Skip to main content

Advertisement

Log in

Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

It has now passed more than forty years since solid-state fermentation (SSF) research developments have gained importance for the scientific community. After so many years, numerous processes and equipment for SSF were studied and designed focusing on the production of different commercially relevant bioproducts such as enzymes, fermented food, such as Chinese daqu and koji, organic acids, pigments, phenolic compounds, aromas, biosorbents and so many others. However, no review paper has been focused yet specifically on agricultural and animal feed bioproducts obtained through SSF techniques. This review comprises the description of agricultural sub-products that have been employed in most important developed processes concerning the production of animal feed products and agricultural products such as spores, probiotics, biofungicides, bioinsecticides and other biopesticides, biofertilizers and plant growth hormones. Major designed SSF bioreactors are also described and the most important related cases of successful employment of the technique are reported. Finally, a summary of patents and innovations regarding SSF products and processes in this area is presented, showing that the main involved countries are China, South Korea, India and the USA. It is clear that the interest in this theme is increasing and that scientific and technological developments are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hesseltine CW. Biotechnology report: solid state fermentations. Biotechnol Bioeng Wiley Online Library. 1972;14:517–32.

    CAS  Google Scholar 

  2. Pandey A, Soccol CR. Bioconversion of biomass: a case study of ligno-cellulosics bioconversions in solid state fermentation. Braz Arch Biol Technol. 1998;41:379–90.

    CAS  Google Scholar 

  3. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R. Biotechnological potential of agro-industrial residues. II: Cassava bagasse. Bioresour Technol. 2000;74:81–7.

    CAS  Google Scholar 

  4. Soccol CR, de Vandenberghe LP. Overview of applied solid-state fermentation in Brazil. Biochem Eng J. 2003;13:205–18.

    CAS  Google Scholar 

  5. Hölker U, Lenz J. Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol Elsevier. 2005;8:301–6.

    Google Scholar 

  6. Shurtleff W, Aoyagi A. History of koji-grains and/or soybeans enrobed with a mold culture (300 BCE to 2012): extensively annotated bibliography and sourcebook. Lafayette: Soyinfo Center; 2012.

    Google Scholar 

  7. Zhu Y, Tramper J. Koji–where east meets west in fermentation. Biotechnol Adv Elsevier. 2013;31:1448–577.

    CAS  Google Scholar 

  8. Couto SR, Sanromán MAA. Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J Elsevier. 2005;22:211–9.

    Google Scholar 

  9. Liguori R, Soccol CR, de Souza Vandenberghe LP, Woiciechowski AL, Faraco V. Second generation ethanol production from brewers’ spent grain. Energies. 2015;8:2575–86.

    CAS  Google Scholar 

  10. Valle JS, Vandenberghe LPS, Oliveira ACC, Tavares MF, Linde GA, Colauto NB, et al. Effect of different compounds on the induction of laccase production by Agaricus blazei. Genet Mol Res. 2015;14:15882–91.

    CAS  PubMed  Google Scholar 

  11. Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 2000;35:1153–69.

    CAS  Google Scholar 

  12. Longo MA, Sanromán MÁ. 4 Application of solid-state fermentation to food industry. Innov Food Eng New Tech Prod. 2010;27:107.

    Google Scholar 

  13. Farinas C. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sustain Energy Rev. 2015;52:179–88.

    CAS  Google Scholar 

  14. Singhania R, Kumar A, Soccol CR, Pandey A. Recent advances in solid-state fermentation. Biochem Eng J. 2009;44:13–8.

    CAS  Google Scholar 

  15. Soccol C, Scopel E, Alberto L, Karp SG, Woiciechowski AL, Vandenberghe L. Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. 2017;1:52–71.

    Google Scholar 

  16. Graminha EBN, Gonçalvez AZL, Pirota RDPB, Balsalobre MAA, Silva R, Gomes E. Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol. 2008;144:1–22.

    CAS  Google Scholar 

  17. Hu T, Zhou Y, Dai L, Wang Y, Liu D, Zhang J, et al. Enhanced cellulase production by solid state fermentation with polyurethane foam as inert supports. Procedia Eng. 2011;18:335–40.

    CAS  Google Scholar 

  18. Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A. Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 2000;18:356–60.

    CAS  PubMed  Google Scholar 

  19. Thomas L, Larroche C, Pandey A. Current developments in solid-state fermentation. Biochem Eng J. 2013;81:146–61.

    CAS  Google Scholar 

  20. Khajali F, Slominski BA. Review factors that affect the nutritive value of canola meal for poultry. Poult Sci. 2012;91:2564–75.

    CAS  PubMed  Google Scholar 

  21. Thanasseelaan V. Proximate analysis, mineral and amino acid profiles of deoiled rapeseed meal. Int J Food Agric Vet Sci. 2013;3:66–9.

    Google Scholar 

  22. Figueiredo M, Sousa D, Macedo R, De OM, Rezende K, Silva N, et al. Characterization of corn (Zea mays L.) bran as a new food ingredient for snack bars. LWT Food Sci Technol. 2019;101:812–8.

    Google Scholar 

  23. Sharma HR, Chauhan GS, Agrawal K. Physico–chemical characteristics of rice bran processed by dry heating and extrusion cooking physico–chemical characteristics of rice bran. Int J Food Prop. 2004;7:603–14.

