Skip to main content

Advertisement

Log in

Utility of postoperative laboratory testing after posterior spinal fusion for adolescent idiopathic scoliosis

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

With advancements to blood management strategies, risk of perioperative transfusion following surgical treatment of adolescent idiopathic scoliosis (AIS) has diminished. We hypothesize that routine laboratory testing on postoperative-day 1 (POD1) and beyond is unnecessary. The purpose of this study is to determine necessity of POD1 labs, particularly hematocrit and hemoglobin levels, following surgical management of AIS.

Methods

We performed a retrospective cohort study of consecutive AIS patients aged 11–19 who underwent posterior spinal fusion (PSF) at a single institution. Univariable logistic regression was utilized to determine factors associated with hematocrit ≤ 22% on POD1 or a postoperative transfusion. Firth’s penalized logistic regression was used for any separation in data. Youden’s index was utilized to determine the optimal point on the ROC curve that maximizes both sensitivity and specificity.

Results

527 patients qualified for this study. Among the eight total patients with POD1 hematocrit ≤ 22, none underwent transfusion. These patients had lower last intraoperative hematocrit levels compared to patients with POD1 hematocrit > 22% (24.1% vs 31.5%, p < 0.001), and these groups showed no difference in preoperative hematocrit levels (38.2% vs 39.8%, p = 0.11). Four patients underwent postoperative transfusion. Both preoperative hematocrit levels (34.0% vs 39.9%, p = 0.001) and last intraoperative hematocrit levels (25.1% vs 31.4%, p = 0.002) were lower compared to patients without transfusion. Intraoperative hematocrit < 26.2%, operative time of more than 35.8 min per level fused, or cell salvage > 241 cc were significant risk factors for postoperative transfusion.

Conclusion

Transfusion after PSF for AIS is exceedingly rare. POD1 labs should be considered when last intraoperative hematocrit < 26%, operative time per level fused > 35 min, or cell salvage amount > 241 cc. Otherwise, unless symptomatic, patients do not benefit from postoperative laboratory screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data supporting the findings of this research are available upon request from the corresponding author.

References

  1. Weiss H, Moramarco M (2013) Scoliosis-treatment indications according to current evidence. OA Musculoskelet Med 3:1–7

    Google Scholar 

  2. Maruyama T, Takeshita K (2008) Surgical treatment of scoliosis: a review of techniques currently applied. Scoliosis 3:1–6. https://doi.org/10.1186/1748-7161-3-6/FIGURES/8

    Article  Google Scholar 

  3. Edler A, Murray DJ, Forbes RB (2003) Blood loss during posterior spinal fusion surgery in patients with neuromuscular disease: is there an increased risk? Paediatr Anaesth 13:818–822. https://doi.org/10.1046/J.1460-9592.2003.01171.X

    Article  PubMed  Google Scholar 

  4. Shapiro F, Sethna N (2004) Blood loss in pediatric spine surgery. Eur Spine J 13(Suppl 1):S6–S17. https://doi.org/10.1007/S00586-004-0760-Y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guigui P, Blamoutier A (2005) Complications of surgical treatment of spinal deformities: a prospective multicentric study of 3311 patients. Rev Chir Orthop Reparatrice Appar Mot 91:314–327. https://doi.org/10.1016/S0035-1040(05)84329-6

    Article  CAS  PubMed  Google Scholar 

  6. Xu S, Meng FQ, Guo C, Liang Y, Zhu ZQ, Liu HY (2021) Modified hidden blood loss based on drainage in posterior surgery on lumbar stenosis syndrome with rheumatoid arthritis. Orthop Surg 13:2263–2270. https://doi.org/10.1111/OS.13157

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smorgick Y, Baker KC, Bachison CC, Herkowitz HN, Montgomery DM, Fischgrund JS (2013) Hidden blood loss during posterior spine fusion surgery. Spine J 13:877–881. https://doi.org/10.1016/J.SPINEE.2013.02.008

    Article  PubMed  Google Scholar 

  8. Ido K, Neo M, Asada Y, Kondo K, Morita T, Sakamoto T, Hayashi R, Kuriyama S (2000) Reduction of blood loss using tranexamic acid in total knee and hip arthroplasties. Arch Orthop Trauma Surg 120:518–520. https://doi.org/10.1007/S004029900132

