Skip to main content

Advertisement

Log in

The alteration of gut microbiota by bioactive peptides: a review

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Evidences suggest that the homeostasis of gut microbiota is among the most important factors for maintaining the physical and mental health of the host. Among the multiple factors affecting the homeostasis of gut microbiota, diet is one of the decisive factors. Bioactive peptides derived from protein hydrolyzed by protease or fermented by microorganism have many physiological activities that their parent proteins do not have. Currently, bioactive peptides attract more and more attention due to their bidirectional interaction with gut microbes. It has been reported that some bioactive peptides could alter the composition of gut microbiota by influencing the intestinal microenvironment. Meanwhile, quite a few bioactive peptides that are released by gut microbes or intestinal cells could resist the pathogenic bacteria to sustain the homeostasis of gut microbiota. In this review, some exogenous bioactive peptides derived from food and some endogenous bioactive peptides released from intestinal cells or microbes were discussed to summary their effects on the modulation of gut microbiota. This review is expected to provide new ideas for related research, and as well to promote the application of bioactive peptides in the fields of food and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

References

  1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology—human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    Article  CAS  PubMed  Google Scholar 

  2. Savage DC. Microbial ecology of gastrointestinal-tract. Annu Rev Microbiol. 1977;31:107–33.

    Article  CAS  PubMed  Google Scholar 

  3. Noce A, Marrone G, Di Daniele F, Ottaviani E, Jones GW, Bernini R, et al. Impact of gut microbiota composition on onset and progression of chronic non-communicable diseases. Nutrients. 2019. https://doi.org/10.3390/nu11051073.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-z, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016. https://doi.org/10.1186/s12866-016-0708-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. David LA, Materna AC, Friedman J, Baptista MIC, Blackburn MC, Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014. https://doi.org/10.1186/gb-2014-15-7-r89.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev. 2015;21:70–9.

    PubMed  Google Scholar 

  7. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota-introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.

    Article  CAS  PubMed  Google Scholar 

  9. Rastall RA, Gibson GR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol. 2015;32:42–6.

    Article  CAS  PubMed  Google Scholar 

  10. Yu Y-J, Amorim M, Marques C, Calhau C, Pintado M. Effects of whey peptide extract on the growth of probiotics and gut microbiota. J Funct Foods. 2016;21:507–16.

    Article  CAS  Google Scholar 

  11. Visser JTJ, Bos NA, Harthoorn LF, Stellaard F, Beijer-Liefers S, Rozing J, et al. Potential mechanisms explaining why hydrolyzed casein-based diets outclass single amino acid-based diets in the prevention of autoimmune diabetes in diabetes-prone BB rats. Diabetes Metab Res Rev. 2012;28(6):505–13.

    Article  CAS  PubMed  Google Scholar 

  12. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol. 1902;28(5):325–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanchez A, Vazquez A. Bioactive peptides: a review. Food Qual Saf. 2017;1(1):29–46.

    Article  CAS  Google Scholar 

  14. Daliri EB-M, Lee BH, Oh DH. Current trends and perspectives of bioactive peptides. Crit Rev Food Sci Nutr. 2018;58(13):2273–84.

    Article  CAS  PubMed  Google Scholar 

  15. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  16. Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362(6416):776–80.

    Article  CAS  PubMed  Google Scholar 

  17. Xie F, Liu Z, Liu M, Chen L, Ding W, Zhang H. Amino acids regulate glycolipid metabolism and alter intestinal microbial composition. Curr Protein Pept Sci. 2020;21(8):761–5.

    Article  CAS  PubMed  Google Scholar 

  18. Miclo L, Roux E, Genay M, Brusseaux E, Poirson C, Jameh N, et al. Variability of hydrolysis of beta- alpha(s1)-, and alpha(s2)-caseins by 10 strains of streptococcus thermophilus and resulting bioactive peptides. J Agric Food Chem. 2012;60(2):554–65.