    CAS  Google Scholar 

  24. AGROCYCLE. Characterisation of agricultural waste co- and by-products. Dublin: Agrocycle; 2020.

    Google Scholar 

  25. Shea NO, Ktenioudaki A, Smyth TP, Mcloughlin P, Doran L, Auty MAE, et al. Physicochemical assessment of two fruit by-products as functional ingredients: apple and orange pomace. J Food Eng. 2015;153:89–95.

    Google Scholar 

  26. Zhang M, Xie L, Yin Z, Kumar S, Zhou Q. Bioresource technology biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol. 2016;215:50–62.

    CAS  PubMed  Google Scholar 

  27. del Río JC, Marques G, Lino AG, Lima CF, Colodette JL, Gutiérrez A. Lipophilic phytochemicals from sugarcane bagasse and straw. Ind Crop Prod. 2015;77:992–1000.

    Google Scholar 

  28. Iriondo-dehond A, García NA, Fernandez-gomez B, Guisantes-batan E, Velázquez F, Patricia G, et al. Validation of coffee by-products as novel food ingredients. Innov Food Sci Emerg Technol. 2019;51:194–204.

    CAS  Google Scholar 

  29. Pinkowska H, Wolak P. Hydrothermal decomposition of rapeseed straw in subcritical water. Proposal three-step treatment. Fuel. 2013;113:340–6.

    CAS  Google Scholar 

  30. Raimbault M, Germon JC (1976) Procédé d’enrichissement en protéines de produits comestibles solides. FR patent OA5590A. Procédé d’enrichissement en protéines Prod comestibles solides

  31. Ashok A, Doriya K, Rao D, Kumar DS. Biocatalysis and agricultural biotechnology design of solid state bioreactor for industrial applications: an overview to conventional bioreactors. Biocatal Agric Biotechnol. 2017;9:11–8.

    Google Scholar 

  32. Durand A. Bioreactor designs for solid state fermentation. Biochem Eng J. 2003;13:113–25.

    CAS  Google Scholar 

  33. Krishna C. Solid-state fermentation systems—an overview. Crit Rev Biotechnol. 2005;25:1–30.

    CAS  PubMed  Google Scholar 

  34. Arora K, Sharma S, Krishna SBN, Adam JK, Kumar A. Non-edible oil cakes as a novel substrate for DPA production and augmenting biocontrol activity of Paecilomyces variotii. Front Microbiol. 2017;8:1–12.

    Google Scholar 

  35. Machado CMM, Oishi BO, Pandey A, Soccol CR. Kinetics of Gibberella fujikuroi growth and gibberellic acid production by solid-state fermentation in a packed-bed column. Biotechnol Prog. 2004;20:1449–533.

    CAS  PubMed  Google Scholar 

  36. Zhang Y, Liu J, Zhou Y, Ge Y. Spore production of Clonostachys rosea in a new solid-state fermentation reactor. Appl Biochem Biotechnol. 2014;174:2951–9.

    CAS  PubMed  Google Scholar 

  37. Zhao S, Deng L, Hu N, Zhao B, Liang Y. Cost-effective production of Bacillus licheniformis using simple netting bag solid bioreactor. World J Microbiol Biotechnol. 2008;24:2859–63.

    Google Scholar 

  38. Sella S, Guizelini BP, Vandenberghe LP, Medeiros A, Soccol CR. Lab-scale production of Bacillus atrophaeus ’ spores by solid state fermentation in different types of bioreactors. Braz Arch Biol Technol. 2009;52:159–70.

    Google Scholar 

  39. Chen H, He Q. A novel structured bioreactor for solid-state fermentation. Bioprocess Biosyst Eng. 2013;36:223–30.

    PubMed  Google Scholar 

  40. Xie L, Chen H, Yang J. Conidia production by Beauveria bassiana on rice in solid-state fermentation using tray bioreactor. Adv Mater Res. 2013;613:3478–82.

    Google Scholar 

  41. Dai Z, Cui L, Li J, Wang B, Guo L, Wu Z, et al. Fermentation techniques in feed production. Animal agriculture. New York: Academic press; 2020. p. 407–429.

    Google Scholar 

  42. Godoy MG, Amorim GM, Barreto MS, Freire DMG. Agricultural residues as animal feed: protein enrichment and detoxification using solid-state fermentation. Current developments in biotechnology and bioengineering. Rio de Janeiro: Elsevier B.V; 2018. p. 235–256.

    Google Scholar 

  43. Yu Z, Dong B, Lu W. Dynamics of bacterial community in solid-state fermented feed revealed by 16S rRNA. Lett Appl Microbiol. 2009;49:166–72.

    CAS  PubMed  Google Scholar 

  44. Jeong JS, Park JW, Lee SI, Kim IH. Apparent ileal digestibility of nutrients and amino acids in soybean meal, fish meal, spray-dried plasma protein and fermented soybean meal to weaned pigs. Anim Sci J. 2016;87:697–702.

    CAS  PubMed  Google Scholar 

  45. Zhu J, Gao M, Zhang R, Sun Z, Wang C, Yang F, et al. Effects of soybean meal fermented on growth, immune function and intestinal morphology in weaned piglets. Microb Cell Fact. 2017;16:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassaan MS, Soltan MA, Abdel-moez AM. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia Oreochromis niloticus. Anim Feed Sci Technol. 2015;201:89–988.

    CAS  Google Scholar 

  47. Shi C, Zhang Y, Lu Z, Wang Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J Anim Sci Biotechnol. 2017;8:1–9.

    Google Scholar 

  48. Adetunji CO, Adejumo IO. Nutritional assessment of mycomeat produced from different agricultural substrates using wild and mutant strains from Pleurotus sajor-caju during solid state fermentation. Anim Feed Sci Technol. 2017;224:14–9.