    Article  CAS  PubMed  Google Scholar 

  9. Cheriyan T, Maier SP, Bianco K, Slobodyanyuk K, Rattenni RN, Lafage V, Schwab FJ, Lonner BS, Errico TJ (2015) Efficacy of tranexamic acid on surgical bleeding in spine surgery: a meta-analysis. Spine J 15:752–761. https://doi.org/10.1016/J.SPINEE.2015.01.013

    Article  PubMed  Google Scholar 

  10. Jones KE, Butler EK, Barrack T, Ledonio CT, Forte ML, Cohn CS, Polly DW (2017) Tranexamic acid reduced the percent of total blood volume lost during adolescent idiopathic scoliosis surgery. Int J Spine Surg 11:212–217. https://doi.org/10.14444/4027

    Article  Google Scholar 

  11. Sui WY, Ye F, Yang JL (2016) Efficacy of tranexamic acid in reducing allogeneic blood products in adolescent idiopathic scoliosis surgery. BMC Musculoskelet Disord. https://doi.org/10.1186/S12891-016-1006-Y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goobie SM, Zurakowski D, Glotzbecker MP, McCann ME, Hedequist D, Brustowicz RM, Sethna NF, Karlin LI, Emans JB, Timothy Hresko M (2018) Tranexamic acid is efficacious at decreasing the rate of blood loss in adolescent scoliosis surgery: a randomized placebo-controlled trial. J Bone Joint Surg Am 100:2024–2032. https://doi.org/10.2106/JBJS.18.00314

    Article  PubMed  Google Scholar 

  13. Verma K, Errico T, Diefenbach C, Hoelscher C, Peters A, Dryer J, Huncke T, Boenigk K, Lonner BS (2014) The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am 96:e80(1). https://doi.org/10.2106/JBJS.L.00008

    Article  Google Scholar 

  14. Liu JM, Fu BQ, Chen WZ, Chen JW, Huang SH, Liu ZL (2017) Cell salvage used in scoliosis surgery: is it really effective? World Neurosurg 101:568–576. https://doi.org/10.1016/J.WNEU.2017.02.057

    Article  PubMed  Google Scholar 

  15. Cheriyan J, Cheriyan T, Dua A, Goldstein JA, Errico TJ, Kumar V (2020) Efficacy of intraoperative cell salvage in spine surgery: a meta-analysis. J Neurosurg Spine 33:261–269. https://doi.org/10.3171/2019.12.SPINE19920

    Article  Google Scholar 

  16. Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA (2010) Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001888.PUB4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Borden TC, Bellaire LL, Fletcher ND (2016) Improving perioperative care for adolescent idiopathic scoliosis patients: the impact of a multidisciplinary care approach. J Multidiscip Healthc 9:435–446. https://doi.org/10.2147/JMDH.S95319

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barnes MS, Igou TA, Costner CF, Bork MA, Martin V, Aydinian TN, Dunn T (2021) Routine postoperative laboratory testing: necessity or habit? J Gynecol Surg 37:399–401. https://doi.org/10.1089/GYN.2020.0181

    Article  Google Scholar 

  19. Matthyssens LE, Ziol M, Barrat C, Champault GG (2006) Routine surgical pathology in general surgery. Br J Surg 93:362–368. https://doi.org/10.1002/bjs.5268

    Article  CAS  PubMed  Google Scholar 

  20. Netser JC, Robinson RA, Smith RJ, Raab SS (1997) Value-based pathology: a cost–benefit analysis of the examination of routine and nonroutine tonsil and adenoid specimens. Am J Clin Pathol 108:158–165. https://doi.org/10.1093/AJCP/108.2.158

    Article  CAS  PubMed  Google Scholar 

  21. Dewan M, Galvez J, Polsky T, Kreher G, Kraus B, Ahumada L, Mccloskey J, Wolfe H (2017) Reducing unnecessary postoperative complete blood count testing in the pediatric intensive care unit. Perm J 21:16–051. https://doi.org/10.7812/TPP/16-051

    Article  PubMed  Google Scholar 

  22. Halawi MJ, Plourde JM, Cote MP (2019) Routine postoperative laboratory tests are not necessary after primary total hip arthroplasty. J Arthroplasty 34:538–541. https://doi.org/10.1016/J.ARTH.2018.11.037

    Article  PubMed  Google Scholar 

  23. Paynter JW, Raley JA, Kyrkos JG, Paré DW, Houston H, Crosby LA, Parada SA (2020) Routine postoperative laboratory tests are unnecessary after primary reverse shoulder arthroplasty. J Shoulder Elbow Surg 29:1656–1664. https://doi.org/10.1016/J.JSE.2019.12.023