    Article  CAS  PubMed  Google Scholar 

  19. Delfour A, Jolles J, Alais C, Jolles P. Caseino-glycopeptides: characterization of a methionine residue and of the n-terminal sequence. Biochem Biophys Res Commun. 1965;19:452–5.

    Article  CAS  PubMed  Google Scholar 

  20. Janer C, Pelaez C, Requena T. Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chem. 2004;86(2):263–7.

    Article  CAS  Google Scholar 

  21. Ntemiri A, Chonchuir FN, O’Callaghan TF, Stanton C, Ross RP, O’Toole PW. Glycomacropeptide sustains microbiota diversity and promotes specific taxa in an artificial colon model of elderly gut microbiota. J Agric Food Chem. 2017;65(8):1836–46.

    Article  CAS  PubMed  Google Scholar 

  22. Jimenez M, Chavez NA, Salinas E. Pretreatment with glycomacropeptide reduces allergen sensitization, alleviates immediate cutaneous hypersensitivity and protects from anaphylaxis. Clin Exp Immunol. 2012;170(1):18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roldan NR, Jimenez M, Cervantes-Garcia D, Marin E, Salinas E. Glycomacropeptide administration attenuates airway inflammation and remodeling associated to allergic asthma in rat. Inflammation Res. 2016;65(4):273–83.

    Article  CAS  Google Scholar 

  24. Jimenez M, Cervantes-Garcia D, Haydee Munoz Y, Garcia A Jr, Miguel Haro L, Salinas E. Novel mechanisms underlying the therapeutic effect of glycomacropeptide on allergy: change in gut microbiota, upregulation of tgif-beta, and inhibition of mast cells. Int Arch Allergy Immunol. 2016;171(3–4):217–26.

    Article  CAS  PubMed  Google Scholar 

  25. Gyorgy P, Jeanloz RW, von Nicolai H, Zilliken F. Undialyzable growth factors for Lactobacillus bifidus var. pennsylvanicus. Protective effect of sialic acid bound to glycoproteins and oligosaccharides against bacterial degradation. Eur J Biochem. 1974;43(1):29–33.

    Article  CAS  PubMed  Google Scholar 

  26. Nakajima K, Tamura N, Kobayashi-Hattori K, Yoshida T, Hara-Kudo Y, Ikedo M, et al. Prevention of intestinal infection by glycomacropeptide. Biosci Biotechnol Biochem. 2005;69(12):2294–301.

    Article  CAS  PubMed  Google Scholar 

  27. Nagasawa T, Kiyosawa I, Kuwahara K. Human Casein. II Isolation of human β-casein fraction and human β-casein b. J Dairy Sci. 1970;53(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  28. Wada Y, Loennerdal B. Bioactive peptides derived from human milk proteins—mechanisms of action. J Nutr Biochem. 2014;25(5):503–14.

    Article  CAS  PubMed  Google Scholar 

  29. Chatzipaschali AA, Stamatis AG. Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current status and prospects. Energies. 2012;5(9):3492–525.

    Article  CAS  Google Scholar 

  30. Me C, Lan Z, Hua L, Ying Z, Xie H, Jia S, et al. Iron metabolism in infants: influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31(2):304–9.

    Article  CAS  Google Scholar 

  31. Bullen JJ. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Postgrad Med J. 1975;51(suppl 3):67–70.

    PubMed  Google Scholar 

  32. Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, Polimeni A, et al. Antiviral properties of lactoferrin—a natural immunity molecule. Molecules. 2011;16(8):6992–7018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sfeir RM, Dubarry M, Boyaka PN, Rautureau M, Tome D. The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J Nutr. 2004;134(2):403–9.

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura Y, Yamamoto N, Sakai K, Takano T. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin i-converting enzyme. J Dairy Sci. 1995;78(6):1253–7.

