Skip to main content

Advertisement

Log in

Bioprocessing 4.0 in biomanufacturing: paving the way for sustainable bioeconomy

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The past decade has been envisaged as a period of unprecedented growth and development in the bioprocessing industry due to the increasing prominence of manufacturing bioproducts encompassing day-to-day life. Bioprocesses are the heart of biotechnology and represent the most dynamic constituent for conceptualizing the bioeconomy as it has the potential to tackle the most burgeoning problems such as climatic adversity, global population growth, reduced ecosystem resilience. The promising amalgamation of digitalization, biologicalization, and biomanufacturing paved the way for an emerging concept of “bio-intelligent value addition” or more prominently Bioprocessing 4.0 that enables the transformation in the landscape of biomanufacturing. Despite its positive credentials, the technology is facing technical, organizational, economical, and likely some unforeseen challenges that must be resolved for its successful implementation for hailing the sustainability development goals (SDGs) of bioeconomy. Though the road of bioeconomy is quite arduous, the continuous demand for bioproducts and their timely delivery at a faster rate necessitates the culture of sharing knowledge, digitalization, automation, and development of flexible modular and podular facility footprints to accelerate biomanufacturing. Therefore, it is worth summarizing the major portfolios of Bioprocessing 4.0 such as conception of biofoundry, bioprocess intensification strategies, process and data analytics, software and automation, and its synergistic correlation with bioeconomy. Thus, the present article advocates about the technological glance of Bioprocessing 4.0 along with technical challenges and future research priorities for sparking the glory of this industrial landscape for enshrining the bioeconomy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Avalibility

There is no associated data with this manuscript.

References

  1. Rader RA, Langer ES. Biopharmaceutical manufacturing: historical and future trends in titers, yields and efficiency in commercial-scale bioprocessing. Bioprocess J. 2015;13:47–52

    Google Scholar 

  2. Udugama IA, Öner M, Lopez PC, Beenfeldt C, Bayer C, Huusom JK, Gernaey KV, Sin G. Towards digitalization in bio-manufacturing operations: a survey on application of big data and digital twin concepts in Denmark. Front Chem Eng. 2021;3:727152.

    Google Scholar 

  3. Gargalo CL, de Las Heras SC, Jones MN, Udugama I, Mansouri SS, Krühne U, Gernaey KV. Towards the development of digital twins for the bio-manufacturing industry. Adv Biochem Eng Biotechnol. 2021. https://doi.org/10.1007/10_2020_142.

    Article  PubMed  Google Scholar 

  4. Singh N, Singhania RR, Nigam PS, Di Dong C, Patel AK, Puri M. Global status of lignocellulosic biorefinery: challenges and perspectives. Bioresour Technol. 2022;344:126415.

    CAS  PubMed  Google Scholar 

  5. Velvizhi G, Balakumar K, Shetti NP, Ahmad E, Kishore Pant K, Aminabhavi TM. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy. Bioresour Technol. 2022;343:126151.

    CAS  PubMed  Google Scholar 

  6. Krüger A, Schäfers C, Busch P, Antranikian G. Digitalization in microbiology—paving the path to sustainable circular bioeconomy. New Biotechnol. 2020;59:88–96.

    Google Scholar 

  7. Kardung M, Cingiz K, Costenoble O, Delahaye R, Heijman W, Lovrić M, van Leeuwen M, M’barek R, van Meijl H, Piotrowski S, Ronzon T, Sauer J, Verhoog D, Verkerk PJ, Vrachioli M, Wesseler JHH, Zhu BX. Development of the circular bioeconomy: drivers and indicators. Sustainability. 2021;13:413.

    Google Scholar 

  8. Zobel-Roos S, Schmidt A, Uhlenbrock L, Ditz R, Köster D, Strube J. Digital twins in biomanufacturing. Adv Biochem Eng Biotechnol. 2021. https://doi.org/10.1007/10_2020_146.

    Article  PubMed  Google Scholar 

  9. Walsh I, Myint M, Nguyen-Khuong T, Ho YS, Ng SK, Lakshmanan M. Harnessing the potential of machine learning for advancing “Quality by Design” in biomanufacturing. MAbs. 2022;14:2013593.