    Article  PubMed  Google Scholar 

  24. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inf 42:377–381. https://doi.org/10.1016/J.JBI.2008.08.010

    Article  Google Scholar 

  25. Guo SS, Wu W, Chumlea WC, Roche AF (2002) Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr 76:653–658. https://doi.org/10.1093/AJCN/76.3.653

    Article  CAS  PubMed  Google Scholar 

  26. Bowen RE, Gardner S, Scaduto AA, Eagan M, Beckstead J (2010) Efficacy of intraoperative cell salvage systems in pediatric idiopathic scoliosis patients undergoing posterior spinal fusion with segmental spinal instrumentation. Spine (Phila Pa 1976) 35:246–251. https://doi.org/10.1097/BRS.0B013E3181BDF22A

    Article  PubMed  Google Scholar 

  27. Ersen O, Ekıncı S, Bılgıc S, Kose O, Oguz E, Sehırlıoglu A (2012) Posterior spinal fusion in adolescent idiopathic scoliosis with or without intraoperative cell salvage system: a retrospective comparison. Musculoskelet Surg 96:107–110. https://doi.org/10.1007/S12306-012-0203-6/METRICS

    Article  PubMed  Google Scholar 

  28. Weiss JM, Skaggs D, Tanner J, Tolo V (2007) Cell saver: is it beneficial in scoliosis surgery? J Child Orthop 1:221. https://doi.org/10.1007/S11832-007-0032-6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Siller TA, Dickson JH, Erwin WD (1996) Efficacy and cost considerations of intraoperative autologous transfusion in spinal fusion for idiopathic scoliosis with predeposited blood. Spine (Phila Pa 1976) 21:848–852. https://doi.org/10.1097/00007632-199604010-00015

    Article  CAS  PubMed  Google Scholar 

  30. Miao YL, Ma HS, Guo WZ, Wu JG, Liu Y, Shi WZ, Wang XP, Mi WD, Fang WW (2014) The efficacy and cost-effectiveness of cell saver use in instrumented posterior correction and fusion surgery for scoliosis in school-aged children and adolescents. PLoS ONE 9:e92997. https://doi.org/10.1371/JOURNAL.PONE.0092997

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  31. Owens RK, Crawford CH, Djurasovic M, Canan CE, Burke LO, Bratcher KR, McCarthy KJ, Carreon LY (2013) Predictive factors for the use of autologous cell saver transfusion in lumbar spinal surgery. Spine (Phila Pa 1976) 38:E217–E222. https://doi.org/10.1097/BRS.0B013E31827F044E

    Article  PubMed  Google Scholar 

  32. Elgafy H, Bransford RJ, McGuire RA, Dettori JR, Fischer D (2010) Blood loss in major spine surgery: are there effective measures to decrease massive hemorrhage in major spine fusion surgery? Spine (Phila Pa 1976) 35:S47–S56. https://doi.org/10.1097/BRS.0B013E3181D833F6

    Article  PubMed  Google Scholar 

  33. Ng BKW, Chau WW, Hung ALH, Hui ACN, Lam TP, Cheng JCY (2015) Use of tranexamic acid (TXA) on reducing blood loss during scoliosis surgery in Chinese adolescents. Scoliosis 10:1–6. https://doi.org/10.1186/S13013-015-0052-9/TABLES/3

    Article  Google Scholar 

  34. Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM (2001) A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg 93:82–87. https://doi.org/10.1097/00000539-200107000-00018

    Article  CAS  PubMed  Google Scholar 

  35. Lykissas MG, Crawford AH, Chan G, Aronson LA, Al-Sayyad MJ (2013) The effect of tranexamic acid in blood loss and transfusion volume in adolescent idiopathic scoliosis surgery: a single-surgeon experience. J Child Orthop 7:245–249. https://doi.org/10.1007/S11832-013-0486-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Halanski MA, Cassidy JA, Hetzel S, Reischmann D, Hassan N (2014) The efficacy of amicar versus tranexamic acid in pediatric spinal deformity surgery: a prospective, randomized, double-blinded pilot study. Spine Deform 2:191–197. https://doi.org/10.1016/J.JSPD.2014.02.001

    Article  PubMed  Google Scholar 

  37. Yvonne Buowari O (2013) Complications of venepuncture. Adv Biosci Biotechnol 4:126–128. https://doi.org/10.4236/abb.2013.41A018

