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Abstract
Purpose  This purpose of this study was to assess the impact of patient and implant characteristics on LIV selection in ambu-
latory children with EOS and to assess the relationship between the touched vertebrae (TV), the last substantially touched 
vertebrae (LSTV), the stable vertebrae (SV), the sagittal stable vertebrae (SSV), and the LIV.
Methods  A multicenter pediatric spine database was queried for patients ages 2–10 years treated by growth friendly instru-
mentation with at least 2-year follow up. The relationship between the LIV and preoperative spinal height, curve magnitude, 
and implant type were assessed. The relationships between the TV, LSTV, SV, SSV, and the LIV were also evaluated.
Results  Overall, 281 patients met inclusion criteria. The LIV was at L3 or below in most patients with a lumbar LIV: L1 
(9.2%), L2 (20.2%), L3 (40.9%), L4 (29.5%). Smaller T1 − T12 length was associated with more caudal LIV selection 
(p = 0.001). Larger curve magnitudes were similarly associated with more caudal LIV selection (p = < 0.0001). Implant type 
was not associated with LIV selection (p = 0.32) including MCGR actuator length (p = 0.829). The LIV was caudal to the 
TV in 78% of patients with a TV at L2 or above compared to only 17% of patients with a TV at L3 or below (p < 0.0001).
Conclusions  Most EOS patients have an LIV of L3 or below and display TV–LIV and LSTV–LIV incongruence. These 
findings suggest that at the end of treatment, EOS patients rarely have the potential for selective thoracic fusion. Further 
work is necessary to assess the potential for a more selective approach to LIV selection in EOS.
Level of evidence  III.
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Introduction

Selection of the lowest instrumented vertebrae (LIV) is a 
foundational principle guiding the management of spinal 
deformity [1]. In adolescent idiopathic scoliosis (AIS), clas-
sification systems exist to assist with LIV selection to limit 
the extension of spinal fusion while achieving excellent 
spinal correction and balance [1–4]. There has been less 
emphasis on LIV selection in early-onset scoliosis (EOS) 
treated with distraction-based growth-friendly instrumen-
tation (GFI) [5, 6]. The variability of curve patterns and 
diagnoses found within this population may complicate the 
process of LIV selection [7]. It is also possible that the size 
and space requirements of the implants used in GFI limit 
LIV selection options [6].

There are a host of studies surrounding LIV selection in 
AIS [1, 8, 9]. Key factors influencing LIV decisions include 
the last touched vertebrae (TV), curve flexibility on pre-
operative bending films, rotation at the apex, curve mag-
nitude, and clinical exam [1, 2, 8, 9]. In contrast, there is a 
paucity of literature evaluating LIV selection in EOS, and 
little is known about the factors influencing LIV decisions 
in this patient population [5–7].

The purpose of this study was to assess the impact of 
patient, implant, and curve characteristics on LIV selection 
in ambulatory children with EOS. We hypothesized that 
implant type and patient size would inform LIV selection. 
Due to the rigid portion of the actuator, we anticipated that 
magnetically controlled growing rods (MCGR) would be 
associated with a more caudal LIV when compared to tra-
ditional growing rods (TGR) and vertical expandable pros-
thetic titanium rib (VEPTR). We also hypothesized that a 
substantial mismatch would exist between LIV selection 
and both the TV and the last substantially touched vertebrae 
(LSTV) on preoperative radiographs with longer constructs 
being frequently encountered.

Methods

This was a retrospective review of an institutional review 
board-approved multicenter international database of 
patients diagnosed with early onset scoliosis and treated with 
growth friendly instrumentation.

Eligibility and selection criteria

Ambulatory EOS patients with an idiopathic diagno-
sis between the ages of 2 and 10 years treated with TGR, 
VEPTR, and MCGR between 2010 and 2020 with minimum 
2 year follow up were screened for eligibility. Patients with 
incomplete data, instrumentation extending to S1 or below, 
or listed as having had prior surgical instrumentation were 
excluded from the study (Fig. 1).