    CAS  Google Scholar 

  49. Zhai SS, Zhou T, Li MM, Zhu YW, Li MC, Feng PS, et al. Fermentation of flaxseed cake increases its nutritional value and utilization in ducklings. Poult Sci. 2019;98:5636–47.

    CAS  PubMed  Google Scholar 

  50. Bowyer PH, El-haroun ER, Salim HS, Davies SJ, Nutrition F, Unit A, et al. Benefits of a commercial solid-state fermentation ( SSF ) product on growth performance, feed efficiency and gut morphology of juvenile Nile tilapia (Oreochromis niloticus) fed different UK lupin meal cultivars. Aquac. 2020;523.

  51. Drazbo A, Ognik K, Zaworska A, Ferenc K, Jankowski J. The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Pult Sci. 2018;97(11):3910–20.

    CAS  Google Scholar 

  52. Shi C, He J, Yu J, Yu B, Huang Z, Mao X, et al. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J Anim Sci Biotechnol. 2015;1–7.

  53. Shi C, He J, Wang J, Yu J, Yu B, Mao X, et al. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs. Anim Sci J. 2016;557–63

  54. Poulsen HD, Blaabjerg K. Fermentation of rapeseed meal, sunflower meal and faba beans in combination with wheat bran increases solubility of protein and phosphorus. Agr Food Sci. 2016;244–51

  55. Wang CC, Lin LJ, Chao YP, Chiang CJ, Lee MT, Chang SC et al (2017) Antioxidant molecular targets of wheat bran fermented by white rot fungi and its potential modulation of antioxidative status in broiler chickens. 1668

  56. Duodu CP, Adjei-boateng D, Edziyie RE, Agbo NW, Owusu-boateng G, Larsen BK, et al. Processing techniques of selected oilseed by-products of potential use in animal feed: effects on proximate nutrient composition, amino acid pro file and antinutrients. Anim Nutr. 2018;4:442–51.

    PubMed  PubMed Central  Google Scholar 

  57. Zhang X, Yang Z, Liang J, Tang L, Chen F. Detoxification of Jatropha curcas seed cake in solid-state fermentation of newly isolated endophytic strain and nutrition assessment for its potential utilizations. Int Biodeterior Biodegrad. 2016;109:202–10.

    CAS  Google Scholar 

  58. Chebaibi S, Grandchamp ML, Burgé G, Clément T, Allais F, Laziri F. Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: a way to valorize this industrial by-product in animal feed. J Biosci Bioeng. 2019;128:384–90.

    CAS  PubMed  Google Scholar 

  59. Brozzoli V, Bartocci S, Terramoccia S, Contò G, Federici F, Annibale AD, et al. Enzyme and Microbial Technology Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed. Enzyme Microb Technol. 2010;46:223–8.

    CAS  Google Scholar 

  60. Katongole CB, Bakeeva A, Passoth V, Erik J. E ff ect of solid-state fermentation with Arxula adeninivorans or Hypocrea jecorina (anamorph Trichoderma reesei) on hygienic quality and in-vitro digestibility of banana peels by mono-gastric animals. Livest Sci. 2017;199:14–211.

    Google Scholar 

  61. Nitayapat N, Prakarnsombut N, Ju S, Boonsupthip W. Bioconversion of tangerine residues by solid-state fermentation with Lentinus polychrous and drying the final products. LWT Food Sci Technol. 2015;63:773–9.

    CAS  Google Scholar 

  62. Aruna TE. Production of value-added product from pineapple peels using solid state fermentation. Innov Food Sci Emerg Technol. 2019;57:102193.

    CAS  Google Scholar 

  63. Hsu P, Liu C, Liu L, Chang C. Protein enrichment and digestion improvement of napiergrass and pangolagrass with solid-state fermentation. J Microbiol Immunol Infect. 2013;46:171–9.

    CAS  PubMed  Google Scholar 

  64. Mohammadi K, Sohrabi Y. Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci. 2012;7:307–16.

    Google Scholar 

  65. Ogbo FC. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol. 2010;101:4120–4.

    CAS  PubMed  Google Scholar 

  66. Sharma SB, Sayyed R, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:2193.

    Google Scholar 

  67. Chang C, Yang S. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol. 2009;100:1648–58.

    CAS  PubMed  Google Scholar 

  68. Chen H, Sun F. Novel bioconversion of wheat straw to bio-organic fertilizer in a solid-state bioreactor. Bioprocess Biosyst Eng. 2007;30:99–105.

    CAS  PubMed  Google Scholar 

  69. Chintagunta A, Jacob S, Banerjee R. Integrated bioethanol and biomanure production from potato waste. Waste Manag. 2018;49:320–5.

    Google Scholar 

  70. Gaind S. Exploitation of orange peel for fungal solubilization of rock phosphate by solid state fermentation. Waste Biomass Valorization. 2017;8:1351–60.

    CAS  Google Scholar 

  71. Klaic R, Plotegher F, Ribeiro C, Zangirolami TC, Farinas CS. A novel combined mechanical–biological approach to improve rock phosphate solubilization. Int J Miner Process. 2017;161:50–8.

    CAS  Google Scholar 

  72. Raymond N, Stover D, Peltre C, Nielsen H, Jensen L. Use of Penicillium bilaiae to improve phosphorus bioavailability of thermally treated sewage sludge—a potential novel type biofertiliser. Process Biochem. 2018;69:169–77.