    Article  CAS  PubMed  Google Scholar 

  35. Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, et al. Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem Biophys Res Commun. 2001;281(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  36. Lacroix IME, Li-Chan ECY. Peptide array on cellulose support-a screening tool to identify peptides with dipeptidyl-peptidase iv inhibitory activity within the sequence of alpha-lactalbumin. Int J Mol Sci. 2014;15(11):20846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamaguchi M, Takai S. Chronic administration of bovine milk-derived alpha-lactalbumin improves glucose tolerance via enhancement of adiponectin in goto-kakizaki rats with type 2 diabetes. Biol Pharm Bull. 2014;37(3):404–8.

    Article  CAS  PubMed  Google Scholar 

  38. Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62(22):2588–98.

    Article  CAS  PubMed  Google Scholar 

  39. Vorland LH, Ulvatne H, Rekdal O, Svendsen JS. Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Scand J Infect Dis. 1999;31(5):467–73.

    Article  CAS  PubMed  Google Scholar 

  40. Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. BBA. 1999;1462(1–2):11–28.

    Article  CAS  PubMed  Google Scholar 

  41. Vogel HJ, Schibli DJ, Jing WG, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol. 2002;80(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  42. Chapple DS, Mason DJ, Joannou CL, Odell EW, Gant V, Evans RW. Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111. Infect Immun. 1998;66(6):2434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity of bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997;41(1):54–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castle M, Nazarian A, Yi SS, Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem. 1999;274(46):32555–64.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang LJ, Rozek A, Hancock REW. Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem. 2001;276(38):35714–22.

    Article  CAS  PubMed  Google Scholar 

  46. Liepke C, Adermann K, Raida M, Magert HJ, Forssmann WG, Zucht HD. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem. 2002;269(2):712–8.

    Article  CAS  PubMed  Google Scholar 

  47. Hunter HN, Demcoe AR, Jenssen H, Gutteberg TJ, Vogel HJ. Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob Agents Chemother. 2005;49(8):3387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oda H, Wakabayashi H, Yamauchi K, Sato T, Xiao J-Z, Abe F, et al. Isolation of a bifidogenic peptide from the pepsin hydrolysate of bovine lactoferrin. Appl Environ Microbiol. 2013;79(6):1843–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim SA, Bezkorovainy A. Growth-promoting factors for bifidobacterium-longum. J Food Sci. 1994;59(1):189–91.

    Article  CAS  Google Scholar 

  50. Abeyrathne E, Lee HY, Ahn DU. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—a review. Poult Sci. 2013;92(12):3292–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sun X, Gaenzle M, Field CJ, Wu J. Effect of proteolysis on the sialic acid content and bifidogenic activity of ovomucin hydrolysates. Food Chem. 2016;212:78–86.

    Article  CAS  PubMed  Google Scholar 

  52. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  53. Garces-Rimon M, Lopez-Exposito I, Lopez-Fandino R, Miguel M. Egg white hydrolysates with in vitro biological multiactivities to control complications associated with the metabolic syndrome. Eur Food Res Technol. 2016;242(1):61–9.

    Article  CAS  Google Scholar 

  54. Garces-Rimon M, Gonzalez C, Vera G, Uranga J-A, Lopez-Fandino R, Lopez-Miranda V, et al. Pepsin egg white hydrolysate improves glucose metabolism complications related to metabolic syndrome in Zucker fatty rats. Nutrients. 2018. https://doi.org/10.3390/nu10040441.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Requena T, Miguel M, Garces-Rimon M, Martinez-Cuesta MC, Lopez-Fandino R, Pelaez C. Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food Funct. 2017;8(1):437–43.

    Article  CAS  PubMed  Google Scholar 

  56. Liu G, Ma Y, Yang Q, Deng S. Modulation of inflammatory response and gut microbiota in ankylosing spondylitis mouse model by bioactive peptide IQW. J Appl Microbiol. 2020;128(6):1669–77.

    Article  CAS  PubMed  Google Scholar 

  57. Mine Y, Kovacs-Nolan J. New insights in biologically active proteins and peptides derived from hen egg. Worlds Poult Sci J. 2006;62(1):87–95.

