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Abstract
Reports have shown that potentially toxic elements (PTEs) in air, water, and soil systems expose humans to carcinogenic and 
non-carcinogenic health risks. In southeastern Nigeria, works that have used data-driven algorithms in predicting PTEs in 
groundwater are scarce. In addition, only a few works have simulated water quality indices using machine learning model-
ling methods in the region. Therefore, in this study, physicochemical analyses were carried out on groundwater samples in 
southeastern Nigeria. The laboratory results were used to compute two water quality indices: pollution index of groundwater 
(PIG) and the water pollution index (WPI), to ascertain groundwater quality. In addition, the physicochemical parameters 
served as input variables for multiple linear regression (MLR) and artificial neural network (ANN) modelling and predic-
tion of Cr, Fe, Ni, NO3

−, Pb, Zn, WPI, and PIG. The results of WPI and PIG computation showed that about 30–35% of the 
groundwater samples were unsuitable for human consumption, whereas 65–70% of the samples were deemed suitable. The 
insights from the PIG and WPI model also revealed that lead (Pb) was the most influential PTE that degraded the quality of 
groundwater resources in the research area. The findings of the MLR and ANN models indicated strong positive prediction 
accuracies (R2 = 0.856–1.000) with low modeling errors. The predictive MLR and ANN models of the PIG and WPI gener-
ally outperformed those of the PTEs. The models produced in this study predicted the PTEs better compared to previous 
studies. Thus, this work provides insights into effective water sustainability, management, and protection.
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1  Introduction

It is believed that groundwater is one of the purest forms of 
water, being situated several meters below the surface of the 
earth and protected from a number of degrading environ-
mental conditions. The exploration of groundwater origi-
nated as a result of a pressing need for an alternative source 
of water for drinking, irrigation, industrial use, laundry, 
and other purposes. Over the past decades, groundwater has 
been increasingly exploited all over the world. According 
to reports by water researchers, over time, groundwater has 
become the number one source of water for most developed 

cities all over the world (Alizamir & Sobhanardakani, 2017a, 
2017b; Egbueri et al., 2021a; Wagh et al., 2016). Therefore, 
studies on groundwater resources are vital for its sustain-
ability and the well-being of water users. Water resources 
are faced with potential contaminants from anthropogenic 
and non-anthropogenic origins. Studies have shown that the 
rate of degradation of groundwater resources is increasing 
(Ayejoto et al., 2022; Egbueri et al., 2021b, 2022a, 2022b; 
Papazotos, 2021; Ravindra et al., 2022; Wagh et al., 2016). 
To mitigate the degradation of water resources, potential 
sources, pathways, and future possibilities of contamina-
tion need to be identified. Numerous data-driven (numeri-
cal, graphical, statistical, and machine learning) approaches 
have been applied to identify the possible sources of con-
tamination (Wagh et al., 2016, 2017b; Ansari & Umar, 
2019; Egbueri, 2019, 2020; Enyigwe et al. 2021), pathways 
of contaminants (Egbueri & Agbasi, 2022a, 2022b; Wang 
et al., 2012; Yang et al., 2020), and to forecast the chances 
of reoccurrence of these contaminants in water resources 
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(Wagh et al., 2017b; Alizamir & Sobhanardakani, 2017a, 
2017b; Egbueri & Agbasi, 2022b).

Groundwater quality is graded after consideration of 
various water quality parameters like pH, EC (electrical 
conductivity), TDS (total dissolved solids), cations, anions, 
metals, amongst others (Subba Rao et al., 2022a). According 
to the World Health Organization (WHO, 2017) and Stand-
ard Organization of Nigeria (SON, 2015), these parameters 
have an acceptable concentration level in water resources. 
When found above their acceptable concentration level, they 
are considered to be hazardous. Moreover, the presence of 
essential water quality parameters like copper, manganese, 
iron, and others below their required concentration level may 
lead to deficiencies (Eghbaljoo-Gharehgheshlaghi et al., 
2020; Kumar et al., 2022; Saleem et al., 2022). Due to the 
numerous parameters considered to determine the overall 
quality of water resources, water quality indices were intro-
duced. Water quality indices (e.g., unweighted multiplica-
tive water quality index, national sanitation foundation water 
quality index, overall index of pollution, synthetic pollu-
tion index) integrate data of water quality parameters from 
analyzed water samples and come up with a quantitative 
description of water resources. The quantitative description 
is interpreted qualitatively with the aid of a classification 
scheme. Each water quality index has a different classifica-
tion scheme. Nevertheless, most have a strong agreement 
(Egbueri & Agbasi, 2022b). Since the quality of groundwa-
ter resources is rated by the concentration levels of various 
water quality parameters, prediction of future occurrences of 
these parameters will enhance the forecasting of groundwa-
ter quality. Similarly, since water quality indices compute the 
overall water quality of water resources, forecasting these 
indices would provide more detailed information on the pos-
sible future state of water resources. In other words, fore-
casting water quality indices and parameters could assist in 
the effective assessment and monitoring of water resources 
(Agbasi & Egbueri, 2022; Wagh et al., 2017b).

