Skip to main content
Log in

Metabolic engineering of Corynebacterium glutamicum for the efficient production of β-Alanine from glucose

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

β-Alanine is the only naturally occurring β-type amino acid, with various applications in the pharmaceutical, food, and chemical industries. Given the growing market demand, the study of β-alanine production is important. This study utilized a modified lysine-producing strain as a chassis cell line to further promote β-alanine synthesis through metabolic engineering. In order to reduce the consumption of oxaloacetate, the gene pck was deleted. A promoter mutation library was constructed to screen the original promoter of the stronger promoter replacement gene pyc to enhance the oxaloacetate synthesis pathway and further increase the intracellular supply of oxaloacetate. Next, the gene poxB was deleted, and pyruvate accumulation further promoted β-alanine synthesis. Then, the aspartate kinase-coding gene lysC was weakened by predicting the RBS sequence, thus reducing the synthesis of lysine by-products and improving β-alanine synthesis. Ultimately, the carbon flux in the β-alanine biosynthetic pathways was increased by overexpressing aspartate-α-decarboxylase, aspartate ammonia-lyase, and aspartate aminotransferase using the strong promoter Ptrc. The resulting strain QBA9 was cultured in a 5-L fermenter by fed-batch to produce 70.8 g/L of β-alanine with a productivity of 0.98 g/L/h. These modification strategies demonstrate the potential for efficient β-alanine production by the lysine-producing strain and provide an innovative idea for the developing β-alanine-producing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steunenberg P, Könst PM, Scott EL, Franssen MCR, Zuilhof H, Sanders JPM. Polymerisation of β-alanine through catalytic ester–amide exchange. Eur Polymer J. 2013;49(7):1773–81. https://doi.org/10.1016/j.eurpolymj.2013.03.032.

    Article  CAS  Google Scholar 

  2. Sílvia ÀC, Míriam PT, Joan A, Pau F. Engineering the synthetic β-alanine pathway in Komagataella phaffii for conversion of methanol into 3-hydroxypropionic acid. Microb Cell Fact. 2023;22(1):237.

    Article  Google Scholar 

  3. Rivera D, Roa-Sanchez P, Bido P, Speckter H, Oviedo J, Stoeter P. Cerebral and cerebellar white matter tract alterations in patients with pantothenate kinase-Associated Neurodegeneration (PKAN). Parkinsonism Relat Disord. 2022;98:1–6. https://doi.org/10.1016/j.parkreldis.2022.03.017.

    Article  CAS  PubMed  Google Scholar 

  4. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol. 2012;8(6):536–46. https://doi.org/10.1038/nchembio.970.

    Article  CAS  PubMed  Google Scholar 

  5. Hossein MG, Pirzad JG. Biochemical mechanisms of Beneficial effects of Beta-Alanine supplements on Cognition. Biochem (Moscow). 2023;88(8):1181–90.

    Article  Google Scholar 

  6. Wang L, Mao Y, Wang Z, Ma H, Chen T. Advances in biotechnological production of beta-alanine. World J Microbiol Biotechnol. 2021;37(5):79. https://doi.org/10.1007/s11274-021-03042-1.

    Article  CAS  PubMed  Google Scholar 

  7. Deng S, Zhang J, Cai Z, Li Y. [Characterization of L-aspartate-α-decarboxylase from Bacillus subtilis]. Sheng Wu gong Cheng xue bao = Chinese. J Biotechnol. 2015;31(8):1184–93.

    CAS  Google Scholar 

  8. Qian Y, Liu J, Song W, Chen X, Luo Q, Liu L. Production of β-Alanine from Fumaric Acid using a dual‐enzyme Cascade. ChemCatChem. 2018;10(21):4984–91. https://doi.org/10.1002/cctc.201801050.

    Article  CAS  Google Scholar 

  9. Wu J, Ma B-D, Xu Y. One-Pot synthesis of β-Alanine from Maleic Acid via Three-Enzyme Cascade Biotransformation. Catalysts. 2023;13(2). https://doi.org/10.3390/catal13020267.

  10. Wang L, Piao X, Cui S, Hu M, Tao Y. Enhanced production of beta-alanine through co-expressing two different subtypes of L-aspartate-alpha-decarboxylase. J Ind Microbiol Biotechnol. 2020;47(6–7):465–74. https://doi.org/10.1007/s10295-020-02285-5.

    Article  CAS  PubMed  Google Scholar 

  11. Irem T, Sirin U, Sinem Y, H TA, Petek BK, Zeynep S. Design, synthesis and biological evaluation of some novel Naphthoquinone-Glycine/β-Alanine anilide derivatives as non-covalent proteasome inhibitors. Volume 101. Chemical biology & drug design; 2023. 6.

  12. Laura S, Leo O, Gopal P, Michael L, Paula J, Pekka PJ, et al. Production of biopolymer precursors beta-alanine and L-lactic acid from CO2 with metabolically versatile Rhodococcus opacus DSM 43205. Front Bioeng Biotechnol. 2022;10:989481.

    Article  Google Scholar 

  13. Zhou H-Y, Tang Y-Q, Peng J-B, Wang S-H, Liu Z-Q, Zheng Y-G. Re-designing Escherichia coli for high-yield production of β-alanine by metabolic engineering. Biochem Eng J. 2022;189. https://doi.org/10.1016/j.bej.2022.108714.