    Article  Google Scholar 

  58. Kassaify ZG, Li EWY, Mine Y. Identification of antiadhesive fraction(s) in nonimmunized egg yolk powder: In vitro study. J Agric Food Chem. 2005;53(11):4607–14.

    Article  CAS  PubMed  Google Scholar 

  59. Lafarga T, Hayes M. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Sci. 2014;98(2):227–39.

    Article  CAS  PubMed  Google Scholar 

  60. Sasso A, Latella G. Role of heme iron in the association between red meat consumption and colorectal cancer. Nutr Cancer. 2018;70(8):1173–83.

    Article  PubMed  Google Scholar 

  61. Han J, Wang X, Tang S, Lu C, Wan H, Zhou J, Li Y, Ming T, Wang ZJ, Su X. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB J. 2020;34(4):5061–76.

    Article  CAS  PubMed  Google Scholar 

  62. Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected Latin American food crops—a nutraceutical and molecular approach. Crit Rev Food Sci Nutr. 2019;59(12):1949–75.

    Article  CAS  PubMed  Google Scholar 

  63. Hicyilmaz H, Vural H, Delibas N, Sutcu R, Gultekin F, Yilmaz N. The effects of walnut supplementation on hippocampal NMDA receptor subunits NR2A and NR2B of rats. Nutr Neurosci. 2017;20(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  64. Wang M, Amakye WK, Guo L, Gong C, Zhao Y, Yao M, et al. Walnut-derived peptide pw5 ameliorates cognitive impairments and alters gut microbiota in app/ps1 transgenic mice. Mol Nutr Food Res. 2019. https://doi.org/10.1002/mnfr.201900326.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Achouri A, Nail V, Boye JI. Sesame protein isolate: fractionation, secondary structure and functional properties. Food Res Int. 2012;46(1):360–9.

    Article  CAS  Google Scholar 

  66. Sharma L, Singh C. Sesame protein based edible films: development and characterization. Food Hydrocoll. 2016;61:139–47.

    Article  CAS  Google Scholar 

  67. Salavati ME, Rezaeipour V, Abdullahpour R, Mousavi N. Effects of graded inclusion of bioactive peptides derived from sesame meal on the growth performance, internal organs, gut microbiota and intestinal morphology of broiler chickens. Int J Pept Res Ther. 2020;26:1541–8.

    Article  CAS  Google Scholar 

  68. Wada S, Sato K, Ohta R, Wada E, Bou Y, Fujiwara M, Kiyono T, Park EY, Aoi W, Takagi T, Naito Y, Yoshikawa T. Ingestion of low dose pyroglutamyl leucine improves dextran sulfate sodium-induced colitis and intestinal microbiota in mice. J Agric Food Chem. 2013;61(37):8807–13.

    Article  CAS  PubMed  Google Scholar 

  69. Shirako S, Kojima Y, Tomari N, Nakamura Y, Matsumura Y, Ikeda K, Inagaki N, Sato K. Pyroglutamyl leucine, a peptide in fermented foods, attenuates dysbiosis by increasing host antimicrobial peptide. NPJ Sci Food. 2019;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang C, Zhang YX, Li H, Liu XQ. The potential of proteins, hydrolysates and peptides as growth factors for Lactobacillus and Bifidobacterium: current research and future perspectives. Food Funct. 2020;11(3):1946–57.

    Article  CAS  PubMed  Google Scholar 

  71. Bottari B, Quartieri A, Prandi B, Raimondi S, Leonardi A, Rossi M, Ulrici A, Gatti M, Sforza S, Nocetti M, Amaretti A. Characterization of the peptide fraction from digested Parmigiano Reggiano cheese and its effect on growth of lactobacilli and bifidobacteria. Int J Food Microbiol. 2017;255:32–41.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou M, Bu T, Zheng J, Liu L, Yu S, Li S, Wu J. Peptides in brewed wines: formation, structure, and function. J Agric Food Chem. 2021;69(9):2647–57.