Traditionally, water quality in different parts of the world 
has been monitored using field sampling and laboratory 
testing. However, this process has been hampered by labor 
and testing costs. The adoption of deep learning in water 
research has sparked great revolutions and innovations with 
regard to the assessment and monitoring of water quality. 
Deep learning is an important component of data science, 
which also includes statistics and predictive modelling. It 
assists researchers who are tasked with collecting, analyzing, 
and interpreting large datasets (Burns & Brush, 2021). Deep 
learning neural networks, which include artificial neural net-
works (ANNs), recurrent neural networks, and convolutional 
neural networks, have been used in the predictive modelling 
of water quality parameters (Alizamir & Sobhanardakani, 
2017a, 2017b; Egbueri, 2021; Wagh et al., 2016). Moreover, 
other data-intelligent models like linear regression, multiple 

linear regression (MLR), support vector machines, amongst 
others, have also been utilized globally to predict various 
water quality parameters. The application of deep learning 
and data-intelligent models has significantly reduced the 
cost of monitoring and assessment of water quality. Studies 
conducted include the prediction of pH in water (Egbueri & 
Agbasi, 2022b; Huang et al., 2019; Son et al., 2021; Stack-
elberg et al., 2020), prediction of TDS in water (Egbueri & 
Agbasi, 2022b; Jamei et al., 2020; Mehrdadi et al., 2012; 
Salmani & Jajaei, 2016), prediction of TH in water (Azad 
et al., 2018; Egbueri & Agbasi, 2022b; Roy & Majum-
der, 2018), prediction of anions in water (Egbueri, 2021; 
Mousavi & Amiri, 2012; Wagh et al., 2017b; Yesilnacar 
et al., 2008; Zare et al., 2011), prediction of cations in water 
(Aghel et al., 2019; Bondarev, 2019; Katimon et al., 2018; 
Nhantumbo et al., 2018; Subba Rao et al., 2022b), predic-
tion of metals in water (Alizamir & Sobhanardakani, 2017a, 
2017b; Egbueri, 2021; Fard et al., 2017; Ozel et al., 2020; 
Rooki et al., 2011), and prediction of water quality indices 
(Chia et al., 2022; Egbueri, 2022a, 2022b).

ANN is a powerful tool designed to mimic the neural 
functions of the human nervous system (Wagh et al., 2017a). 
As a result, ANN has the ability to learn a dataset, and its 
learning ability aids in simulating complex nonlinear rela-
tionships (Agatonovic-Kustrin & Beresford, 2000; Sal-
jooghi & Hezarkhani, 2015; Song et al., 2022; Uncuoglu 
et al., 2022), making it possible to produce meaning out of 
a dataset in a short period of time. The general structure of 
the ANN consists of an input layer, a hidden layer, and an 
output layer, each with numerous neurons (Diamantopoulou 
et al., 2005; Pandey et al., 2016; Rai et al., 2005). ANN 
has been shown to be effective in the prediction of water 
quality parameters in many regions of the world (Egbueri 
2022b; Irvan et al., 2022; Kouadri et al., 2022). This tool has 
also been undoubtedly valuable in studies related to other 
disciplines. MLR is also a learning tool that aids in depict-
ing the linear relationship between two or more variables. 
Thus, the MLR is regarded as an advanced form of simple 
linear regression. This model has found applications in a 
good number of research studies. Notably, in water resources 
research, MLR has been utilized successfully for the pre-
dictive modelling of water quality parameters (Agbasi & 
Egbueri, 2022; Kouadri et al., 2021).

