    Article  CAS  PubMed  Google Scholar 

  145. Kim PK, Zamora R, Petrosko P, Billiar TR. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol. 2001;1:1421–41.

    CAS  PubMed  Google Scholar 

  146. Soh J-W, Mao Y, Kim M-G, Pamukcu R, Li H, Piazza GA, et al. Cyclic GMP mediates apoptosis induced by sulindac derivatives via activation of c-Jun NH2-terminal kinase 1. Clin Cancer Res. 2000;6:4136–41.

    CAS  PubMed  Google Scholar 

  147. Tiwari AK, Chen Z-S. Repurposing phosphodiesterase-5 inhibitors as chemoadjuvants. Front Pharmacol. 2013;4:82. https://doi.org/10.3389/fphar.2013.00082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lu H, Ning X, Tao X, Ren J, Song X, Tao W, et al. MEKK1 associated with neuronal apoptosis following intracerebral hemorrhage. Neurochem Res. 2016;41:3308–21.

    CAS  PubMed  Google Scholar 

  149. Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci. 1998;95:10541–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Aerts I, Van Ostade X, Slegers H. NO-induced activation of cyclic GMP-dependent pathway down regulates ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) protein in rat C6 glioma. Eur J Pharmacol. 2011;659:1–6.

    CAS  PubMed  Google Scholar 

  151. Aerts I, Martin J-J, De Deyn PP, Van Ginniken C, Van Ostade X, Kockx M, et al. The expression of ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (E-NPP1) is correlated with astrocytic tumor grade. Clin Neurol Neurosurg. 2011;113:224–9.

    PubMed  Google Scholar 

  152. Weed DT, Vella JL, Reis IM, Adriana C, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39–48.

    CAS  PubMed  Google Scholar 

  153. Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H, et al. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:30–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Weed DT, Zilio S, Reis IM, Sargi Z, Abouyared M, Gomez-Fernandez CR, et al. The reversal of immune exclusion mediated by Tadalafil and an antitumor vaccine also induces PDL1 upregulation in recurrent head and neck squamous cell carcinoma: interim analysis of a phase I clinical trial. Front Immunol. 2019;10:1206. https://doi.org/10.3389/fimmu.2019.01206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wirsching H-G, Galanis E, Weller M. Glioblastoma. Handbook Clin Neurol. 2016;134:381–97.

    Google Scholar 

  156. Jalili-Nik M, Afshari AR, Sabri H, Bibak B, Mollazadeh H, Sahebkar A. Zerumbone, a ginger sesquiterpene, inhibits migration, invasion, and metastatic behavior of human malignant glioblastoma multiforme in vitro. BioFactors. 2021. https://doi.org/10.1002/biof.1756.

    Article  PubMed  Google Scholar 

  157. Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol. 2017;35:2402–9.

    CAS  PubMed  Google Scholar 

  158. Afshari AR, Motamed-Sanaye A, Sabri H, Soltani A, Karkon-Shayan S, Radvar S, et al. Neurokinin-1 receptor (NK-1R) antagonists: potential targets in the treatment of glioblastoma multiforme. Curr Med Chem. 2021;47:729–39.

    Google Scholar 

  159. Friedmann-Morvinski D. Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog. 2014;19:327–36.

    PubMed  Google Scholar 

  160. Jalili-Nik M, Sabri H, Zamiri E, Soukhtanloo M, Roshan MK, Hosseini A, et al. Cytotoxic effects of ferula Latisecta on human glioma U87 cells. Drug Res. 2019;69:665–70.

    CAS  Google Scholar 

  161. Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol. 2021;73:116–33.

    CAS  PubMed  Google Scholar 

  162. Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20:S2–8.

    PubMed  PubMed Central  Google Scholar 

  163. Ben-Jonathan N, Borcherding DC, Fox S, Hugo ER. Activation of the cGMP/protein kinase G system in breast cancer by the dopamine receptor-1. Cancer Drug Resist. 2019;2:933–47.

    PubMed  PubMed Central  Google Scholar 

  164. Zhu H, Li JT, Zheng F, Martin E, Kots AY, Krumenacker JS, et al. Restoring soluble guanylyl cyclase expression and function blocks the aggressive course of glioma. Mol Pharmacol. 2011;80:1076–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Hirsh L, Dantes A, Suh B-S, Yoshida Y, Hosokawa K, Tajima K, et al. Phosphodiesterase inhibitors as anticancer drugs. Biochem Pharmacol. 2004;68:981–8.

    CAS  PubMed  Google Scholar 

  166. Booth L, Roberts JL, Cruickshanks N, Tavallai S, Webb T, Samuel P, et al. PDE5 inhibitors enhance celecoxib killing in multiple tumor types. J Cell Physiol. 2015;230:1115–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Piazza GA, Ward A, Chen X, Maxuitenko Y, Coley A, Aboelella NS, et al. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discov Today. 2020;25:1521–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang Y, Sheng H, Meng L, Yue H, Li B, Zhang A, et al. RBM5 inhibits tumorigenesis of gliomas through inhibition of Wnt/β-catenin signaling and induction of apoptosis. World J Surg Oncol. 2017;15:9. https://doi.org/10.1186/s12957-016-1084.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Liu X, Wang L, Zhao S, Ji X, Luo Y, Ling F. β-Catenin overexpression in malignant glioma and its role in proliferation and apoptosis in glioblastma cells. Med Oncol. 2011;28:608–14.