    Article  CAS  PubMed  Google Scholar 

  73. Kiyono T, Wada S, Ohta R, Wada E, Takgi T, Naito Y, Yoshikawa T, Sato K. Identification of pyroglutamyl peptides with anti-colitic activity in Japanese rice wine, sake, by oral administration in a mouse model. J Funct Foods. 2016;27:612–21.

    Article  CAS  Google Scholar 

  74. Jin W, Han K, Dong S, Yang Y, Mao Z, Su M, Zeng M. Modifications in gut microbiota and fermentation metabolites in the hindgut of rats after the consumption of galactooligosaccharide glycated with a fish peptide. Food Funct. 2018;9(5):2853–64.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Z, He S, Cao X, Ye Y, Yang L, Wang J, Liu H, Sun H. Potential prebiotic activities of soybean peptides Maillard reaction products on modulating gut microbiota to alleviate aging-related disorders in D-galactose-induced ICR mice. J Funct Foods. 2020;65:103729. https://doi.org/10.1016/j.jff.2019.103729.

    Article  CAS  Google Scholar 

  76. He S, Zhang Z, Sun H, Zhu Y, Cao X, Ye Y, Wang J, Cao Y. Potential effects of rapeseed peptide Maillard reaction products on aging-related disorder attenuation and gut microbiota modulation in d-galactose induced aging mice. Food Funct. 2019;10(7):4291–303.

    Article  CAS  PubMed  Google Scholar 

  77. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.

    Article  CAS  PubMed  Google Scholar 

  78. Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005;6(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  79. Salzman NH, Underwood MA, Bevins CL. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol. 2007;19(2):70–83.

    Article  CAS  PubMed  Google Scholar 

  80. Wehkamp J, Chu H, Shen B, Feathers RW, Kays RJ, Lee SK, et al. Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett. 2006;580(22):5344–50.

    Article  CAS  PubMed  Google Scholar 

  81. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 2002;3(6):583–90.

    Article  CAS  PubMed  Google Scholar 

  82. Giesemann T, Guttenberg G, Aktories K. Human alpha-defensins inhibit Clostridium difficile toxin B. Gastroenterology. 2008;134(7):2049–58.

    Article  CAS  PubMed  Google Scholar 

  83. Leitch GJ, Ceballos C. A role for antimicrobial peptides in intestinal microsporidiosis. Parasitology. 2009;136(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  84. Ericksen B, Wu ZB, Lu WY, Lehrer RI. Antibacterial activity and specificity of the six human alpha-defensins. Antimicrob Agents Chemother. 2005;49(1):269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chu H, Pazgier M, Jung G, Nuccio S-P, Castillo PA, de Jong MF, et al. Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 2012;337(6093):477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoeberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76-U1.

    Article  CAS  PubMed  Google Scholar 

  87. Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rivas-Santiago B, Sada E, Tsutsumi V, Aguilar-Leon D, Contreras JL, Hernandez-Pando R. beta-defensin gene expression during the course of experimental tuberculosis infection. J Infect Dis. 2006;194(5):697–701.

    Article  CAS  PubMed  Google Scholar 

  89. Quinones-Mateu ME, Lederman MM, Feng ZM, Chakraborty B, Weber J, Rangel HR, et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS. 2003;17(16):F39–48.

    Article  CAS  PubMed  Google Scholar 

  90. Kim J, Yang YL, Jang S-H, Jang Y-S. Human beta-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol J. 2018. https://doi.org/10.1186/s12985-018-1035-2.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Crack LR, Jones L, Malavige GN, Patel V, Ogg GS. Human antimicrobial peptides LL-37 and human beta-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol. 2012;37(5):534–43.

    Article  CAS  PubMed  Google Scholar 

  92. Tomalka J, Azodi E, Narra HP, Patel K, O’Neill S, Cardwell C, et al. Beta-defensin 1 plays a role in acute mucosal defense against candida albicans. J Immunol. 2015;194(4):1788–95.

    Article  CAS  PubMed  Google Scholar 

  93. Argimon S, Fanning S, Blankenship JR, Mitchell AP. Interaction between the candida albicans high-osmolarity glycerol (hog) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell. 2011;10(2):272–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol. 2006;6(6):447–56.