    PubMed  PubMed Central  Google Scholar 

  10. Holowko MB, Frow EK, Reid JC, Rourke M, Vickers CE. Building a biofoundry. Synth Biol. 2021;6:ysaa026.

    CAS  Google Scholar 

  11. Farzaneh T, Freemont PS. Biofoundries are a nucleating hub for industrial translation. Synth Biol. 2021;6:ysab013.

    Google Scholar 

  12. Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA, Petzold CJ, Singer SW, Mukhopadhyay A, Tanjore D, Dunn JG, Garcia Martin H. Machine learning for metabolic engineering: a review. Metab Eng. 2021;63:34–60.

    CAS  PubMed  Google Scholar 

  13. Sałek K, Euston SR, Janek T. Phase behaviour, functionality, and physicochemical characteristics of glycolipid surfactants of microbial origin. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.816613.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karim AS, Dudley QM, Juminaga A, Yuan Y, Crowe SA, Heggestad JT, Garg S, Abdalla T, Grubbe WS, Rasor BJ. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat Chem Biol. 2020;16:912–9.

    CAS  PubMed  Google Scholar 

  15. Faulon J-L, Faure L. In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering. Curr Opin Chem Biol. 2021;65:85–92.

    CAS  PubMed  Google Scholar 

  16. Koch M, Duigou T, Faulon JL. Reinforcement learning for bioretrosynthesis. ACS Synth Biol. 2020;9:157–68.

    CAS  PubMed  Google Scholar 

  17. Kharissova OV, Kharisov BI, González CMO, Méndez YP, López I. Greener synthesis of chemical compounds and materials. R Soc Open Sci. 2019;6:191378.

    PubMed  PubMed Central  Google Scholar 

  18. Rahman SA, Cuesta SM, Furnham N, Holliday GL, Thornton JM. EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat Methods. 2014;11:171–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carbonell P, Le Feuvre R, Takano E, Scrutton NS. In silico design and automated learning to boost next-generation smart biomanufacturing. Synth Biol. 2020;5:ysaa020.

    CAS  Google Scholar 

  20. Noll P, Henkel M. History and evolution of modeling in biotechnology: modeling & simulation, application and hardware performance. Comput Struct Biotechnol J. 2020;18:3309–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Coppens MO. Nature-inspired chemical engineering for process intensification. Annu Rev Chem Biomol Eng. 2021;12:187–215.

    CAS  PubMed  Google Scholar 

  22. Gupta P, McLaughlin K. A strategic approach to selecting the optimal process intensification scenario. BioProcess Int. 2021;19(10):2–4.

    Google Scholar 

  23. Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol. 2019;7:420.

    PubMed  PubMed Central  Google Scholar 

  24. Chen C, Wong HE, Goudar CT. Upstream process intensification and continuous manufacturing. Curr Opin Chem Eng. 2018;22:191–8.

    Google Scholar 

  25. Xu J, Xu X, Huang C, Angelo J, Oliveira CL, Xu M, Xu X, Temel D, Ding J, Ghose S, Borys MC, Li ZJ. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. MAbs. 2020;12:1770669.

    PubMed  PubMed Central  Google Scholar 

  26. Malla R, Shah D, Gajendragadkar C, Vamanan V, Singh D, Gupta S, Vengovan D, Trivedi R, Weichert H, Carpio M, Chandran K. Seed train process intensification strategy offers potential for rapid, cost-effective scale-up of biosimilars manufacturing. Bioprocess J. 2021. https://doi.org/10.12665/J20OA.Malla.

    Article  Google Scholar 

  27. Bausch M, Brandl M, Horry H. Seed train intensification using high cell density cryopreservation and specially-designed expansion medium. White Pap. 2020.

  28. Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog. 2014;30:616–25.

    CAS  PubMed  Google Scholar 

  29. Mirasol F. Jumping seed train intensification hurdles to maximize yield. Biopharm Int. 2021;34:20.

    Google Scholar 

  30. Hancu G, Orlandini S, Papp LA, Modroiu A, Gotti R, Furlanetto S. Application of experimental design methodologies in the enantioseparation of pharmaceuticals by capillary electrophoresis: a review. Molecules. 2021;26:4681.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Y, Bissinger T, Genzel Y, Liu X, Reichl U, Tan WS. High cell density perfusion process for high yield of influenza A virus production using MDCK suspension cells. Appl Microbiol Biotechnol. 2021;105:1421–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Eibl R, Eibl D. Single-use technology in biopharmaceutical manufacture. Single-Use Technol Biopharm Manuf. 2019. https://doi.org/10.1002/9781119477891.