Data collection

Baseline patient characteristics collected included age, sex, 
race, weight, and height. Pre-index data included major and 
minor curve magnitudes and thoracic spine heights (TSH) 
from T1–T12 and total spine height from T1–S1. Opera-
tive details, including date of surgery, instrumentation type 
(MCGR vs. VEPTR/TGR), and MCGR actuator size (70 vs. 
90 mm) were recorded. A center sacral vertical line (CSVL) 
was drawn on upright preoperative anterior–posterior radio-
graphs to assess the last touched vertebrae (TV), the last 
substantially touched vertebrae (LSTV), and the stable 
vertebrae (SV). The TV was defined as the most cephalad 
thoracolumbar or lumbar vertebra that was “touched” by the 
CSVL on any portion of the involved vertebrae. The LSTV 
was defined as the most cephalad thoracolumbar or lumbar 
vertebrae that the CSVL at least touched or was medial to 
the lateral border of the pedicle. The SV was defined as the 
most cephalad vertebrae below the curve apex that was most 
closely bisected by the CSVL. The posterior sacral vertical 
line was drawn on upright preoperative lateral radiographs to 
assess the stable sagittal vertebrae (SSV), which was defined 
as the most cephalad vertebrae at which 50% of the vertebral 
body was in front of the posterior sacral vertical line. The 

Fig. 1   Exclusion flow chart
Patients ages 2-10 years old who underwent growth friendly instrumentation after 2010 (n = 294).  

A total of 281 patients were included in the overall analysis.

Patients with no post-index film or 
instrumentation past S1 (n = 7). Patients with prior instrumentation (n = 6).
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primary outcome was LIV, which was defined as the most 
caudal instrumented vertebrae as determined by postopera-
tive radiographs. Secondary outcomes included factors asso-
ciated with the LIV as well as the relationship between the 
TV, LSTV, SV, SSV and the LIV.

Study design

Due to the lack of a previous multi-center study of LIV 
selection in EOS, we first established the relative LIV 
distribution in ambulatory patients with EOS. We then 
assessed the LIV in relation to both implant and patient fac-
tors including preoperative spinal height, curve magnitude, 
implant type, and actuator size. Finally, we analyzed the 
relationship between TV, LSTV, SV, SSV, and the LIV.

Data analysis

Data were analyzed using SAS/STAT software version 9.4 
(SAS Institute Inc., Cary, NC). The association between LIV 
and selected patient demographics and clinical characteris-
tics within lumbar vertebrae was compared using ANOVA 
and Tukey adjustment for multiple comparisons when an 
overall significant association was observed. The LIV was 
compared between surgical instrumentation type (MCGR vs. 
VEPTR/TGR) and MCGR actuator length (70 vs. 90 mm) 
using the χ2 test for categorical variables. Where applicable, 

residuals were independent with an identical and normal 
distribution and homogenous variances. A 2-sided p < 0.05 
indicated statistical significance.

Results

Two hundred eighty-one patients met the inclusion crite-
ria, of which 165 were treated with MCGR and 116 were 
treated with VEPTR/TGR. Demographics and pre-index 
radiographic measures are shown in Table 1. Of note, 65% 
of patients underwent surgery in more recent years (between 
2015 and 2020).

Two hundred seventy-one patients (96.4%) had a lumbar 
LIV between L1 and L4. The LIV was most often at the 
L3 vertebra, encompassing 40.9% of lumbar LIVs. Other 
lumbar LIV levels included L4 (29.5%), L2 (20.2%), L1 
(9.2%) in decreasing order. Thoracic level 10, T11, T12 and 
lumbar level L5 accounted for a small number of reported 
LIV selections (3.5%). LIV selection was not associated with 
implant type (MCGR vs. TGR/VEPTR, p = 0.321) (Fig. 2) 
or actuator length (70 vs. 90 mm, p = 0.829) within MCGR.

The association between LIV and selected patient char-
acteristics (Table 2) was investigated in patients with LIV 
of L1–L4 as instrumentation ending in the thoracic spine 
or distally at L5 was observed in very few patients (n = 10). 
LIV selection was associated with pre-index major and 

Table 1   Patient demographics and pre index surgery clinical characteristics

SD standard deviation

Characteristics n All patients
Mean (SD)

Age, years 281 6.7 (2.2)
Weight, kg 251 22.8 (9.4)
Height, cm 253 116.4 (17.2)
Major Cobb angle, ° 268 73.7 (20.8)
Minor Cobb angle, ° 252 44.1 (12.9)
Thoracic spine height (T1 − T12), cm 229 16.7 (3.2)
Thoracic spine height (T1 − S1), cm 228 27.1 (4.7)
Kyphosis, ° 237 49.3 (21.1)

n %

Sex
 Female 177 63.0
 Male 104 37.0

Race
 Black/African American 43 16.3
 White/Caucasian 178 67.7
 Other 42 16.0

Surgery year
 2010–2015 98 34.9
 2015–2020 183 65.1
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minor curve magnitudes (p < 0.001) and spinal height as 
measured by T1 − T12 spinal length (p = 0.001), T1 − S1 
spinal length (p = 0.001), and kyphosis (p < 0.001). Nei-
ther patient age (p = 0.569) or clinically measured height 
(p = 0.188) were significantly associated with LIV selec-
tion. As the LIV level extended caudally, pre-index 
major and minor curve magnitudes as well as kyphosis 
increased while thoracic spinal height decreased almost 
linearly, indicating that a more caudal LIV was chosen in 
patients with smaller trunk heights and those with more 
pronounced spinal deformity.