    CAS  Google Scholar 

  73. Brent KJ, Hollomon DW. Fungicide resistance: the assessment of risk. 2nd ed. Brussels: FRAC; 2007.

    Google Scholar 

  74. Latin R. Understanding fungicide resistance: the fundamental elements and practical consequences of turf disease control. Green Sect Rec. 2017;55:7.

    Google Scholar 

  75. Deising HB, Pascholati SF, Reimann S. Mechanisms and significance of fungicide resistance. Braz J Microbiol. 2008;39:10.

    Google Scholar 

  76. Miastkowska M, Michalczyk A, Figacz K, Sikora E. Nanoformulations as a modern form of biofungicide. J Environ Heal Sci Eng. 2020;18:119–28.

    CAS  Google Scholar 

  77. Leiter É, Gáll T, Csernoch L, Pócsi I. Biofungicide utilizations of antifungal proteins of filamentous ascomycetes: current and foreseeable future developments. Biocontrol. 2017;62:125–38.

    CAS  Google Scholar 

  78. Srivastava M, Kumar V, Shahid M, Pandey S, Singh A. Trichoderma—a potential and effective bio fungicide and alternative source against notable phytopathogens: a review. Afr J Agric Res. 2016;11:310–6.

    CAS  Google Scholar 

  79. Kidwai MK, Nehra M. Biotechnological applications of trichoderma species for environmental and food security. Plant biotechnology: recent advancements and developments. Singapore: Springer Singapore; 2017. p. 125–156.

    Google Scholar 

  80. Kaewchai S, Soytong K. Application of biofungicides against Rigidoporus microporus causing white root disease of rubber trees. J Agric Technol. 2010;6:349–63.

    Google Scholar 

  81. Meyer MC, Mazaro SM, Silva JC da (2019) Trichoderma: USO na agricultura. Embrapa, Brasília

  82. Cerda A, Artola A, Barrena R, Font X, Gea T, Sánchez A. Innovative production of bioproducts from organic waste through solid-state fermentation. Front Sustain Food Syst. 2019;3:63.

    Google Scholar 

  83. Vassilev N, de Oliveira-Mendes G. Solid-state fermentation and plant-beneficial microorganisms. Current developments in biotechnology and bioengineering. New York: Elsevier; 2018. p. 435–450.

    Google Scholar 

  84. Jaronski ST, Mascarin GM. Mass production of fungal entomopathogens. Microbial control of insect and mite pests. New York: Elsevier; 2017. p. 141–155.

    Google Scholar 

  85. Alex PG, Elisée ALNDG, Kouabenan A, Nakpalo S, Edwige CA, Daouda K. Valorisation of cassava wastewater as substrate for trichoderma virens production, bio-control agent cocoa black pod disease. Curr J Appl Sci Technol. 2018;30:1–8.

    Google Scholar 

  86. Sakdapetsiri C, Fukuta Y, Aramsirirujiwet Y, Shirasaka N, Tokuyama S, Kitpreechavanich V. Solid state fermentation, storage and viability of Streptomyces similanensis 9X166 using agro-industrial substrates against Phytophthora palmivora—induced black rot disease in orchids. Biocontrol Sci Technol. 2019;29:276–92.

    Google Scholar 

  87. Shen T, Wang C, Yang H, Deng Z, Wang S, Shen B, et al. Identification, solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot. Appl Soil Ecol. 2016;103:36–433.

    Google Scholar 

  88. De Cal A, Larena I, Guijarro B, Melgarejo P. Mass production of conidia of Penicillium frequentans, a biocontrol agent against brown rot of stone fruits. Biocontrol Sci Technol. 2002;12:715–25.

    Google Scholar 

  89. de Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, et al. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol. 2001;56:58–68.

    PubMed  Google Scholar 

  90. Melo DF, de Mello SCM. Ideal culture conditions for Dicyma pulvinata conidia mass production. Pesq Agropec Bras. 2009;44:1232–8.

    Google Scholar 

  91. Nalini S, Parthasarathi R. Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann Agrar Sci. 2018;16:108–15.

    Google Scholar 

  92. Dhillon GS, Brar SK, Valero JR, Verma M. Bioproduction of hydrolytic enzymes using apple pomace waste by A. niger: applications in biocontrol formulations and hydrolysis of chitin/chitosan. Bioprocess Biosyst Eng. 2011;34:1017–26.

    CAS  PubMed  Google Scholar 

  93. Quiroz RD la C, Roussos S, Hernández D, Rodríguez R, Castillo F, Aguilar CN (2015) Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model. Crit Rev Biotechnol [Internet]. Informa Healthcare USA, Inc 35:326–33. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=ibty20, https://informahealthcare.com/bty. Accessed 15 May 2020.

  94. Villamizar LF, Nelson TL, Jones SA, Jackson TA, Hurst MRH, Marshall SDG. Formation of microsclerotia in three species of Beauveria and storage stability of a prototype granular formulation. Biocontrol Sci Technol. 2018;28:1097–113.

    Google Scholar 

  95. Kang SW, Lee SH, Yoon CS, Kim SW. Conidia production by Beauveria bassiana (for the biocontrol of a diamondback moth) during solid-state fermentation in a packed-bed bioreactor. Biotechnol Lett. 2005;27:135–9.