    CAS  PubMed  Google Scholar 

  170. Majchrzak-Celińska A, Zielińska-Przyjemska M, Wierzchowski M, Kleszcz R, Studzińska-Sroka E, Kaczmarek M, et al. Methoxy-stilbenes downregulate the transcription of Wnt/β-catenin-dependent genes and lead to cell cycle arrest and apoptosis in human T98G glioblastoma cells. Adv Med Sci. 2021;66:6–20.

    PubMed  Google Scholar 

  171. Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW, et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol. 2009;218:172–81.

    CAS  PubMed  Google Scholar 

  172. Kohsaka S, Hinohara K, Wang L, Nishimura T, Urushido M, Yachi K, et al. Epiregulin enhances tumorigenicity by activating the ERK/MAPK pathway in glioblastoma. Neuro Oncol. 2014;16:960–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis. 2016;7: e2123. https://doi.org/10.1038/cddis.2015.407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Castellino RC, Durden DL. Mechanisms of Disease: the PI3K–Akt–PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol. 2007;3:682–93.

    CAS  PubMed  Google Scholar 

  175. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene. 2005;24:7482–92.

    CAS  PubMed  Google Scholar 

  176. Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, et al. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg. 2001;95:480–8.

    CAS  PubMed  Google Scholar 

  177. Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA. The role of NF-κB in the pathogenesis of glioma. Mol Cell Oncol. 2014;1: e963478. https://doi.org/10.4161/23723548.2014.963478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P Jr, Hemmings BA, et al. GSK3β regulates differentiation and growth arrest in glioblastoma. PLoS One. 2009;4: e7443. https://doi.org/10.1371/journal.pone.0007443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fianco G, Mongiardi MP, Levi A, De Luca T, Desideri M, Trisciuoglio D, et al. Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma. Elife. 2017;6: e22593. https://doi.org/10.7554/eLife.22593.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Priya CS, Vidhya R, Kalpana K, Anuradha C. Indirubin-3′-monoxime prevents aberrant activation of GSK-3β/NF-κB and alleviates high fat-high fructose induced Aβ-aggregation, gliosis and apoptosis in mice brain. Int Immunopharmacol. 2019;70:396–407.

    Google Scholar 

  181. Salem MA, Budzyńska B, Kowalczyk J, El Sayed NS, Mansour SM. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer’s disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways. Toxicol Appl Pharmacol. 2021;429: 115697. https://doi.org/10.1016/j.taap.2021.115697.

    Article  CAS  PubMed  Google Scholar 

  182. Nunes AKS, Raposo C, Rocha SWS, de Sousa Barbosa KP, de Almeida Luna RL, da Cruz-Hoefling MA, et al. Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res. 2015;1627:119–33.

    CAS  PubMed  Google Scholar 

  183. Walia V, Garg C, Garg M. NO-sGC-cGMP signaling influence the anxiolytic like effect of lithium in mice in light and dark box and elevated plus maze. Brain Res. 2019;1704:114–26.

    CAS  PubMed  Google Scholar 

  184. Pérez-Pérez D, Reyes-Vidal I, Chávez-Cortez EG, Sotelo J, Magaña-Maldonado R. Methylxanthines: potential therapeutic agents for glioblastoma. Pharmaceuticals. 2019;12:130. https://doi.org/10.3390/ph12030130.

    Article  CAS  PubMed Central  Google Scholar 

  185. Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, et al. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Front Oncol. 2021;11: 627229. https://doi.org/10.3389/fonc.2021.627229.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Xu F, Lv C, Deng Y, Liu Y, Gong Q, Shi J, et al. Icariside II, a PDE5 inhibitor, suppresses oxygen-glucose deprivation/reperfusion-induced primary hippocampal neuronal death through activating the PKG/CREB/BDNF/TrkB signaling pathway. Front Pharmacol. 2020;11:523. https://doi.org/10.3389/fphar.2020.00523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yin H, Jiang Y, Zhang Y, Ge H, Yang Z. The inhibition of BDNF/TrkB/PI3K/Akt signal mediated by AG1601 promotes apoptosis in malignant glioma. J Cell Biochem. 2019;120:18771–81.

    CAS  PubMed  Google Scholar 

  188. Charles N, Ozawa T, Squatrito M, Bleau A-M, Brennan CW, Hambardzumyan D, et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6:141–52.

    CAS  PubMed  Google Scholar 

  189. Domvri K, Zarogoulidis K, Zogas N, Zarogoulidis P, Petanidis S, Porpodis K, et al. Potential synergistic effect of phosphodiesterase inhibitors with chemotherapy in lung cancer. J Cancer. 2017;8:3648–56.