    Article  CAS  PubMed  Google Scholar 

  95. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science. 1999;286(5439):498–502.

    Article  CAS  PubMed  Google Scholar 

  96. Ye RS, Xu HY, Wan CX, Peng SS, Wang LJ, Xu H, et al. Antibacterial activity and mechanism of action of epsilon-poly-l-lysine. Biochem Biophys Res Commun. 2013;439(1):148–53.

    Article  CAS  PubMed  Google Scholar 

  97. Kleerebezem M, Bongers R, Rutten G, de Vos WM, Kuipers OP. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides. 2004;25(9):1415–24.

    Article  CAS  PubMed  Google Scholar 

  98. Hale JDF, Heng NCK, Jack RW, Tagg JR. Identification of nlmTE, the locus encoding the ABC transport system required for export of nonlantibiotic mutacins in Streptococcus mutans. J Bacteriol. 2005;187(14):5036–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanchez J, Borrero J, Gomez-Sala B, Basanta A, Herranz C, Cintas LM, et al. Cloning and heterologous production of Hiracin JM79, a sec-dependent bacteriocin produced by Enterococcus hirae DCH5, in lactic acid bacteria and Pichia pastoris. Appl Environ Microbiol. 2008;74(8):2471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sommer B, Friehs K, Flaschel E. Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. J Biotechnol. 2010;145(4):350–8.

    Article  CAS  PubMed  Google Scholar 

  101. Stein T, Heinzmann S, Dusterhus S, Borchert S, Entian KD. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J Bacteriol. 2005;187(3):822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3(10):777–88.

    Article  CAS  PubMed  Google Scholar 

  103. Moll GN, Konings WN, Driessen AJM. Bacteriocins: mechanism of membrane insertion and pore formation. Int J Gen Mol Microbiol. 1999;76(1–4):185–98.

    CAS  Google Scholar 

  104. Kazazic M, Nissen-Meyer J, Fimland G. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiol SGM. 2002;148:2019–27.

    Article  CAS  Google Scholar 

  105. Hauge HH, Nissen-Meyer J, Nes IF, Eijsink VGH. Amphiphilic alpha-helices are important structural motifs in the alpha and beta peptides that constitute the bacteriocin lactococcin G—enhancement of helix formation upon alpha-beta interaction. Eur J Biochem. 1998;251(3):565–72.

    Article  CAS  PubMed  Google Scholar 

  106. Klaenhammer TR. Genetics of bacteriocins produced by lactic-acid bacteria. FEMS Microbiol Rev. 1993;12(1–3):39–86.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Q, Yu Y, Vélasquez JE, Donk WA. Evolution of lanthipeptide synthetases. Proc Natl Acad Sci U S A. 2012;109(45):18361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu Z, Wang W, Tang M, Shao J, Dai C, Zhang W, Fan H, Yao H, Zong J, Chen D, Wang J, Lu C. Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island. Gene. 2014;535(2):156–64.

    Article  CAS  PubMed  Google Scholar 

  109. Kwaadsteniet M, Doeschate KT, Dicks LMT. A new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from fresh⁃water catfish (Clarias gariepinus). Appl Environ Microbiol. 2008;74(2):547–9.

    Article  PubMed  CAS  Google Scholar 

  110. Zendo T, Fukao M, Ueda K, Higuchi T, Nakayama J, Sonomoto K. Identification of the lantibiotic Nisin Q, a new natural Nisin variant produced by Lactococcus lactis 61–14 isolated from a river in Japan. Biosci Biotechnol Biochem. 2003;67(7):1616–9.