    CAS  PubMed  Google Scholar 

  96. Dalla Santa HS, Sousa NJ, Brand D, Dalla Santa OR, Pandey A, Sobotka M, et al. Conidia production of Beauveria sp. by solid-state fermentation for biocontrol ofIlex paraguariensis caterpillars. Folia Microbiol (Praha). 2004;49:418–22.

    CAS  PubMed  Google Scholar 

  97. Loera-Corral O, Porcayo-Loza J, Montesinos-Matias R, Favela-Torres E. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation. Methods Mol Biol. 2016;61–9

  98. Bich GA, Castrillo ML, Villalba LL, Zapata PD. Evaluation of rice by-products, incubation time, and photoperiod for solid state mass multiplication of the biocontrol agents Beauveria bassiana and Metarhizium anisopliae. Agron Res. 2018;16:1921–30.

    Google Scholar 

  99. Mascarin GM, Lopes RB, Delalibera Í, Fernandes ÉKK, Luz C, Faria M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J Invertebr Pathol. 2019;165:46–53.

    PubMed  Google Scholar 

  100. Behle R, Birthisel T. Formulations of entomopathogens as bioinsecticides. Mass production of beneficial organisms. New York: Elsevier; 2014. p. 483–517.

    Google Scholar 

  101. Arthurs S, Dara SK. Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol. 2019;165:13–211.

    PubMed  Google Scholar 

  102. do Silva J, Mascarin GM, Gomes ICS, Tinôco RS, Quintela ED, dos Castilho LR, et al. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica. Appl Microbiol Biotechnol. 2018;102:2595–606.

    Google Scholar 

  103. Kumar KK, Sridhar J, Murali-Baskaran RK, Senthil-Nathan S, Kaushal P, Dara SK, et al. Microbial biopesticides for insect pest management in India: current status and future prospects. J Invertebr Pathol. 2019;165:74–81.

    CAS  PubMed  Google Scholar 

  104. Arora A, Kaur P, Kumar M, Saini V. Production of biopesticides namely Trichoderma viride and Beauveria bassian. Indian J Sci Technol. 2017;10:1–7.

    CAS  Google Scholar 

  105. Qiu L, Li J-J, Li Z, Wang J-J. Production and characterization of biocontrol fertilizer from brewer’s spent grain via solid-state fermentation. Sci Rep. 2019;9:480.

    PubMed  PubMed Central  Google Scholar 

  106. Bravo A, Likitvivatanavong S, Gill SS, Soberón M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol. 2011;41:423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jackson TA. Entomopathogenic bacteria. New York: Microb Control Insect Mite Pests. Elsevier; 2017. p. 125–139.

    Google Scholar 

  108. Osman GEH, Already R, Assaeedi ASA, Organji SR, El-Ghareeb D, Abulreesh HH, et al. Bioinsecticide bacillus thuringiensis a comprehensive review. Egypt J Biol Pest Control. 2015;25:271–88.

    Google Scholar 

  109. Adams T, Eiteman M, Hanel B. Solid state fermentation of broiler litter for production of biocontrol agents. Bioresour Technol. 2002;82:33–41.

    CAS  PubMed  Google Scholar 

  110. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–8. https://www.sciencedirect.com/science/article/pii/S0167779912000042?casa_token=QZY8lH-rN-IAAAAA:P5MfbDXxltYYeIMAQ8qFftuNIXyafpV6qjfYi_7sdIl693Xww84ENMqzsk0c3L24jS1CpegDLYo. Accessed 15 May 2020.

  111. Bailey KL, Falk S. Turning research on microbial bioherbicides into commercial products—a Phoma story. Pest Technol. 2011;5:73–9.

    Google Scholar 

  112. Charudattan R. Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. Biocontrol. 2001;46:229–60.

    Google Scholar 

  113. Auld BA, Hetherington SD, Smith HE (2003) Advances in bioherbicide formulation. Weed Biol Manag 3:61–7. Available from: http://doi.wiley.com/https://doi.org/10.1046/j.1445-6664.2003.00086.x

  114. Watson A (2007) Sclerotinia minor—biocontrol target or agent? Nov Biotechnol Biocontrol Agent Enhanc Manag 205–11. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-4020-5799-1_10

  115. Harper GJ, Comeau PG, Hintz W, Wall RE, Prasad R, Becker EM (1999) Chondrostereum purpureum as a biological control agent in forest vegetation management. II. Efficacy on Sitka alder and aspen in western Canada. Can J For Res 29:852–8. Available from: http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/x99-121

  116. Charudattan R. Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol Control. 2005;35:183–96.

    Google Scholar 

  117. Imaizumi S, Tateno A, Fujimori T. The significance of plant wounds in effective control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv poae (JT-P482). J Jpn Soc Turfgrass Sci. 1998;26:149–56.

    Google Scholar 

  118. Bahadar Marwat K, Azim Khan M, Nawaz A, Amin A. Parthenium hysterophorus L., a potential source of bioherbicide. Pak J Bot. 2008;40:1933–42.

    Google Scholar 

  119. Wilson MJ, Jackson TA. Progress in the commercialisation of bionematicides. Biocontrol. 2013;58:715–22.

    CAS  Google Scholar 

  120. Song Z, Shen L, Zhong Q, Yin Y, Wang Z. Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide. Nematology. 2016;18:719–26.

    CAS  Google Scholar 

  121. Giannakou IO, Karpouzas DG, Prophetou-Athanasiadou D. A novel non-chemical nematicide for the control of root-knot nematodes. Appl Soil Ecol. 2004;26:69–79.