    Article  Google Scholar 

  33. Samaras JJ, Micheletti M, Ding W. Transformation of biopharmaceutical manufacturing through single-use technologies: current state, remaining challenges, and future development. Annu Rev Chem Biomol Eng. 2022;13:73–97.

    PubMed  Google Scholar 

  34. Kaiser SC, Decaria PN, Seidel S, Eibl D. Scaling-up of an insect cell-based virus production process in a novel single-use bioreactor with flexible agitation. Chem Ing Tech. 2022;94:1950–6.

    CAS  Google Scholar 

  35. Ton C, Stabile V, Carey E, Maraikar A, Whitmer T, Marrone S, Afanador NL, Zabrodin I, Manomohan G, Whiteman M, Hofmann C. Development and scale-up of rVSV-SARS-CoV-2 vaccine process using single use bioreactor. Biotechnol Rep. 2023;37:e00782.

    CAS  Google Scholar 

  36. Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. Intensified downstream processing of monoclonal antibodies using membrane technology. Biotechnol J. 2021;16:2000309.

    CAS  Google Scholar 

  37. Matte A. Recent advances and future directions in downstream processing of therapeutic antibodies. Int J Mol Sci. 2022;23:8663.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Patrascu I, Bildea CS, Kis A. Eco efficient downstream processing of biobutanol by enhanced process intensification and integration. Sustain Chem Eng. 2022;6:5452–61.

    Google Scholar 

  39. Ding C, Ierapetritou M. A novel framework of surrogate-based feasibility analysis for establishing design space of twin-column continuous chromatography. Int J Pharm. 2021;609:121161.

    CAS  PubMed  Google Scholar 

  40. Sun YN, Shi C, Zhong XZ, Chen XJ, Chen R, Zhang QL, Yao SJ, Jungbauer A, Lin DQ. Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography. J Chromatogr A. 2022;1677:463311.

    CAS  PubMed  Google Scholar 

  41. Warikoo V, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Marcella Y, Yu M, Wright B, McLarty J. Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng. 2012;58:350–62.

    Google Scholar 

  42. Komuczki D, Lingg N, Jungbauer A, Satzer P. In-situ gradient formation by direct solid addition of buffer components. J Chromatogr A. 2020;1634:461663.

    CAS  PubMed  Google Scholar 

  43. Tsai A, Carredano E, Busson K. Deploying automated buffer production for cGMP use: points to consider. Bioprocess J. 2019. https://doi.org/10.12665/J18OA-Tsai.

    Article  Google Scholar 

  44. Grangeia HB, Silva C, Simões SP, Reis MS. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 2020;147:19–37.

    CAS  PubMed  Google Scholar 

  45. Gerzon G, Sheng Y, Kirkitadze M. Process analytical technologies—advances in bioprocess integration and future perspectives. J Pharm Biomed Anal. 2022;207:114379.

    CAS  PubMed  Google Scholar 

  46. Romann P, Kolar J, Tobler D, Herwig C, Bielser JM, Villiger TK. Advancing Raman model calibration for perfusion bioprocesses using spiked harvest libraries. Biotechnol J. 2022;11:e2200184.

    Google Scholar 

  47. Hubli GB, Bannerjee S, Rathore AS. Near-infrared spectroscopy-based monitoring of all 20 amino acids in mammalian cell culture broth. Talanta. 2023;254:124187.

    CAS  PubMed  Google Scholar 

  48. Tiwari A, Bansode V, Rathore AS. Application of advanced machine learning algorithms for anomaly detection and quantitative prediction in protein A chromatography. J Chromatogr A. 2022;1682:463486.

    CAS  PubMed  Google Scholar 

  49. Ye K, Sambanis A. Advanced biomanufacturing: a radical manufacturing paradigm shift from conventional, centralized, off-the-shelf production to on-demand, decentralized, plug-and-play production of cell- and tissue-based products. ACS Biomater Sci Eng. 2017;3:1460–1.

    CAS  PubMed  Google Scholar 

  50. Dyball LE, Smales CM. Exosomes: biogenesis, targeting, characterization and their potential as “Plug & Play” vaccine platforms. Biotechnol J. 2022;17:2100646.