The majority (63.8%) of patients exhibited some degree 
of LIV-TV level incongruence (Fig. 3) and 47.6% of patients 
had an LIV below the TV (+ 1, + 2, …, and + 7). In most 
patients (64.5%), the TV and LSTV were the same verte-
bral level. As such, we found similar trends in LIV-LSTV 
incongruency and 37% had an LIV that was caudal to the 
LSTV (Fig. 3).

Fig. 2   Percentage of patients 
(bubble width) with lowest 
instrumented vertebrae (LIV) on 
listed vertebra by index surgery 
type [magnetically controlled 
growing rods (MCGR) vs. 
vertical expandable prosthetic 
titanium rib or traditional grow-
ing rods (VEPTR/TGR)]
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Table 2   Patient demographics 
and pre index surgery clinical 
characteristics within lumbar 
vertebrae by LIV

SD standard deviation, TSH total spine height

Characteristics L1 (n = 25) L2 (n = 55) L3 (n = 111) L4 (n = 80) p value

Age, years 7.3 (2.2) 6.7 (2.4) 6.6 (2.1) 6.6 (2.3) 0.569
Height, cm (n = 245) 120.8 (16.9) 119.0 (17.8) 114.2 (15.9) 114.9 (18.1) 0.188
Major Cobb angle, ° (n = 259) 61.0c (11.1) 67.4bc (18.0) 74.8ab (20.7) 81.8a (21.9) < 0.0001
Minor Cobb angle, ° (n = 243) 37.8b (10.0) 39.2b (11.7) 44.1b (11.9) 49.3a (13.7) < 0.0001
TSH (T1–T12), cm (n = 221) 18.5a (3.4) 17.5ab (3.6) 16.2b (2.8) 16.0b (3.2) 0.001
TSH (T1–S1), cm (n = 220) 30.2a (5.2) 28.1ab (4.7) 26.4b (4.0) 25.9b (4.7) 0.001
Kyphosis, ° (n = 229) 37.9b (4.3) 42.5b (3.0) 49.8b (2.1) 58.2a (2.5) < 0.0001
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Fig. 3   Percentage of patients with lowest instrumented vertebrae 
(LIV) at last touched vertebra (LTV, gray) or at last substantially 
touched vertebra (LSTV, black), caudal (+ 1, 2, 3, 4, 5, 6, or 7) and 
proximal (− 4, − 3, − 2, or − 1)
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We further explored the association between the LIV and 
both the TV (Fig. 4) and LSTV (Fig. 5). As the TV was 
located more cranial (T12 and L1), the incidence of LIV-
TV incongruence increased with the LIV invariably being 
caudal to the TV. LIV–TV congruence increased with lower 
TV levels (bolded box). LIV–TV congruence peaked at L4, 
where nearly 58% of the patients had their LIV at the same 
level as the TV. The LIV was caudal to the TV in 78% of 
patients with a TV at L2 or above compared to only 17% of 
patients with a TV at L3 or below (p < 0.0001). A similar 
trend was seen when comparing the LSTV and LIV (Fig. 5), 
although the vertebrae of maximal congruence was L3 
when analyzing by LSTV. When assessing by SV (Fig. 6), 
the LIV was below the SV if the SV was at L2 (38%) or 
above (> 67%). Due to the overall tendency to select the 
LIV at either L3 or L4, when the TV or LSTV occurred 

at a more cranial vertebra, the LIV tended to be more cau-
dal than either the TV or the LSTV. The SSV tended to be 
more cephalad when compared to the coronal parameters 
(Table 3). The vast majority (89%) of LIV selections were 
below the SSV (Fig. 7).