    Google Scholar 

  122. Dallemole-Giaretta R, Freitas LG, Lopes EA, Pereira OL, Zooca RJF, Ferraz S (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Prot 42:102–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261219412001706. Accessed 15 May 2020.

  123. Leontopoulos S (2008) Pasteuria penetrans as a commercial bio-nematicide. In: XVI Int Plant Protetion Congr [Internet]. Glasgow;. p. 1–4. Available from: https://www.researchgate.net/publication/236146321. Accessed 15 May 2020.

  124. Martins F, Costa M, Galhano CIC (2015) On the way for a new bionematicide. Agric Food 3. Available from: www.scientific-publications.net. Accessed 15 May 2020.

  125. Sikora RA, Fernández E. Nematode parasites of vegetables. Plant parasitic nematodes in subtropical and tropical agriculture. 2nd ed. Wallingford: CABI Publishing; 2005. p. 319–392.

    Google Scholar 

  126. Brand D, Roussos S, Pandey A, Zilioli PC, Pohl J, Soccol CR. Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Appl Biochem Biotechnol Part A Enzym Eng Biotechnol. 2004;118:81–8.

    CAS  Google Scholar 

  127. Mousumi Das M, Haridas M, Sabu A. Process development for the enhanced production of bio-nematicide Purpureocillium lilacinum KU8 under solid-state fermentation. Bioresour Technol. 2020;308:123328.

    CAS  PubMed  Google Scholar 

  128. Rodrigues C, Vandenberghe L, Oliveira J, Soccol CR. New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol. 2012;8551:263–73.

    Google Scholar 

  129. Camara MC, Vandenberghe LPS, Rodrigues C, Oliveira J, Faulds C, Bertrand E, et al. Current advances in gibberellic acid—(GA 3) production, patented technologies and potential applications. Planta. 2018;248:1049–62.

    CAS  PubMed  Google Scholar 

  130. Oliveira J, Rodrigues C, Vandenberghe LPS, Câmara MC, Libardi N, Soccol CR. Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. Biomed Res Int. 2017;2017:1–8.

    Google Scholar 

  131. Rodrigues C, Vandenberghe L, Teodoro J, Oss J, Oss F, Pandey A, et al. A new alternative to produce gibberellic acid by solid state fermentation. Braz Arch Biol Technol. 2009;52:181–8.

    Google Scholar 

  132. Silva A, Rodrigues C, Costa J, Pereira M, Penha R, Biasi L, et al. Gibberellic acid fermented extract obtained by solid-state fermentation using citric pulp by fusarium moniliforme: influence on lavandula angustifolia mill, cultivated in vitro. Pak J Bot. 2013;45:2057–64.

    Google Scholar 

  133. Satpute D, Sharma V, Murarkar K, Bhotmange M, Dharmadhikari D. Solid-state fermentation for production of gibberellic acid using agricultural residues. Int J Environ Pollut. 2010;43:201.

    CAS  Google Scholar 

  134. Machado C, Soccol C, Oliveira B, Pandey A. Gibberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotechnol. 2002;102:179–91.

    PubMed  Google Scholar 

  135. Kumar PK, Lonsane BK. Solid state fermentation: physical and nutritional factors influencing gibberellic acid production. Appl Microbiol Biotechnol. 1990;34:145–8.

    CAS  Google Scholar 

  136. Kumar PKR, Lonsane BK. Potential of fed-batch culture in solid state fermentation for production of gibberellic acid. Biotechnol Lett. 1987;9:179–82.

    CAS  Google Scholar 

  137. Agosin E, Maureira M, Biffani V, Perez F. Production of gibberellins by solid substrate cultivation of Gibberella fujikuroi. In: Roussos S, Lonsane BK, Raimbault M, Viniegra-Gonzalez G (eds) Advances in solid-state fermentation. Netherlands: Kluwer, Dordrecht; 1997. p. 355–366.

  138. Bandelier S, Reanaud R. Production of gibberellic acid by fed-batch solid state fermentation in an aseptic pilot-scale reactor. Process Biochem. 1997;32:141–5.

    CAS  Google Scholar 

  139. Tomasini A, Fajardo C. Gibberellic acid production using different solid-state fermentation systems. World J Microbiol Biotechnol. 1997;203–207

  140. Rangaswamy V. Improved production of gibberellic acid by Fusarium moniliforme improved production of gibberellic acid by Fusarium moniliforme. J Microbiol Res. 2012;2:51–5.

    Google Scholar 

  141. Rhouma MB, Kriaa M, Nasr YB, Mellouli L, Kammoun R. Research article a new endophytic fusarium oxysporum gibberellic acid : optimization of production using combined strategies of experimental designs and potency on tomato growth under stress condition. Biomed Res Int. 2020;1:1–14.

    Google Scholar 

  142. Han H, Zhang S, Sun X. A review on the molecular mechanism of plants rooting modulated by auxin. Afr J Biotechnol. 2009;8:348–53.

    CAS  Google Scholar 

  143. Prado D, Okino-delgado C, Zanutto-elgui MR, Silva R, Stefani P, Jahn L, et al. Screening of Aspergillus, Bacillus and Trichoderma strains and influence of substrates on auxin and phytases production through solid-state fermentation. Biocatal Agric Biotechnol. 2019;19:101165.

    Google Scholar 

  144. Shi T, Peng H, Zeng S, Ji R, Shi K, Huang H, et al. Microbial production of plant hormones: opportunities and challenges. Bioengineered. 2017;8:124–8.