Due to the toxicity and bio-accumulative nature of PTEs, 
their presence in water has received special attention. In central 
Iran, Bayatzadeh Fard et al. (2017) predicted Fe, Mn, Pb, and 
Zn in groundwater using ANN, hybrid ANN with biogeogra-
phy-based optimization, and a multi-output adaptive neural 
fuzzy inference system. Ucun Ozel et al. (2020) used ANN 
and an adaptive neuro-fuzzy inference system to model cop-
per, iron, zinc, manganese, nickel, and lead in the Bartin River, 
Turkey. In Nigeria, Egbueri (2021) predicted NO3

−, Ni, and Pb 
in water using ANN. Using ANN, Kanj et al. (2022) predicted 
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mercury in groundwater at Naameh Landfill, Lebanon. Based 
on literature analysis, ANN and MLR are the most commonly 
used predictive models for monitoring and assessing water 
quality. In spite of the popularity of ANN and MLR in water 
research, the following existing observations were identified 
from a literature review, and they formed the basis of the pre-
sent prediction study: (1) majority of the studies that applied 
machine learning algorithms in water quality assessments 
focused on the prediction of water quality indices (i.e., the 
numerical indicators); (2) only a few studies have compared 
the performances of ANN and MLR in forecasting PTEs; and 
(3) the few studies that have utilized MLR and ANN to predict 
PTEs have not utilized sufficient input variables, which are one 
of the major determinants of accurate prediction. For instance, 
Ghadimi (2015) combined MLR and ANN for predicting Pb, 
Zn, and Cu in water. However, only HCO3

− and SO4
2– were 

used as input variables. Despite using sufficient input vari-
ables, Egbueri and Agbasi (2022a) predicted two water quality 
indices but did not predict PTEs in water. Similarly, Farooq 
et al. (2022) employed MLR and ANN for predicting water 
quality parameters; however, PTEs were not predicted. In the 
study region, Egbueri (2021) predicted PTEs in water using 
only ANN and also used a few input variables for the predic-
tion. Although some studies in other regions of the world have 
tested the applicability of MLR and/or ANN in the prediction 
of PTEs in water resources, there is a dearth of literature that 
have simultaneously tested or implemented these algorithms 
for the same purpose in the Nigerian context.

Therefore, the present study aims at predicting PTEs (Cr, 
Fe, Ni, NO3

–, Pb, and Zn) in groundwater in Southeastern 
Nigeria using more input variables. This study integrated 
and compared the efficacy of ANN and MLR algorithms. 
Additionally, the drinking suitability of the groundwater 
resources was evaluated by computing the water pollution 
index (WPI) and pollution index of groundwater (PIG), 
which were in turn predicted using the MLR and ANN tech-
niques. The sensitivity of the input variables utilized for this 
prediction was also analyzed to determine their significance 
and impact. It is anticipated that the present study will pro-
vide clearer insights into effective groundwater sustainabil-
ity management and protection in the area. It is also hoped 
that the findings of the study could provide baseline informa-
tion for future related research in Nigeria and other regions 
of the world with research gaps in water quality prediction.

2 � Background information of the study area

2.1 � Location and human activities

The study area is located between latitudes 06°00′N and 
6°05′N and longitudes 06°50′E and 07°00′E. Awka-Etiti, 
Oba, Ojoto, Nnewi, and Nnobi are amongst the communities 

found within the study region. Pictorial representation of the 
sampling points can be found in Fig. 1. There is a high rate 
of industrialization and urbanization in southeastern Nige-
ria. Thus, the majority of people in the region make a living 
from commercial activities. Industrial activities include the 
manufacturing of agrochemicals, food processing, produc-
tion of building materials, textile production, petrochemical 
production, etc. Agricultural activities are also prevalent in 
the locality, and they include: cultivation of land and plant-
ing of different crop varieties, livestock farming, fish farm-
ing, nomadic farming, etc. Commercial activities in the area 
involve the trading of goods produced by the agricultural, 
industrial, and other sectors within the region and neighbor-
ing communities. It also involves import and export activi-
ties with foreign countries. The human activities in the study 
region helps to boost their economy and also makes the lives 
of the people meaningful. However, there are some negative 
outcomes linked with these activities. For instance, wastes 
and agrochemicals from diverse farming practices cause 
water and air pollution. The release of untreated waste mate-
rials from industries exposes the environment to PTE pollu-
tion. Due to the numerous human activities occurring in the 
study area, there is an increase in waste generated per capita. 
Waste disposal facilities in the area are insufficient. Thus, 
there is indiscriminate disposal of waste materials, which in 
turn degrades the environment. Over time, PTEs from waste 
materials get into the water cycle and accumulate, leading to 
the contamination of water resources in this region.

