Skip to main content

Advertisement

Log in

Antiproliferative pharmacophore azo-hydrazone analogue BT-1F exerts death signalling pathway targeting STAT3 in solid tumour

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Anomalous activation of intra-cellular signalling cascades confers neoplastic properties on malignant cells. The JAK2/STAT3 proteins play a pivotal role in the pathogenesis of most of the solid malignancies. The over expression of STAT3 in these tumours results in an evasion of apoptosis and thereby pathogenesis. Hence, strategy to target STAT3 to regress tumour development is an emerging new concept. As an approach, anti-neoplastic drug, Azo-hydrozone analogue, BT-1F with potential anti-proliferative effect was evaluated to demonstrate its capacity to counteract STAT3 signal with mechanistic approach.

Methods

Cell based screening for cytotoxicity was performed through MTT, LDH and Trypan blue. The BT-1F induced anti-clonogenic property by clonogenic assay. The apoptotic capacity was examined by crystal violet staining, flow cytometry, Annexin-FITC, DAPI and TUNEL assay. The altered signalling events were studied using immunoblot. The drug-induced anti-tumour effect was evaluated in an in-vivo solid tumour model and molecular interaction was further validated by in-silico studies.

Results

The BT-1F exerts chemo-sensitivity specifically against EAC and A549 cells without altering its normal counterpart. The anti-proliferative/anti-clonogenic effect was due to the induction of apoptosis through inhibition of STAT3Tyr705 signal. Eventually downstream signalling proteins p53, Bax, Bad and Bcl-xL were significantly altered. Further in-vivo experimental results validated  in-vitro findings. The computational approaches assures the BT-1F efficiency in binding with STAT3.

Conclusion

Systemic validation of STAT3 target drug, BT-1F in in-vitro, in-silico and in-vivo models has promising strategy for solid cancer treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    CAS  PubMed  Google Scholar 

  2. Belli C, Trapani D, Viale G, D’Amico P, Duso BA, Della Vigna P, Orsi F, Curigliano G. Targeting the microenvironment in solid tumors. Cancer Treat Rev. 2018;65:22–32.

    Article  CAS  PubMed  Google Scholar 

  3. Duan H. Novel therapeutic strategies for solid tumor based on Body’s intrinsic antitumor immune system. Cell Physiol Biochem. 2018;47:441–57.

    Article  CAS  PubMed  Google Scholar 

  4. Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. J Cancer Metastasis Treat. 2020;6:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett. 2020;19:2585–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamran MZ, Patil P, Gude RP. Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int. 2013;2013:421821.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. 2000;19:6613–26.

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Jove R. The STATs of cancer–new molecular targets come of age. Nat Rev Cancer. 2004;4:97–105.

    Article  CAS  PubMed  Google Scholar 

  9. Cimica V, Chen HC, Iyer JK, Reich NC. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1. PLoS ONE. 2011;6:e20188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2013;2:e23828.

    PubMed  PubMed Central  Google Scholar 

  11. Lopez J, Tait SW. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112:957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9:205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19:448.

    Article  PubMed Central  Google Scholar 

  14. Campbell KJ, Tait SWG. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8:180002.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845:136–54.

    CAS  PubMed  Google Scholar 

  16. Rollas S, Kucukguzel SG. Biological activities of hydrazone derivatives. Molecules. 2007;12:1910–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Savini L, Chiasserini L, Travagli V, Pellerano C, Novellino E, Cosentino S, Pisano MB. New alpha-(N)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. Eur J Med Chem. 2004;39:113–22.

    Article  CAS  PubMed  Google Scholar 

  18. Prashanth T, Thirusangu P, Vijay Avin BR, Lakshmi Ranganatha V, Prabhakar BT, Khanum SA. Synthesis and evaluation of novel benzophenone-thiazole derivatives as potent VEGF-A inhibitors. Eur J Med Chem. 2014;87:274–83.

    Article  CAS  PubMed  Google Scholar 

  19. Rezaei-Seresht E, Mireskandari E, Kheirabadi M, Cheshomi H, Rezaei-Seresht H, Sadat AL. Synthesis and anticancer activity of new azo compounds containing extended π-conjugated systems. Chem Pap. 2017;71:1463–9.

    Article  CAS  Google Scholar 

  20. Zabiulla, Vigneshwaran V, Bushra AB, Pavankumar GS, Prabhakar BT, Khanum SA. Design and synthesis of conjugated azo-hydrazone analogues using nano BF3·SiO2 targeting ROS homeostasis in oncogenic and vascular progression. Biomed Pharmacother. 2017;95:419–28.

    Article  CAS  PubMed  Google Scholar 

  21. Ranganatha VL, Vijay Avin BR, Thirusangu P, Prashanth T, Prabhakar BT, Khanum SA. Synthesis, angiopreventive activity, and in vivo tumor inhibition of novel benzophenone-benzimidazole analogs. Life Sci. 2013;93:904–11.

    Article  CAS  PubMed  Google Scholar 

  22. Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;4:087379.

    Google Scholar 

  23. Malojirao VH, Vigneshwaran V, Thirusangu P, Mahmood R, Prabhakar BT. The tumor antagonistic steroidal alkaloid Solanidine prompts the intrinsic suicidal signal mediated DFF-40 nuclear import and nucleosomal disruption. Life Sci. 2018;199:139–50.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Jiang G, Yao F, He Y, Liang G, Zhang Y, Hu B, Wu Y, Li Y, Liu H. Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma. PLoS ONE. 2012;7:e37865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vijay Avin BR, Thirusangu P, Lakshmi Ranganatha V, Firdouse A, Prabhakar BT, Khanum SA. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur J Med Chem. 2014;75:211–21.