    CAS  PubMed  Google Scholar 

  145. Griffin DH, Walton DC. Regulation of abscisic acid formation in mycosphaerella (Cercospora) rosicola by phosphate. Mycologia. 1982;74:614–8.

    CAS  Google Scholar 

  146. Dörffling K, Petersen W, Sprecher E, Urbasch I, Hanssen H-P. Abscisic acid in phytopathogenic fungi of the genera botrytis, ceratocystis, fusarium, and rhizoctonia. Z Naturforsch. 1984;1:2000.

    Google Scholar 

  147. Marumo S, Katayama M, Komori E, Ozaki Y, Kondo S. Microbial production of abscisic acid by Botrytis cinerea. Agric Biol Chem. 1982;46:1967–8.

    CAS  Google Scholar 

  148. Jameson P. Cytokinins and auxins in plant-pathogen interactions—an overview. Plant Growth Regul. 2000;32:369–80.

    CAS  Google Scholar 

  149. Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions. 1st edn.Springer, Berlin

  150. Tao L, Dong H, Chen X, Chen S, Wang T. Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv glycinea in Trichoderma viride. Appl Microbiol Biotechnol. 2008;80:573–8.

    CAS  PubMed  Google Scholar 

  151. Sanders ME. Probiotics: considerations for human health. Nutr Rev. 2003;61:91–9.

    PubMed  PubMed Central  Google Scholar 

  152. FAO/WHO (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. Rome. Available from: https://www.fao.org/tempref/docrep/fao/009/a0512e/a0512e00.pdf. Accessed 15 May 2020.

  153. Soccol CR, Prado MRM, Garcia LMB, Rodrigues C, Medeiros ABP, Thomaz-Soccol V. Current developments in probiotics. J Microb Biochem Technol. 2014;7:11–020.

    Google Scholar 

  154. de Pereira GVM, de Coelho BO, Júnior AIM, Thomaz-Soccol V, Soccol CR. How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv. 2018;36:2060–76.

    Google Scholar 

  155. Muller JA, Ross RP, Fitzgerald GF, Stanton C (2009) Manufacture of probiotic bacteria. In: Charalampopoulos D, Rastall RA (eds) Prebiotics Probiotics Science Technology, 1st ed. New York, pp 727–59

  156. Simon O (2005) Micro-organisms as feed additives-probiotics. Berlin, Germany

  157. Manhar AK, Saikia D, Bashir Y, Mech RK, Nath D, Konwar BK, et al. In vitro evaluation of celluloytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic. Res Vet Sci. 2015;99:149–56. https://doi.org/10.1016/j.rvsc.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  158. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol. 2017;8:1–15.

    Google Scholar 

  159. Ramos MA, Gonçalves JFM, Costas B, Batista S, Lochmann R, Pires MA, et al. Commercial Bacillus probiotic supplementation of rainbow trout (Oncorhynchys mykiss) and brown trout (Salmo trutta): growth, immune responses and intestinal morphology. Aquac Res. 2017;48:2538–49.

    CAS  Google Scholar 

  160. AlGburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA, Mazanko MS, et al. Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol. 2016;06:432–52.

    CAS  Google Scholar 

  161. Jeong JS, Kim IH. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult Sci. 2014;93:3097–103.

    CAS  PubMed  Google Scholar 

  162. Gu SB, Zhao LN, Wu Y, Li SC, Sun JR, Huang JF, et al. Potential probiotic attributes of a new strain of Bacillus coagulans CGMCC 9951 isolated from healthy piglet feces. World J Microbiol Biotechnol. 2015;31:851–63.

    CAS  PubMed  Google Scholar 

  163. Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol. 2008;105:510–20.

    CAS  PubMed  Google Scholar 

  164. Bajagai YS, Klieve AV, Dart PJ, Bryden WL. Probiotics in animal nutrition—Production, impact and regulation. In: Anim Prod Heal. FAO, Rome; 2016. p. 1–65

  165. Sella SRBR, Vandenberghe LPS de, Soccol CR (2014) Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiol Res 169:931–9. Available from: https://www.sciencedirect.com/science/article/pii/S0944501314000597?via%3Dihub. Accessed 15 May 2020.

  166. Terlabie NN, Sakyi-Dawson E, Amoa-Awua WK (2006) The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int J Food Microbiol 106:145–52. Available from: https://www.sciencedirect.com/science/article/pii/S016816050500423X. Accessed 15 May 2020.

  167. Zhang YR, Xiong HR, Guo XH (2014) Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis. Folia Microbiol 59:31–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23775321. Accessed 15 May 2020.

  168. Berikashvili V, Sokhadze K, Kachlishvili E, Elisashvili V, Chikindas ML. Bacillus amyloliquefaciens spore production under solid-state fermentation of lignocellulosic residues. Probiotics Antimicrob Proteins. 2018;10:755–61.

    CAS  PubMed  Google Scholar 

  169. Anadón A, Martínez-Larrañaga MR, Martínez MA. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol. 2006;45:91–5.

    PubMed  Google Scholar 

  170. Mendes FR, de Leite PR, Ferreira LL, Lacerda MJR, Andrade MA. Utilização de antimicrobianos na avicultura. Rev Eletrôn Nutr. 2013;10:2352–89.

    Google Scholar 

  171. Ahmed ST, Islam MM, Mun HS, Sim HJ, Kim YJ, Yang CJ. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poult Sci. 2014;93:1963–71.

