Skip to main content

Advertisement

Log in

Chemical chaperones targeted to the endoplasmic reticulum (ER) and lysosome prevented neurodegeneration in a C9orf72 repeat expansion drosophila amyotrophic lateral sclerosis (ALS) model

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

ALS is an incurable neuromuscular degenerative disorder. A familiar form of the disease (fALS) is related to point mutations. The most common one is an expansion of a noncoding GGGGCC hexanucleotide repeat of the C9orf72 gene on chromosome 9p21. An abnormal translation of the C9orf72 gene generates dipeptide repeat proteins that aggregate in the brain. One of the classical approaches for developing treatment against protein aggregation-related diseases is to use chemical chaperones (CSs). In this work, we describe the development of novel 4-phenylbutyric acid (4-PBA) lysosome/ER-targeted derivatives. We assumed that 4-PBA targeting to specific organelles, where protein degradation takes place, might reduce the 4-PBA effective concentration.

Methods

Organic chemistry synthetic methods and solid-phase peptide synthesis (SPPS) were used for preparing the 4-PBA derivatives. The obtained compounds were evaluated in an ALS Drosophila model that expressed C9orf72 repeat expansion, causing eye degeneration. Targeting to lysosome was validated by the 19F-nuclear magnetic resonance (NMR) technique.

Results

Several synthesized compounds exhibited a significant biological effect by ameliorating the eye degeneration. They blocked the neurodegeneration of fly retina at different efficacy levels. The most active CS was compound 9, which is a peptide derivative and was targeted to ER. Another active compound targeted to lysosome was compound 4.

Conclusions

Novel CSs were more effective than 4-PBA; therefore, they might be used as a new class of drug candidates to treat ALS and other protein misfolding disorders.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5

Similar content being viewed by others

References

  1. van den Bos MAJ, Geevasinga N, Higashihara M, Menon P, Vucic S. Pathophysiology and diagnosis of ALS: insights from advances in neurophysiological techniques. Int J Mol Sci. 2019;20:2818–33.

    Article  PubMed Central  Google Scholar 

  2. Oskarsson B, Gendron TF, Staff NP. Amyotrophic lateral sclerosis: an update for 2018. Mayo Clin Proc. 2018;93:1617–28.

    Article  PubMed  Google Scholar 

  3. Mathis S, Goizet C, Soulages A, Vallat J-M, Le MG. Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci. 2019;399:217–26.

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis. 2019;130:104515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morita M, Al-Chalabi A, Andersen PM, Hosler B, Sapp P, Englund E, et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology. 2006;66:839–44.

    Article  CAS  PubMed  Google Scholar 

  6. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol. 2019;137:1–26.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y-J, Jansen-West K, Xu Y-F, Gendron TF, Bieniek KF, Lin W-L, et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 2014;128:505–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo Q, Lehmer C, Martínez-Sánchez A, Rudack T, Beck F, Hartmann H, et al. In situ structure of neuronal C9orf72 Poly-GA aggregates reveals proteasome recruitment. Cell. 2018;172:696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Wang J. C9orf72-dependent lysosomal functions regulate epigenetic control of autophagy and lipid metabolism. Autophagy. 2019;15:913–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shao Q, Yang M, Liang C, Ma L, Zhang W, Jiang Z, et al. c9orf72 and smcr8 mutant mice reveal MTORC1 activation due to impaired lysosomal degradation and exocytosis. Autophagy. 2020;16:1635–50.

    Article  CAS  PubMed  Google Scholar 

  13. Corrionero A, Horvitz HR. A C9orf72 ALS/FTD ortholog acts in endolysosomal degradation and lysosomal homeostasis. Curr Biol. 2018;28:1522–35.