    Article  CAS  PubMed  Google Scholar 

  26. Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Sasidharan S. Acute oral toxicity of methanolic seed extract of Cassia fistula in mice. Molecules. 2011;16:5268–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohammed YHE, Malojirao VH, Thirusangu P, Al-Ghorbani M, Prabhakar BT, Khanum SA. The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the crackdown of neoangiogenesis and evoking the cell death. Eur J Med Chem. 2018;143:1826–39.

    Article  CAS  PubMed  Google Scholar 

  28. Al-Ostoot FH, Sherapura A, Vigneshwaran V, Basappa G, Vivek HK, Prabhakar BT, Khanum SA. Targeting HIF-1α by newly synthesized Indolephenoxyacetamide (IPA) analogs to induce anti-angiogenesis-mediated solid tumor suppression. Pharmacol Rep. 2021;73:1328–43.

    Article  CAS  PubMed  Google Scholar 

  29. Becker S, Groner B, Müller CW. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998;394:145–51.

    Article  CAS  PubMed  Google Scholar 

  30. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trott O, Olson AJ. AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–34.

    Article  CAS  PubMed  Google Scholar 

  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  CAS  PubMed  Google Scholar 

  35. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.

    Article  CAS  PubMed  Google Scholar 

  36. Case DA, Betz RM, Cerutti DS, Cheatham TE, Darden TA, Duke RE, et al. AMBER 2016. San Francisco: University of California; 2016.

    Google Scholar 

  37. Kang JH, Jang YS, Lee HJ, Lee CY, Shin DY, Oh SH. Inhibition of STAT3 signaling induces apoptosis and suppresses growth of lung cancer: good and bad. Lab Anim Res. 2019;35:30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frank DA. Transcription factor STAT3 as a prognostic marker and therapeutic target in cancer. J Clin Oncol. 2013;31:4560–1.

    Article  PubMed  Google Scholar 

  39. Furtek SL, Backos DS, Matheson CJ, Reigan P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol. 2016;11:308–18.

    Article  CAS  PubMed  Google Scholar 

  40. Malojirao VH, Girimanchanaika SS, Shanmugam MK, Sherapura A, Dukanya, Metri PK, Vigneshwaran V, Chinnathambi A, Alharbi SA, Rangappa S, Mohan CD, Basappa, Prabhakar BT, Rangappa KS. Novel 1,3,4-oxadiazole targets STAT3 signaling to induce antitumor effect in lung cancer. Biomedicines. 2020;8:368.

    Article  CAS  PubMed Central  Google Scholar 

  41. Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine Growth Factor Rev. 2019;49:10–22.

    Article  CAS  PubMed  Google Scholar 

  42. Ünver H, Berber B, Demirel R, Koparal AT. Design, synthesis, anti-proliferative, anti-microbial, anti-angiogenic activity and in silico analysis of novel hydrazone derivatives. Anticancer Agents Med Chem. 2019;19:1658–69.

    Article  PubMed  Google Scholar 

  43. Ng IH, Yeap YY, Ong LS, Jans DA, Bogoyevitch MA. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation. Biochim Biophys Acta. 2014;1843:483–94.

    Article  CAS  PubMed  Google Scholar 

  44. Bourgeais J, Gouilleux-Gruart V, Gouilleux F. Oxidative metabolism in cancer: A STAT affair? JAKSTAT. 2013;2:e25764.

    PubMed  PubMed Central  Google Scholar 

  45. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Johnston RL, Wockner L, McCart Reed AE, Wiegmans A, Chenevix-Trench G, Khanna KK, Lakhani SR, Smart CE. High content screening application for cell-type specific behaviour in heterogeneous primary breast epithelial subpopulations. Breast Cancer Res. 2016;8:18.

    Article  Google Scholar 

  47. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18:59.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu B, Ezeogu L, Zellmer L, Yu B, Xu N, Joshua LD. Protecting the normal in order to better kill the cancer. Cancer Med. 2015;4:1394–403.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep. 2019;52:415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kucukguzel SG, Koc D, Cıkla-Suzgun P, Ozsavcı D, Bingol-Ozakpınar O, Mega-Tiber P, Orun O, Erzincan P, Sag-Erdem S, Sahin F. Synthesis of tolmetin hydrazide-hydrazones and discovery of a potent apoptosis inducer in colon cancer cells. Arch Pharm (Weinheim). 2015;348:730–42.

    Article  CAS  Google Scholar 

  52. Li LY, Peng JD, Zhou W, Qiao H, Deng X, Li ZH, Li JD, Fu YD, Li S, Sun K, Liu HM, Zhao W. Potent hydrazone derivatives targeting esophageal cancer cells. Eur J Med Chem. 2018;148:359–71.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vision Group of Science and Technology (VGST) (VGST/P-2/CISEE/GRD-231/2013-14), Science and Engineering Research Board (EMR/2017/00088 /dated 3/01/2019-2021) and Lady Tata Memorial Trust, Mumbai for JRS 2020-2021.

Author information

Authors and Affiliations

Authors

Contributions

B, AS and VHM performed all the experiments. Z, BSS and PT for data compilation, NSK, SMB and RM for scientific advice. SAK and BTP for conceptualization, writing, reviewing, editing and monitored the entire investigation.

Corresponding author

Correspondence to B. T. Prabhakar.

Ethics declarations

Conflict of interest

The authors exhibit that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banumathi, Sherapura, A., Malojirao, V.H. et al. Antiproliferative pharmacophore azo-hydrazone analogue BT-1F exerts death signalling pathway targeting STAT3 in solid tumour. Pharmacol. Rep 74, 353–365 (2022). https://doi.org/10.1007/s43440-021-00345-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00345-w

Keywords

Navigation