2.2 � Climate, geology, and hydrogeology

The wet/rainy season and the dry season are the two major 
seasons experienced in this area. The wet season lasts from 
April to November and is usually cloudy and cool. The dry 
season lasts from December to March and is usually hot, 
partly cloudy, and humid. The yearly average temperature 
is around 75 °F, with temperatures rarely exceeding 90 °F or 
falling below 57 °F. The northeastern wind blowing through 
the Sahara and the southwest trade winds from the Atlan-
tic induce the two main seasons (Egbueri et al., 2022a). 
The annual rainfall in the region has been estimated to be 
between 1500 and 2000 mm (Nwajide, 2013). The area has a 
non-uniform topography, as it rests at the apex of the gently 
sinking portions of the well-known Awka-Orlu Ridge.

The Eocene Nanka Formation and the Oligocene–Miocene 
Ogwashi Formation are the dominant geologic formations 
present in the area. (Fig. 1). The Nanka Formation originates 
from the compressive movements that were fundamental in 
the folding of the Abakaliki Anticlinorium, which happened 
during the Campanian–Eocene (Nwachukwu, 1972). Retro-
graded deposits subsequent to the folding are the components 
of the current Nanka Formation (Nwajide, 2013). Towards the 
conclusion of the Eocene's massive tectonic movement, the 
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Ogwashi Formation was deposited (Kelechi, 2017), and the 
sediments in the depocenters moved down to form the popular 
Niger Delta. The present study is dominated by the Nanka 
Formation and it is distributed across the eastern and central 
lots (Fig. 1). The Nanka Formation is rich in claystones, friable 
sands, fine-grained fossiliferous sandstone, shales, thin bands 
of limestone, and sandy shales (Arua, 1986; Reyment, 1965).

Reports on the aquifer features of the Nanka Formation by 
Okoro et al., (2010a, 2010b) show that the aquiferous units 
are prolific. In chronological order, the Ogwashi Formation is 
made up of light-colored mudrocks, coarse-grained sandstone, 
and lignite seams (Kogbe, 1976). The Formation is identi-
fied with two main prolific aquifer systems (Akpoborie et al., 
2011). The most desired aquifer unit, which is identified as the 
alluvial trace deposit, is situated at a shallower depth. How-
ever, the less preferred aquifer unit is found at a greater depth 
and is composed of water rich in iron (Akpoborie et al., 2011).

3 � Materials and methods

3.1 � Water sampling and analytical procedures

To achieve the research objectives, groundwater samples were 
collected from boreholes (n = 17) and hand-dug wells (n = 3) 

within the study area. Water samples were collected using 1 
L polyethylene bottles and the location of the water sampling 
points was determined using a handheld GARMIN GPSMAP 
78S series and is well represented in Fig. 1. At each sampling 
point, the bottles were labelled and put away in a coolant. After 
the samples were gathered, they were arranged appropriately 
and sent to the laboratory for proper analysis. Pre and post-
sampling procedures adhered to the standard proposed by the 
American Public Health Association (Rice et al., 2017). Hand-
held tools (Testr-2, EC meter, HM Digital COM-100, TDS 
meter) were used in situ to determine the concentration of pH, 
EC, TDS, and total suspended solids (TSS), respectively. Cati-
ons (calcium, sodium, magnesium, potassium), anions (bicar-
bonate, chloride, nitrate, sulphate), metals (zinc, iron, nickel, 
lead, chromium) were also examined in the lab, including the 
total hardness (TH). The methodology incorporated for the 
analysis of the parameters is presented in Table 1.