    Article  CAS  PubMed  Google Scholar 

  14. Amick J, Ferguson SM. C9orf72: at the intersection of lysosome cell biology and neurodegenerative disease. Traffic. 2017;18:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB, et al. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun. 2016;4:51.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang M, Liang C, Swaminathan K, Herrlinger S, Lai F, Shiekhattar R, et al. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci Adv. 2016;2:e1601167.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sellier C, Campanari M-L, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016;35:1276–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Claessen JHL, Kundrat L, Ploegh HL. Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol. 2012;22:22–32.

    Article  CAS  PubMed  Google Scholar 

  19. Brodsky JL. Cleaning up: ER-associated degradation to the rescue. Cell. 2012;151:1163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azoulay-Ginsburg S, Trobiani L, Setini A, Favaloro FL, Giorda E, Jacob A, et al. A lipophilic 4-phenylbutyric acid derivative that prevents aggregation and retention of misfolded proteins. Chem A Eur J. 2020;26:1834–45.

    Article  CAS  Google Scholar 

  21. Getter T, Zaks I, Barhum Y, Ben-Zur T, Böselt S, Gregoire S, et al. A chemical chaperone-based drug candidate is effective in a mouse model of amyotrophic lateral sclerosis (ALS). ChemMedChem. 2015;10:850–61.

    Article  CAS  PubMed  Google Scholar 

  22. Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion. 2014;8:197–202.

    Article  CAS  PubMed Central  Google Scholar 

  23. Welch WJ, Brown CR. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1996;1:109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tao Y-X, Conn PM. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol Rev. 2018;98:697–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kolb PS, Ayaub EA, Zhou W, Yum V, Dickhout JG, Ask K. The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. Int J Biochem Cell Biol. 2015;61:45–52.

    Article  CAS  PubMed  Google Scholar 

  26. Gronbeck KR, Rodrigues CMP, Mahmoudi J, Bershad EM, Ling G, Bachour SP, et al. Application of tauroursodeoxycholic acid for treatment of neurological and non-neurological diseases: Is there a potential for treating traumatic brain injury? Neurocrit Care. 2016;25:153–66.

    Article  CAS  PubMed  Google Scholar 

  27. Kusaczuk M, Bartoszewicz M, Cechowska-Pasko M. Phenylbutyric acid: simple structure–multiple effects. Curr Pharm Des. 2015;21:2147–66.

    Article  CAS  PubMed  Google Scholar 

  28. Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383:919–30.

    Article  CAS  PubMed  Google Scholar 

  29. Hogarth P, Lovrecic L, Krainc D. Sodium phenylbutyrate in Huntington’s disease: a dose-finding study. Mov Disord. 2007;22:1962–4.

    Article  PubMed  Google Scholar 

  30. Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC, Reggiori B, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016;23:45–52.

    Article  CAS  PubMed  Google Scholar 

  31. Ip P, Sharda PR, Cunningham A, Chakrabartty S, Pande V, Chakrabartty A. Quercitrin and quercetin 3-β-d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Eng Des Sel. 2017;30:431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright GSA, Antonyuk SV, Hasnain SS. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Sci Rep. 2016;6:27691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cudkowicz ME, Andres PL, Macdonald SA, Bedlack RS, Choudry R, Brown RH, et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler. 2009;10:99–106.

    Article  CAS  PubMed  Google Scholar 

  34. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96:729–46.

    Article  CAS  PubMed  Google Scholar 

  35. Andrew CL, Klemm AR, Lloyd JB. Lysosome membrane permeability to amines. Biochim Biophys Acta Biomembr. 1997;1330:71–82.

    Article  CAS  Google Scholar 

  36. Bartels AK, Göttert S, Desel C, Schäfer M, Krossa S, Scheidig AJ, et al. KDEL receptor 1 contributes to cell surface association of protein disulfide isomerases. Cell Physiol Biochem. 2019;52:850–68.

    CAS  PubMed  Google Scholar 

  37. Ma WF, Chen HY, Du J, Tan Y, Cai SH. A novel recombinant protein TAT–GFP–KDEL with dual-function of penetrating cell membrane and locating at endoplasm reticulum. J Drug Target. 2009;17:329–33.