    CAS  PubMed  Google Scholar 

  172. Yirga H. The use of probiotics in animal nutrition. J Probiotics Heal. 2015;03:1–10.

    Google Scholar 

  173. Zhang ZF, Cho JH, Kim IH. Effects of Bacillus subtilis UBT-MO2 on growth performance, relative immune organ weight, gas concentration in excreta, and intestinal microbial shedding in broiler chickens. Livest Sci. 2013;155:343–7.

    Google Scholar 

  174. Jayaraman S, Das PP, Saini PC, Roy B, Chatterjee PN (2017) Use of Bacillus subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poult Sci 96:2614–22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28482065. Accessed 15 May 2020.

  175. Jørgensen JN, Laguna JS, Millán C, Casabuena O, Gracia MI. Effects of a Bacillus-based probiotic and dietary energy content on the performance and nutrient digestibility of wean to finish pigs. Anim Feed Sci Technol. 2016;221:54–61. https://doi.org/10.1016/j.anifeedsci.2016.08.008.

    Article  CAS  Google Scholar 

  176. Le OT, Schofield B, Dart PJ, Callaghan MJ, Lisle AT, Ouwerkerk D, et al. Production responses of reproducing ewes to a by-product-based diet inoculated with the probiotic Bacillus amyloliquefaciens strain H57. Anim Prod Sci. 2017;57:1097–105.

    Google Scholar 

  177. Ambas I, Buller N, Fotedar R. Isolation and screening of probiotic candidates from marron, Cherax cainii (Austin, 2002) gastrointestinal tract (GIT) and commercial probiotic products for the use in marron culture. J Fish Dis. 2015;38:467–76.

    CAS  PubMed  Google Scholar 

  178. Kirnev PCS, Carvalho JC, Vandenberghe LPS, Karp SG, Soccol CR. Technological mapping and trends in photobioreactors for the production of microalgae. World J Microbiol Biotechnol. 2020;36:1–9.

    Google Scholar 

  179. Zhu Y, Zhang Z, Chen Z, Tan J (2019) Preparing amino acid foliar fertilizer by taking fresh mushroom residue liquid as raw material, concentrating, performing biological enzymolysis, pressing, and performing ceramic membrane filtration and single furnace concentration. CN Patent 110713394-A

  180. Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. 2017;24:3315–35.

    CAS  Google Scholar 

  181. Bhattacharjee R, Dey U. Biofertilizer, a way towards organic agriculture: a review. African J Microbiol Res. 2014;8:2332–42.

    Google Scholar 

  182. Zorner PS, Farmer S, Alibek K (2018) Microbe-based products for enhancing plant root and immune health International application published under the patent cooperation treaty (PCT) WO2019217548-A1

  183. Lin H, Ma J, Sun W, Ye J, Yu Q, Yu Y et al (2019) Bio-organic fertilizer used for promoting vegetable growth and inhibiting Fusarium oxysporum, is prepared by pulverizing vegetable residue, mixing with crop straw, and mixing solid fermentation product with ball-milled mineral humus. CN Patent 110156511-A

  184. Peng N, Chang Z, Tian J, Liang Y (2019) Preparing animal feed useful for e.g. stimulating intestinal peristalsis, by using mixture of white wine distiller’s grains and expanded corn flour, adding Bacillus licheniformis seed solution, fermenting, drying and pulverizing product. CN Patent 1103841

  185. Xia M, He Y, Wang D, Li Y (2019) Hermetia illucens solid state fermented concentrated feed comprises Hermetia illucens pulp, bacterial material, soybean pulp, wheat bran, soybean hull, corn powder and molasses. CN Patent 110037165-A

  186. Liao P, Tan B, Li X, LIu Z, Yin Y (2019) Promote Farrowing and mitigates the preparation method of postpartum syndrome feed addictive. CN Patent 110037189-A

  187. Bao X (2017) A kind of horizontal solid substrate fermantation tank .CN Patent 206476905-U

  188. Deng X, Liang W (2016) Self-discharging solid state fermentation tray. CN Patent 105837278

  189. Mai H, Mai X (2016) Fermentation production system based on container and solid fermentation production method. CN Patent 105254361-A

  190. WIPO (2020) The International Patent Classification. World Intellect. Prop. Organ. https://www.wipo.int/classifications/ipc/en/. Accessed 15 May 2020.

Download references

Acknowledgements

Authors want to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the financial support and scholarships.

Funding

This work was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) (Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brasil (CNPq) and internal funds of Federal University of Paraná.

Author information

Authors and Affiliations

Authors

Contributions

LPSV was involved in conceptualization, literature research, bioreactors, abstract–conclusions, final revision. AP contributed to structure/final revision. JCC helped in introduction, patents and innovation. LAJL and ALW were involved in SSF substrates characterization and application. SGK and WJM contributed to patents and innovation. ROP helped in biofertilizers and plant growth hormones. LWH was involved in biopesticides, probiotics and other bioproducts. AOR contributed to biofungicides, bioinseticides and spores. VTS was involved in animal feed products. CRS and corresponding author helped in structure and final revision

Corresponding author

Correspondence to Carlos R. Soccol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors agree with their participation in this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandenberghe, L.P.S., Pandey, A., Carvalho, J.C. et al. Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Syst Microbiol and Biomanuf 1, 142–165 (2021). https://doi.org/10.1007/s43393-020-00015-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-020-00015-7

Keywords

Navigation