3.2 � Indexical methods for groundwater pollution 
and quality assessment

3.2.1 � Computation of water pollution index (WPI)

The water pollution index (WPI) was developed by Hossain 
and Patra, (2020). In comparison to the existing methods, 

Fig. 1   Map of the study area showing the geographical location and the geologic formations
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this new model is more adaptable and simpler to calculate. 
Water quality is determined primarily by standard permis-
sible concentration (Si) and observed concentration (Ci). 
The WPI was designed to accommodate an infinite number 
of input parameters, allowing for extensive research. Using 
17 input parameters, this model was used to estimate the 
impact of COVID-19 on water quality in India (Chakraborty 
2021). In this study, 18 parameters (pH, EC, TDS, TSS, TH, 
Na+, K+, Ca2+, Mg2+, Cl–, SO4

2–, HCO3
−, NO3

–, Fe, Zn, 
Ni, Cr, and Pb) were used to calculate for the WPI value of 
20 groundwater samples from southeastern Nigeria. For the 
WPI model to be applied, the following steps were taken:

Step 1 The pollution load (PLi) of the ith parameter was 
calculated using the mathematical formula in Eq. 1.

where Ci means concentration of the ith parameter, Si repre-
sents the standard permissible limit of the ith parameter. In 
this study, the permissible limits of water quality parameters 
approved by the WHO (2017) were followed.

If the pH value is less than or greater than 7, a different 
method for calculating PLi is recommended (Hossain and 
Patra, 2020).

If the pH is < 7, then Eq. 2 is recommended (Hossain and 
Patra, 2020).

where, Sia is the minimum acceptable pH value i.e., 6.5.
If the pH is > 7, then Eq. 3 is recommended (Hossain and 

Patra, 2020).

Sib is the maximum pH value that can be tolerated, which 
is 8.5.

Step 2 The final WPI scores of the water samples were 
calculated by adding all PLi values from n parameters and 
then dividing by n. (Eq. 4). In a case whereby the concen-
tration of any analyzed parameter is zero, that parameter 

(1)PLi = 1 +
(

Ci − Si

Si

)

(2)PLi =

(

Ci − 7

Sia − 7

)

(3)PLi =

(

Ci − 7

Sib − 7

)

should be subtracted from the total number of parameters 
(n) in that sample (Hossain & Patra, 2020).

The WPI classification schemes for water sam-
ples are as follows: excellent water (WPI < 0.50), good 
water (0.75 > WPI ≥ 0.50), moderately polluted water 
(1.00 ≥ WPI ≥ 0.75), and highly polluted water (WPI > 1).

It is also worth noting that WPI does not require weight-
age assignment for the calculation. This eliminates the bias 
associated with indices that require weighting.

3.2.2 � Computation of Pollution index of groundwater (PIG)

Subba Rao (2012) formulated the PIG, which has been 
successfully used in various locations for monitoring and 
assessing variations in drinking water quality (Egbueri, 
2020; Subba Rao & Chaudhary, 2019; Subba Rao et al., 
2018).

Five steps are taken in the evaluation of drinking water 
quality using PIG (Subba Rao, 2012).

Step 1 This entails calculating the relative weight (Rw) 
(on a scale of 1–5) of the analyzed parameters based on 
their individual importance in assessing water quality and 
relative impact on human health (Table 2). (Subba Rao, 
2012).

Step 2 This incorporates calculating weight parameters 
(Wp) for each of the water quality variables to determine 
their relative contributions to the overall quality of the 
groundwater samples (Eq. 5).

Step 3 The status of concentration (Sc) was calculated 
by dividing the concentration (C) of each of the analyzed 
water quality variables in each of the water samples by 
their respective standard limits (Eq. 6). In the present 
study, the (WHO, 2017) permissible limits were used in 
the PIG assessment.

(4)WPI =
1

n

∑n

i=1
PLi

(5)Wp =
Rw

∑

Rw

Table 1   Techniques used for 
analysis of cations, anions, and 
metals

Parameter Procedure/method

K+ and Na+ Flame photometer (Model: Systronics Flame Photometer 128)
Mg2+ and Ca2+ Volumetric technique (0.05 N EDTA and 0.01 N)
Cl− AgNO3 titration
SO4

2− BaCl2 turbidity technique
HCO3

− Water titration using H2SO4

Fe, Zn, Ni, Cr and Pb Atomic absorption spectrophotometric method (Model: Bulk 
Scientific 210 VGP)
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Step 4 The overall groundwater quality (Ow) was calcu-
lated by multiplying Wp by Sc, as shown in Eq. 7.

Step 5 The final step in the PIG assessment was to add up 
all of the Ow values per sample (Eq. 8).