    Article  Google Scholar 

  38. Pate JT, Blount RL, Cohen LL, Smith AJ (2010) Childhood medical experience and temperament as predictors of adult functioning in medical situations. Child Health Care 25:281–298. https://doi.org/10.1207/S15326888CHC2504_4

    Article  Google Scholar 

  39. Eaton KP, Levy K, Soong C, Pahwa AK, Petrilli C, Ziemba JB, Cho HJ, Alban R, Blanck JF, Parsons AS (2017) Evidence-based guidelines to eliminate repetitive laboratory testing. JAMA Intern Med 177:1833–1839. https://doi.org/10.1001/JAMAINTERNMED.2017.5152

    Article  PubMed  Google Scholar 

  40. Yoshihara H, Yoneoka D (2014) Predictors of allogeneic blood transfusion in spinal fusion for pediatric patients with idiopathic scoliosis in the United States, 2004–2009. Spine (Phila Pa 1976) 39:1860–1867. https://doi.org/10.1097/BRS.0000000000000530

    Article  PubMed  Google Scholar 

  41. Thompson ME, Kohring JM, McFann K, McNair B, Hansen JK, Miller NH (2014) Predicting excessive hemorrhage in adolescent idiopathic scoliosis patients undergoing posterior spinal instrumentation and fusion. Spine J 14:1392–1398. https://doi.org/10.1016/J.SPINEE.2013.08.022

    Article  PubMed  Google Scholar 

  42. Yilmaz G, Borkhuu B, Dhawale AA, Oto M, Littleton AG, Mason DE, Gabos PG, Shah SA (2012) Comparative analysis of hook, hybrid, and pedicle screw instrumentation in the posterior treatment of adolescent idiopathic scoliosis. J Pediatr Orthop 32:490–499. https://doi.org/10.1097/BPO.0B013E318250C629

    Article  PubMed  Google Scholar 

  43. Kim HJ, Park HS, Jang MJ, Koh WU, Song JG, Lee CS, Yang HS, Ro YJ (2018) Predicting massive transfusion in adolescent idiopathic scoliosis patients undergoing corrective surgery: association of preoperative radiographic findings. Medicine. https://doi.org/10.1097/MD.0000000000010972

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hassan N, Halanski M, Wincek J, Reischman D, Sanfilippo D, Rajasekaran S, Wells C, Tabert D, Kurt B, Mitchell D, Huntington J, Cassidy J (2011) Blood management in pediatric spinal deformity surgery: review of a 2-year experience. Transfusion (Paris) 51:2133–2141. https://doi.org/10.1111/J.1537-2995.2011.03175.X

    Article  Google Scholar 

  45. Li C, Yang M, Wang C, Wang C, Fan J, Chen Z, Wei X, Zhang G, Bai Y, Zhu X, Xie Y, Li M (2015) Preoperative factors predicting intraoperative blood loss in female patients with adolescent idiopathic scoliosis. Medicine 94:e359. https://doi.org/10.1097/MD.0000000000000359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Soini V, Syvänen J, Helenius I, Helenius L, Raitio A (2023) Perioperative risk factors for bleeding in adolescents undergoing pedicle screw instrumentation for scoliosis. Children. https://doi.org/10.3390/CHILDREN10020381

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was not obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

DL: visualization, supervision. AF: conceptualization, methodology, data collection, data analysis, visualization, supervision. GL: conceptualization, methodology, data analysis, visualization, writing: original draft preparation, supervision. DC: conceptualization, methodology, data collection, writing: reviewing and editing, supervision. CB: conceptualization, methodology, data collection, data analysis, visualization, writing: original draft preparation, supervision. TH: conceptualization, methodology, data collection, data analysis, visualization, writing: original draft preparation, supervision. DH: conceptualization, methodology, data collection, data analysis, visualization, writing: original draft preparation, supervision. GH: data collection, visualization, writing: original draft preparation.

Corresponding author

Correspondence to Grant D. Hogue.

Ethics declarations

Conflict of interest

DL, AF, GL, DC, CB, and TH have no conflicts of interest to declare. DH: educational consultant and member of advisory board, Medtronic. GH: educational consultant and member of advisory board, Medtronic; founding partner, Tether Implant Corporation.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D.S., Farid, A.R., Linden, G.S. et al. Utility of postoperative laboratory testing after posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform 12, 375–381 (2024). https://doi.org/10.1007/s43390-023-00771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-023-00771-1

Keywords

Navigation