    Article  CAS  PubMed  Google Scholar 

  38. Newstead S, Barr F (2020) Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins—SWEET talking the COPs. J Cell Sci 133:jcs250100

  39. Murshid A, Presley JF. ER-to-Golgi transport and cytoskeletal interactions in animal cells. Cell Mol Life Sci. 2004;61:133–45.

    Article  CAS  PubMed  Google Scholar 

  40. Koon AC, Chan HYE. Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Front Cell Neurosci. 2017;11:70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gottlieb HE, Kotlyar V, Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem. 1997;62:7512–5.

    Article  CAS  PubMed  Google Scholar 

  42. Balalaie S, Mahdidoust M, Eshaghi-Najafabadi R. 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate as an efficient coupling reagent for the amidation and phenylhydrazation of carboxylic acids at room temperature. J Iran Chem Soc. 2007;4:364–9.

    Article  CAS  Google Scholar 

  43. Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014;345:1192–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kahremany S, Babaev I, Hasin P, Tamir TY, Ben-Zur T, Cohen G, et al. Computer-aided design and synthesis of 1-{4-[(3,4-dihydroxybenzylidene)amino]phenyl}-5-oxopyrrolidine-3-carboxylic acid as an Nrf2 enhancer. ChemPlusChem. 2018;83:320–33.

    Article  CAS  PubMed  Google Scholar 

  45. Zer Aviv P, Shubely M, Moskovits Y, Viskind O, Albeck A, Vertommen D, et al. A new oxopiperazin-based peptidomimetic molecule inhibits prostatic acid phosphatase secretion and induces prostate cancer cell apoptosis. Chem Select. 2016;1:4658–67.

    CAS  Google Scholar 

  46. Xu W, Xu J. C9orf72 dipeptide repeats cause selective neurodegeneration and cell-autonomous excitotoxicity in Drosophila glutamatergic neurons. J Neurosci. 2018;38:7741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdullahi A, Stanojcic M, Parousis A, Patsouris D, Jeschke MG. Modeling acute ER stress in vivo and in vitro. Shock. 2017;47:506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guroff G. PC12 cells as a model of neuronal differentiation. In: Cell culture in the neurosciences. New York: Springer; 1985. p. 245–72.

    Chapter  Google Scholar 

  49. Bartusik D, Tomanek B. Detection of 19F-labeled biopharmaceuticals in cell cultures with magnetic resonance. Adv Drug Deliv Rev. 2013;65:1056–64.

    Article  CAS  PubMed  Google Scholar 

  50. Sharma S, Schiller MR. The carboxy-terminus, a key regulator of protein function. Crit Rev Biochem Mol Biol. 2019;54:85–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Israel Ministry of Science, Technology and Space (MOST), along with the Italian Ministry of Foreign Affairs and the International Cooperation Department, the Directorate General for Country Promotion (the Unit for Scientific and Technological Cooperation) for collaboration grant number 3-13325, which was awarded to A.G. and G.C. The Germany Israel Foundation (GIF) partially supported this work (Grant no. I-1410-201.9/2017) for A.G and S. E. In addition, S. A-G wishes to thank NAAMAT for the Edelson Foundation prize (Grant number: 4) for outstanding women researchers in the field of chemistry and pharmacology and for the Navon fellowship for Ph.D. students (Grant number: 2), awarded by the Israel Ministry of Science, Technology and Space. Last, we thank Steven Manch for the English editing of the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluca Cestra or Arie Gruzman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4940 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azoulay-Ginsburg, S., Di Salvio, M., Weitman, M. et al. Chemical chaperones targeted to the endoplasmic reticulum (ER) and lysosome prevented neurodegeneration in a C9orf72 repeat expansion drosophila amyotrophic lateral sclerosis (ALS) model. Pharmacol. Rep 73, 536–550 (2021). https://doi.org/10.1007/s43440-021-00226-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00226-2

Keywords

Navigation