  14. Li B, Zhang B, Wang P, Cai X, Chen YY, Yang YF, et al. Rerouting fluxes of the Central Carbon Metabolism and relieving mechanism-based inactivation of l-Aspartate-alpha-decarboxylase for fermentative production of beta-alanine in Escherichia coli. ACS Synth Biol. 2022;11(5):1908–18. https://doi.org/10.1021/acssynbio.2c00055.

    Article  CAS  PubMed  Google Scholar 

  15. Raquel SB, Gabriel LC, Davi BO, Vitor LP, José DDSN, Adilson JS. Glycerol as substrate and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase enable higher production of 3-hydroxypropionic acid through the β-alanine pathway in E. Coli Bioresource Technol. 2023;393:130142.

    Google Scholar 

  16. Shilong H, Mingyue F, Beibei F, Mingjing Y, Panhong Y, Biao T, et al. Development of probiotic E. Coli Nissle 1917 for β-alanine production by using protein and metabolic engineering. Appl Microbiol Biotechnol. 2023;107(7–8):2277–88.

    Google Scholar 

  17. Zhao N, Qian L, Luo G, Zheng S. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2018;102(22):9517–29. https://doi.org/10.1007/s00253-018-9358-x.

    Article  CAS  PubMed  Google Scholar 

  18. Shen Y, Zhao L, Li Y, Zhang L, Shi G. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnol Lett. 2014;36(8):1681–6. https://doi.org/10.1007/s10529-014-1527-0.

    Article  CAS  PubMed  Google Scholar 

  19. Ghiffary MR, Prabowo CPS, Adidjaja JJ, Lee SY, Kim HU. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of beta-alanine. Metab Eng. 2022;74:121–9. https://doi.org/10.1016/j.ymben.2022.10.009.

    Article  CAS  PubMed  Google Scholar 

  20. Wang JY, Rao ZM, Xu JZ, Zhang WG. Enhancing beta-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering. Appl Microbiol Biotechnol. 2021;105(24):9153–66. https://doi.org/10.1007/s00253-021-11696-y.

    Article  CAS  PubMed  Google Scholar 

  21. Wang YY, Shi K, Chen P, Zhang F, Xu JZ, Zhang WG. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production. J Ind Microbiol Biotechnol. 2020;47(6–7):485–95. https://doi.org/10.1007/s10295-020-02282-8.

    Article  CAS  PubMed  Google Scholar 

  22. Song CW, Lee J, Ko YS, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng. 2015;30:121–9. https://doi.org/10.1016/j.ymben.2015.05.005.

    Article  CAS  PubMed  Google Scholar 

  23. Klaffl S, Eikmanns BJ. Genetic and functional analysis of the soluble oxaloacetate decarboxylase from Corynebacterium glutamicum. J Bacteriol. 2010;192(10):2604–12. https://doi.org/10.1128/JB.01678-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H. Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab Eng. 2001;3(4):344–61. https://doi.org/10.1006/mben.2001.0198.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2014;80(4):1388–93. https://doi.org/10.1128/AEM.03535-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, et al. Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol. 2013;163(2):217–24. https://doi.org/10.1016/j.jbiotec.2012.07.190.

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Liu M, Shi T, Sun G, Gao N, Zhao X, et al. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nat Commun. 2022;13(1):891. https://doi.org/10.1038/s41467-022-28501-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, et al. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol. 2008;74(9):2766–77. https://doi.org/10.1128/AEM.02591-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, et al. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnol Biofuels. 2019;12:41. https://doi.org/10.1186/s13068-019-1381-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang M, Zhang X. Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis. World J Microbiol Biotechnol. 2017;33(3):59. https://doi.org/10.1007/s11274-016-2202-5.

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects. Microbiol Res. 2022;262:127101. https://doi.org/10.1016/j.micres.2022.127101.

    Article  CAS  PubMed  Google Scholar 

  32. Dong X, Zhao Y, Zhao J, Wang X. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis. J Ind Microbiol Biotechnol. 2016;43(6):873–85. https://doi.org/10.1007/s10295-016-1763-5.

    Article  CAS  PubMed  Google Scholar 

  33. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol. 1991;5(5):1197–204. https://doi.org/10.1111/j.1365-2958.1991.tb01893.x.

    Article  CAS  PubMed  Google Scholar 

  34. Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27(10):946–50. https://doi.org/10.1038/nbt.1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin L, Wang Y, Wu M, Zhu L, Yang L, Lin J. Enhancing the thermostability of fumarase C from Corynebacterium glutamicum via molecular modification. Enzyme Microb Technol. 2018;115:45–51. https://doi.org/10.1016/j.enzmictec.2018.04.010.

    Article  CAS  PubMed  Google Scholar 

  36. Tomoko N, Kenji T, Mitsuhiro I, et al. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis[J]. Appl Environ Microbiol. 2007;73(4):1355–61. https://doi.org/10.1128/AEM.02268-06.

    Article  CAS  Google Scholar 

  37. Li H, Lu X, Chen K, Yang J, Zhang A, Wang X, et al. β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Mol Catal. 2018;449:93–8. https://doi.org/10.1016/j.mcat.2018.02.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research has been funded by the “Important Amino Acid Industrial Strain System Transformation and Industrial Demonstration” project [grant numbers 2021YFC2100900].

Author information

Authors and Affiliations

Authors

Contributions

YS, FZ, JX and WZ conceived and designed the research. YS conducted experiments. YS, JL, JX and WZ analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jian-Zhong Xu or Wei-Guo Zhang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YQ., Zhang, F., Liu, J. et al. Metabolic engineering of Corynebacterium glutamicum for the efficient production of β-Alanine from glucose. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00268-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00268-6

Keywords

Navigation