    Article  CAS  PubMed  Google Scholar 

  111. Wirawan RE, Klesse NA, Jack RW, Tagg JR. Molecular and genetic characterization of a novel Nisin variant produced by Streptococcus uberis. Appl Environ Microbiol. 2006;72(2):1148–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. O’Sullivan JN, O’Connor PM, Rea MC, O’Sullivan O, Walsh CJ, Healy B, Mathur H, Field D, Hill C, Ross RP. Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. J Bacteriol. 2020;202(3):e00639-19.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ruyter PG, Kuipers OP, Beerthuyzen MM, Alen-Boerrigter I, Vos WM. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol. 1996;178(12):3434–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hurst A. Nisin. Adv Appl Microbiol. 1981;27(4):85–123.

    Article  CAS  Google Scholar 

  115. Breukink E, Kruijff B. Lipid II as a target for antibiotics. Nat Rev Drug Discov. 2006;5(4):321–32.

    Article  CAS  PubMed  Google Scholar 

  116. Breukink E, Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, Heck AJR, Kruijff B. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem. 2003;278(22):19898–903.

    Article  CAS  PubMed  Google Scholar 

  117. Hampikyan H. Efficacy of nisin against Staphylococcus aureus in experimentally contaminated sucuk, a Turkish-type fermented sausage. J Food Prot. 2009;72(8):1739–43.

    Article  CAS  PubMed  Google Scholar 

  118. Periago PM, Moezelaar R. Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int J Food Microbiol. 2001;68(1–2):141–8.

    Article  CAS  PubMed  Google Scholar 

  119. Severina E, Severin A, Tomasz A. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J Antimicrob Chemother. 1998;41(3):341–7.

    Article  CAS  PubMed  Google Scholar 

  120. Sheldon BW, Schuman JD. Thermal and biological treatments to control psychrotrophic pathogens. Poult Sci. 1996;75(9):1126–32.

    Article  CAS  PubMed  Google Scholar 

  121. Rodriguez JM, Martinez MI, Kok J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr. 2002;42(2):91–121.

    Article  CAS  PubMed  Google Scholar 

  122. Naghmouchi K, Kheadr E, Lacroix C, Fliss I. Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiol. 2007;24(7–8):718–27.

    Article  CAS  PubMed  Google Scholar 

  123. Naghmouchi K, Drider D, Kheadr E, Lacroix C, Prevost H, Fliss I. Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to divergicin M35, a new pediocin-like bacteriocin. J Appl Microbiol. 2006;100(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  124. Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int J Food Microbiol. 2009;133(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  125. Czepiel J, Drozdz M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, et al. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 2019;38(7):1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers. 2016. https://doi.org/10.1038/nrdp.2016.20.

    Article  PubMed  PubMed Central  Google Scholar 

  127. See I, Mu Y, Cohen J, Beldavs ZG, Winston LG, Dumyati G, et al. Nap1 strain type predicts outcomes from clostridium difficile infection. Clin Infect Dis. 2014;58(10):1394–400.

    Article  CAS  PubMed  Google Scholar 

  128. Tickler IA, Goering RV, Whitmore JD, Lynn ANW, Persing DH, Tenover FC, et al. Strain types and antimicrobial resistance patterns of clostridium difficile isolates from the united states, 2011 to 2013. Antimicrob Agents Chemother. 2014;58(7):4214–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Gebhart D, Lok S, Clare S, Tomas M, Stares M, Scholl D, et al. A modified r-type bacteriocin specifically targeting clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio. 2015. https://doi.org/10.1128/mBio.02368-14.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Umu OCO, Bauerl C, Oostindjer M, Pope PB, Hernandez PE, Perez-Martinez G, et al. The potential of class ii bacteriocins to modify gut microbiota to improve host health. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0164036.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This present work was funded by the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-22) and the National Key Research & Developmental Program of China (2018YFA0900304).

Author information

Authors and Affiliations

Authors

Contributions

ZG, DY, BH, YS, YX, ZG, HL and LZ discussed the contents, wrote, reviewed, and edited the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Yi, D., Hu, B. et al. The alteration of gut microbiota by bioactive peptides: a review. Syst Microbiol and Biomanuf 1, 363–377 (2021). https://doi.org/10.1007/s43393-021-00035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00035-x

Keywords

Navigation