The PIG values represent the contributions of all chemi-
cal variables analyzed in each groundwater sample. As a 
result, they depict various scenarios of the impact of chemi-
cal contamination on aquifer systems (Egbueri, 2020; Subba 
Rao, 2012; Subba Rao & Chaudhary, 2019; Subba Rao et al., 
2018). The classification scheme stated by Subba Rao et al. 
(2018) for the PIG scores characterizes the extent of pol-
lution in groundwater samples as: insignificant pollution 
(PIG < 1.0), low pollution (1.0–1.5), moderate pollution 
(1.5–2.0), high pollution (2.0–2.5), and very high pollution 
(PIG > 2.5).

3.3 � Simulation and prediction of PTEs and water 
quality indices

3.3.1 � Multiple linear regression modelling

Statistical methods, such as regression models, are the most 
effective tools for investigating any relationship between a 
sample's dependent and independent variables (Pai et al. 
2007; Abyaneh, 2014). The MLR is a method for model-
ling the linear relationship between one or more independent 
variables and a dependent variable. The MLR algorithm is 
based on the least square rule. A model is considered best 
fitted if the coefficients of determination (R2) is close to one 
and the modelling errors are small. Equation 9 represents 
the mathematical expression of the MLR model (Chen & 
Liu, 2015; Gaya et al., 2020; Kadam et al., 2019; Weisberg, 
1985).

(6)Sc =
C

Ds

(7)Ow = Wp × Sc

(8)PIG =
∑

Ow

Globally, the MLR model has been used to establish the 
relationship between multiple parameters (Pai et al. 2007; 
Abyaneh, 2014; Chen & Liu, 2015; Arora & Keshari, 2017). 
In this study, the MLR algorithm was used to simulate and 
predict water quality parameters and indices. All of the ana-
lyzed physicochemical parameters (i.e., pH, EC, TDS, TSS, 
TH, Ca2+, Na+, Mg2+, K+, Cl–, HCO3

–, SO4
2–, NO3

–, Cr, 
Zn, Fe, Pb, and Ni) were used as predictors for WPI and 
PIG. In the absence of the predicted variable, similar input 
parameters were used to predict NO3

–, Fe, Zn, Ni, Cr, and 
Pb. IBM SPSS (v. 22) was used to run the MLR modelling. 
The performance of the MLR simulations was appraised 
using multiple correlation coefficients (R), coefficients of 
determination (R2), standard error of estimate (SEE), and 
adjusted R2.

3.3.2 � Artificial neural network modelling

Artificial neural network (ANN) is a prominent artificial 
intelligence approach. ANNs are made up of computa-
tional processing elements known as neurons, which are 
similar to biological human neurons (Dongare et al., 2012; 
Maind & Wankar, 2014; Singh et al., 2022). Based on 
their weights, these neurons are linked to one another. 
The input, hidden, and output layers of ANNs are formed 
by these linkages. The weights in the input layer sum 
up to form the hidden layer and a bias, which adds up 
to form the output layer (Strik et al. 2005; Wagh et al., 
2016; Egbueri, 2021). The predicted output variables are 
obtained by processing the input variables based on certain 
activation weights. Due to the reliability of ANNs in pre-
dictive modelling, many water researchers have used them 
to forecast various water quality variables. This is because 
ANNs offer versatile linear and nonlinear forecasting func-
tions that can efficiently, correctly, and reliably estimate 
measurable and continuous variables (Egbueri, 2021). This 
indicates that ANNs may be used to estimate variables that 
have considerable or complicated connections. As a result 

(9)y = b
0
+ b

1
x
2
+ b

2
x
2
+⋯ + bixi + �

Table 2   Weightage of parameters for the calculation of PIG

Parameter pH EC TDS TSS TH Na K Ca Mg

Temporary weight (wj) 4 3 3 3 3 3 2 2 2
Final weight (wi) 0.3225 0.338 0.338 0.338 0.338 0.338 0.0969 0.0969 0.0969

Parameter Cl SO4 HCO3 NO3 Fe Zn Ni Cr Pb

Temporary weight (wj) 3 4 3 4 4 4 5 5 5
Final weight (wi) 0.338 0.3225 0.338 0.3225 0.3225 0.3225 0.2416 0.2416 0.2416
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of this, ANNs are recognized to be more sophisticated than 
other empirical models used in environmental monitor-
ing and evaluation, with a high computation rate, learning 
ability, prediction accuracy, and flexibility.