The LIV after definitive fusion was available for 82 
patients (29%). Of those patients with documented definitive 
fusion after initial growth friendly instrumentation, there 
was no change in the LIV for most patients with an initial 
LIV of L3 (no change in 82%) or L4 (92%). In contrast, 
a more cephalad index LIV was associated with a caudal 
shift in LIV following definitive fusion. The percent of 
patients with a more caudal LIV after definitive fusion was: 
L1 (67%), L2 (38%), L3 (18%), L4 (8%). Only one patient, 
whose index LIV was at L4, had extension to the pelvis at 
most recent follow-up.

Fig. 4   Percentage of patients 
with lowest instrumented 
vertebrae (LIV) above (white), 
at (gray) and below (black) the 
last touched vertebra (LTV) pre-
sented by LTV. Analysis limited 
to LTV from T12 to L5
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Fig. 5   Percentage of patients 
with lowest instrumented ver-
tebrae (LIV) above (white), at 
(gray) and below (black) the last 
substantially touched vertebra 
(LSTV) presented by LSTV
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Discussion

This study represents the largest multicenter analysis of 
the lowest instrumented vertebrae in early onset scoliosis. 
Although selective thoracic surgery is an area of focus in 
adolescent idiopathic scoliosis, these results show that it 
is a rare occurrence in EOS. In this cohort, only 11% of 
patients had a LIV at L1 or cephalad. The most common 
LIV was L3 and the majority of patients had an LIV of L3 
or L4. We attempted to identify the underlying reasons 

for LIV selection and hypothesized that patient size and 
implant type would obligate a lower LIV. Larger curve 
magnitude and shorter spinal height were associated with 
a more caudal LIV, however, there was no association 
between implant type and LIV. We also found a signifi-
cant incongruence between the TV, LSTV, and the LIV. 
Only 34% of patients had LIV-LSTV congruency. The 
SSV tended to be more cephalad when compared to coro-
nal parameters and did not appear to play a major role in 
LIV selection in this series. In this generalizable cohort, 
48% of patients had an LIV that was caudal to the TV and 
37% had an LIV that was caudal to the LSTV which may 
represent an opportunity to impact surgical planning.

LIV selection is a common topic of discussion and area 
of research in the treatment of AIS [1, 2, 4, 8, 10–18]. In 
contrast, there is a relative paucity of literature assessing 
LIV selection in EOS with research efforts instead focused 
on implant type, complications, and spinal growth [5, 7, 
19–21]. Upper implant level selection and technique has 
also received deserved attention as implant failure is more 
frequent at the upper foundation [22]. Fortunately, there are 
fewer complications associated with the LIV which may 
explain the lack of prior research. However, LIV selection 
has long term implications with several studies citing disc 
degeneration after posterior spinal fusion into the lower lum-
bar spine [23–25]. The most common LIV in our cohort 
was L3, followed by L4, which together represented 71% of 
patients with a lumbar LIV in this cohort. An additional 20% 
had an LIV at L2 which left a small proportion of patients 
who had a selective thoracic surgery. These findings suggest 
that at the end of treatment, EOS patients rarely have the 
potential for selective thoracic fusion, an important goal in 
the treatment of patients with other forms of spinal deform-
ity such as AIS.

Fig. 6   Percentage of patients 
with lowest instrumented 
vertebrae (LIV) above (white), 
at (gray) and below (black) the 
stable vertebra (SV) presented 
by SV
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Table 3   Distribution of coronal and sagittal parameters

LTV last touched vertebrae, LSTV last substantially touched verte-
brae, SV stable vertebrae, SSV sagittal stable vertebrae