    CAS  Google Scholar 

  51. Cummings M, Peters AD, Whitehead GFS, Menon BRK, Micklefield J, Webb SJ, Takano E. Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLoS Biol. 2019;17:e3000347.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Adiga R, Al-adhami M, Andar A, Borhani S, Brown S, Burgenson D, Cooper MA, Deldari S, Frey DD, Ge X, Guo H, Gurramkonda C, Jensen P, Kostov Y, LaCourse W, Liu Y, Moreira A, Mupparapu KS, Peñalber-Johnstone C, Pilli M, Punshon-Smith B, Rao A, Rao G, Rauniyar P, Snovida S, Taurani K, Tilahun D, Tolosa L, Tolosa M, Tran K, Vattem K, Veeraraghavan S, Wagner B, Wilhide J, Wood DW, Zuber A. Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nat Biomed Eng. 2018;2:675–86.

    CAS  PubMed  Google Scholar 

  53. Crowell LE, Lu AE, Love KR, Stockdale A, Timmick SM, Wu D, Wang YA, Doherty W, Bonnyman A, Vecchiarello N, Goodwine C, Bradbury L, Brady JR, Clark JJ, Colant NA, Cvetkovic A, Dalvie NC, Liu D, Liu Y, Mascarenhas CA, Matthews CB, Mozdzierz NJ, Shah KA, Wu SL, Hancock WS, Braatz RD, Cramer SM, Love JC. On-demand manufacturing of clinical-quality biopharmaceuticals. Nat Biotechnol. 2018;36:988–95.

    CAS  Google Scholar 

  54. Yuan SF, Brooks SM, Nguyen AW, Lin WL, Johnston TG, Maynard JA, Nelson A, Alper HS. Bioproduced proteins on demand (Bio-POD) in hydrogels using Pichia pastoris. Bioact Mater. 2021;6:2390–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sullivan CJ, Pendleton ED, Sasmor HH, Hicks WL, Farnum JB, Muto M, Amendt EM, Schoborg JA, Martin RW, Clark LG, Anderson MJ, Choudhury A, Fior R, Lo YH, Griffey RH, Chappell SA, Jewett MC, Mauro VP, Dresios J. A cell-free expression and purification process for rapid production of protein biologics. Biotechnol J. 2016;11:238–48.

    CAS  PubMed  Google Scholar 

  56. Murphy TW, Sheng J, Naler LB, Feng X, Lu C. On-chip manufacturing of synthetic proteins for point-of-care therapeutics. Microsyst Nanoeng. 2019;5:13.

    PubMed  PubMed Central  Google Scholar 

  57. Hart J, Pomponi F. A circular economy: where will it take us? Circ Econ Sustain. 2021;1:127–41.

    PubMed  PubMed Central  Google Scholar 

  58. Sherwood J. The significance of biomass in a circular economy. Bioresour Technol. 2020;300:122755.

    CAS  PubMed  Google Scholar 

  59. Issa I, Delbrück S, Hamm U. Bioeconomy from experts’ perspectives—results of a global expert survey. PLoS ONE. 2019;14:e0215917.

    PubMed  PubMed Central  Google Scholar 

  60. Rasheed A, San O, Kvamsdal T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access. 2020;8:21980–2012.

    Google Scholar 

  61. Valverde JM, Avilés-Palacios C. Circular economy as a catalyst for progress towards the sustainable development goals: a positive relationship between two self-sufficient variables. Sustainability. 2021;13:12652.

    Google Scholar 

  62. Rathore AS, Mishra S, Nikita S, Priyanka P. Bioprocess control: current progress and future perspectives. Life. 2021;11:557.

    PubMed  PubMed Central  Google Scholar 

  63. Witcher M. integrating development tools into the process validation lifecycle to achieve six sigma pharmaceutical quality. Bioprocess J5. 2018. https://doi.org/10.12665/J17OA.Witcher.0416.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the support of Gautam Buddha University, (Greater Noida), Saveetha Institute of Medical and Technical Sciences, (Chennai) and Patanjali Research Institute (Haridwar) for writing this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BS conceptualized the idea and wrote the manuscript and VK has critically revised the manuscript by giving his meticulous suggestions. KP has formulated three figures and helps in technical assistance related to referencing of manuscript and MP has made rest of diagrams including graphical abstract. UA has revised the current progress section of the manuscript.

Corresponding author

Correspondence to Barkha Singhal.

Ethics declarations

Conflict of interest

The authors stated that there is no competing interest for the publication of submitted article.

Declaration of generative AI and AI-assisted technologies in the writing process

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, K., Pandey, M., Kumar, V. et al. Bioprocessing 4.0 in biomanufacturing: paving the way for sustainable bioeconomy. Syst Microbiol and Biomanuf 4, 407–424 (2024). https://doi.org/10.1007/s43393-023-00206-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00206-y

Keywords

Navigation