    PubMed  PubMed Central  Google Scholar 

  190. Soriano AF, Helfrich B, Chan DC, Heasley LE, Bunn PA, Chou T-C. Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Can Res. 1999;59:6178–84.

    CAS  Google Scholar 

  191. Whitehead CM, Earle KA, Fetter J, Xu S, Hartman T, Chan DC, et al. Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Mol Cancer Ther. 2003;2:479–88.

    CAS  PubMed  Google Scholar 

  192. Chan DC, Earle KA, Zhao TL, Helfrich B, Zeng C, Baron A, et al. Exisulind in combination with docetaxel inhibits growth and metastasis of human lung cancer and prolongs survival in athymic nude rats with orthotopic lung tumors. Clin Cancer Res. 2002;8:904–12.

    CAS  PubMed  Google Scholar 

  193. Bunn PA Jr, Chan DC, Earle K, Zhao TL, Helfrich B, Kelly K, et al. Preclinical and clinical studies of docetaxel and exisulind in the treatment of human lung cancer. Semin Oncol. 2002;29:87–94.

    CAS  PubMed  Google Scholar 

  194. Muniyan S, Rachagani S, Parte S, Halder S, Seshacharyulu P, Kshirsagar P, et al. Sildenafil potentiates the therapeutic efficacy of docetaxel in advanced prostate cancer by stimulating NO-cGMP signaling. Clin Cancer Res. 2020;26:5720–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Booth L, Roberts JL, Poklepovic A, Gordon S, Dent P. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget. 2017;8:1449–68.

    PubMed  Google Scholar 

  196. Booth L, Roberts JL, Poklepovic A, Dent P. PDE5 inhibitors enhance the lethality of [pemetrexed+ sorafenib]. Oncotarget. 2017;8:13464–75.

    PubMed  PubMed Central  Google Scholar 

  197. Booth L, Roberts JL, Poklepovic A, Dent P. [pemetrexed+ sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther. 2017;18:705–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Hoang T, Kim K, Merchant J, Traynor AM, McGovern J, Oettel KR, et al. Phase I/II study of gemcitabine and exisulind as second-line therapy in patients with advanced non–small cell lung cancer. J Thorac Oncol. 2006;1:218–25.

    PubMed  Google Scholar 

  199. Zenitani M, Nojiri T, Uehara S, Miura K, Hosoda H, Kimura T, et al. C-type natriuretic peptide in combination with sildenafil attenuates proliferation of rhabdomyosarcoma cells. Cancer Med. 2016;5:795–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Kumazoe M, Tsukamoto S, Lesnick C, Kay NE, Yamada K, Shanafelt TD, et al. Vardenafil, a clinically available phosphodiesterase inhibitor, potentiates the killing effect of EGCG on CLL cells. Br J Haematol. 2015;168:610–3.

    CAS  PubMed  Google Scholar 

  201. Kong D, Jiang Y, Miao X, Wu Z, Liu H, Gong W. Tadalafil enhances the therapeutic efficacy of BET inhibitors in hepatocellular carcinoma through activating hippo pathway. Biochimica et Biophysica Acta (BBA). 2021. https://doi.org/10.1016/j.bbadis.2021.166267.

    Article  Google Scholar 

  202. Luginbuhl A, Johnson J, Harshyne L, Tuluc M, Mardekian S, Leiby B, et al. A window of opportunity trial of preoperative nivolumab with or without tadalafil in squamous cell carcinoma of the head and neck (SCCHN): Safety, clinical, and correlative outcomes. Ann Oncol. 2019;30: v453. https://doi.org/10.1093/annonc/mdz252.008.

    Article  Google Scholar 

  203. Iwasaki T, Onda T, Honda H, Hayashi K, Shibahara T, Nomura T, et al. Over-expression of PDE5 in oral squamous cell carcinoma-effect of sildenafil citrate. Anticancer Res. 2021;41:2297–306.

    CAS  PubMed  Google Scholar 

  204. Ren Y, Zheng J, Yao X, Weng G, Wu L. Essential role of the cGMP/PKG signaling pathway in regulating the proliferation and survival of human renal carcinoma cells. Int J Mol Med. 2014;34:1430–8.

    CAS  PubMed  Google Scholar 

  205. Singh M, Kasna S, Roy S, Aldosary S, Saeedan AS, Ansari MN, et al. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer. 2019;19:996. https://doi.org/10.1186/s12885-019-6152-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bimonte VM, Marampon F, Antonioni A, Fittipaldi S, Ferretti E, Pestell RG, et al. Phosphodiesterase type-5 inhibitor tadalafil modulates steroid hormones signaling in a prostate cancer cell line. Int J Mol Sci. 2021;22:754. https://doi.org/10.3390/ijms22020754.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir R. Afshari.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanati, M., Aminyavari, S., Mollazadeh, H. et al. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol. Rep 74, 323–339 (2022). https://doi.org/10.1007/s43440-021-00349-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00349-6

Keywords

Navigation