Vertebra LTV LSTV SV SSV Apex of 
kyphosis

T3 – – – 0.5 (1) 1.4 (3)
T4 – – – 0.5 (1) 3.2 (7)
T5 – – – 8.6 (19) 10.4 (23)
T6 – – – 0.5 (1) 18.1 (40)
T7 – – – 4.1 (9) 19.0 (42)
T8 – – – 4.1 (9) 20.4 (45)
T9 0.4 (1) – – 5.0 (11) 17.2 (38)
T10 3.1 (8) 1.9 (5) 0.8 (2) 9.5 (21) 5.0 (11)
T11 4.6 (12) 5.4 (14) 1.5 (4) 14.9 (33) 3.2 (7)
T12 8.9 (23) 5.8 (15) 7.3 (19) 14.0 (31) 1.4 (3)
L1 16.2 (42) 12.4 (32) 10.4 (27) 14.0 (31) 0.9 (2)
L2 17.3 (45) 15.8 (41) 8.1 (21) 14.9 (33) –
L3 26.9 (70) 24.7 (64) 17.0 (44) 7.2 (16) –
L4 20.8 (54) 28.2 (73) 27.8 (72) 2.3 (5) –
L5 1.9 (5) 5.8 (15) 27.0 (70) – –
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We theorized that implant type was a determinant in 
LIV selection. Specifically, we hypothesized that patients 
treated with MCGR would have more caudad LIVs when 
compared to patients treated with TGR due to the size of the 
MCGR actuator. The results of our study did not support this 
hypothesis, as there were no significant differences in LIV 
between implant types including assessment of the 70 mm 
vs 90 mm MCGR actuators. There were, however, several 
factors associated with LIV selection identified in this study. 
Larger curve magnitude was associated with a more caudal 
LIV. Smaller T1 − T12 and T1 − S1 spinal heights were also 
associated with lower LIV selection. While the LIV did not 
differ between implant types, this finding suggests that the 
need to accommodate the lengthening mechanism of growth 
friendly instrumentation may have played a role in LIV 
selection regardless of implant type. Surgeons typically aim 
to place the lengthening mechanism at the straight thora-
columbar junction which may require a more distal LIV. 
Further, it makes intrinsic sense that spanning a greater pro-
portion of the spine was necessary to accommodate growth 
friendly instrumentation in smaller patients.

Given the low rate of selective thoracic surgery in this 
cohort, it is important to assess if there is an opportu-
nity for surgeons to choose a more cephalad LIV based 
on existing principles of LIV selection. The last touched 
vertebra is an entity commonly utilized to guide LIV selec-
tion in AIS [18]. Beauchamp et al. found that selecting 
the “touched vertebrae” in Lenke type 1 and type 2 curves 
led to reasonable LIV position at a minimum follow-up 
of 5 years [2]. Dede et al. introduced the concept of the 
“stable-to-be vertebrae” in an effort to minimize the extent 
of growth friendly constructs and spare motion segments 
in idiopathic EOS patients [5]. Supine traction radio-
graphs are necessary to properly identify the “stable-to-be 

vertebrae” which were not consistently available in the 
database utilized for the current study. While we cannot 
specifically report on the “stable to be vertebrae”, it is 
clear that the “stable to be vertebrae” was not a signifi-
cant factor in the LIV decisions made in this cohort. In 
fact, there was notable discrepancy between the TV and 
the LIV with the vast majority of patients having an LIV 
caudal to the TV. As surgeons seek to save lumbar motion 
segments whenever possible, these findings represent a 
potential area of improvement in the treatment of patients 
with EOS. In our cohort, there were patients with a caudal 
LIV after definitive fusion relative to the LIV following 
the index procedure. Understandably, this was more com-
mon when the index LIV was cephalad and uncommon 
when the LIV was at L3 or L4. Although the risk of add-
ing on is generally higher in skeletally immature patients, 
the majority of these patients will return to the operating 
room for either rod lengthening, exchange, or definitive 
fusion and the LIV can be extended distally at the time of 
the planned surgery. As such, it may be preferable to avoid 
selecting too distal of a LIV at the index surgery to main-
tain the potential to preserve lumbar motion segments.

Despite the important findings of this study, there are 
several limitations that deserve consideration. It is important 
to note that this work focused on posterior distraction-based 
instrumentation and, therefore, does not apply to all forms 
of EOS treatment. We did not have access to preoperative 
flexibility imaging for the patients in this cohort. While we 
identified several factors associated with LIV selection, the 
criteria utilized by each treating surgeon in making an LIV 
selection was unknown. This study is further limited by 
institutional data entry into the registry and the potential for 
selection bias or institutional variability that accompanies 
all database studies.

Fig. 7   Percentage of patients 
with lowest instrumented ver-
tebrae (LIV) above (white), at 
(gray) and below (black) the last 
touched vertebra (LTV), the last 
substantially touched vertebra 
(LSTV), stable vertebra (SV), 
and sagittal stable vertebrae 
(SSV)
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This study represents the largest multicenter assessment 
of LIV selection in early onset scoliosis. The LIV was at L3 
or below in the majority of patients in this cohort. Spinal 
height and curve magnitude appear to play a role in LIV 
selection; however, we did not find an association between 
implant type and LIV. The low rate of selective thoracic sur-
gery and the incongruence between the TV, LSTV, and LIV 
are important findings of this study. Future work should fur-
ther assess the reasons for TV–LIV and LSTV–LIV incon-
gruence and whether the same outcomes can be achieved 
with shorter constructs in selected patients, thus avoiding an 
obligation to long fusions at the end of treatment for EOS 
patients.
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