In the current study, ANN was used to predict water 
quality indices and critical water quality parameters (NO3

–, 
Fe, Zn, Ni, Cr, and Pb). Table 3 contains the instructions 
and procedures for the ANN modelling which was per-
formed using the IBM SPSS software. The water qual-
ity data was divided into two sets: training and testing. 
To achieve the best results, the models were trained for 
many iterations. For optimum result, not less than 70% 
of the dataset was used for the training (Assi et al., 2018; 
Egbueri, 2021; Fissa et al., 2019; Ghritlahre & Prasad, 
2018; Ozel et al., 2020). While the testing aided in the 
evaluation of the ANN models' performance, training 
aided in the establishment of relationships between output 
and input parameters.

Because the projected parameter scores may not always 
match the original values in the raw data, the model's per-
formance and dependability need to be validated. This 
validation aided in the selection of the best ANN models 
and the discovery of the most efficient activation func-
tion methods. The validation of the ANN models in this 
study was based on the coefficient of determination (R2), 

adjusted R2, and standard error of estimate (SEE). Equa-
tion 10 expresses the R2 function (Egbueri, 2021).

While the R2 expresses the goodness of fit in terms of regres-
sion model precision in predicting actual data points.

4 � Results and discussion

4.1 � Physicochemical characteristics of groundwater

For the better judgment of the general quality of a water 
sample, certain parameters are analyzed. In the present 
study, 18 parameters were analyzed and the results are pre-
sented in Table 4. The pH result revealed that all the ground-
water samples were acidic. Acidic water has been linked to 
acidic rain, industrial pollution, improper sewage disposal, 
leaching of dissolved elements from dump sites, use of agro-
chemicals, etc. (Agbasi & Egbueri, 2022; Ayejoto et al., 
2022; Egbueri & Agbasi, 2022b). The aforementioned pro-
cesses contaminate recharge sources of groundwater, leading 
to the degradation of groundwater quality (Subba Rao et al., 

(10)R2 = 1 −

∑n

i=1

�

Xpredicted − Xexperiment

�2

∑n

i=1

�

Xpredicted − Xaverage

�2

Table 3   ANN modeling instructions for the present study

Model parameter Instruction/activity report

Input variables The predictor variables are pH, EC, TDS, TSS, TH, Na, K, Ca, Mg, 
Cl, SO4, HCO3, NO3, Fe, Zn, Ni, Cr, and Pb. However, for the 
predictions of NO3, Fe, Zn, Ni, Cr and Pb, the predicted is made the 
dependent variable and all others used as predictors. Meanwhile, for 
the prediction of WPI and PIG, all predictor variables were utilized

Output variable The predicted parameters are NO3, Fe, Zn, Ni, Cr, Pb, WPI, and PIG
Hidden layer activation function Hyperbolic tangent
ANN type Multilayer perceptron (MLP)
Rescaling of covariates Normalized
Partitioning of dataset Randomly assigned cases based on relative number of cases:

NO3: Training (75%), Testing (25%), and Validity of cases (100%)
Fe: Training (70%), Testing (30%), and Validity of cases (100%)
Zn: Training (90%), Testing (10%), and Validity of cases (100%)
Ni: Training (80%), Testing (20%), and Validity of cases (100%)
Cr: Training (85%), Testing (15%), and Validity of cases (100%)
Pb: Training (85%), Testing (15%), and Validity of cases (100%)
WPI: Training (80%), Testing (20%), and Validity of cases (100%)
PIG: Training (80%), Testing (20%), and Validity of cases (100%)

Number of hidden layers One (1)
Output layer activation function Hyperbolic tangent
Number of units Automatically computed
Rescaling of scale-dependent variables Adjusted Normalized (Correction = 0.02)
Type of training Batch
Optimization algorithm Scaled conjugate gradient (SCG)
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2022c). Although the consumption of acidic water could 
be beneficial to health, there are some major disadvantages 
worth highlighting. Low-pH water is corrosive and promotes 
scaling in plumbing systems and metallic wares (Egbueri, 
2021; WHO, 2017). Furthermore, they are associated with 
health issues such as diarrhea, immune system inhibition, 
eye and skin irritation, vomiting, tuberculosis, fatigue, 
mucous membrane cell death, shortness of breath, and so on 
(Ayejoto et al., 2022; Egbueri et al., 2022a; McGrane, 2020). 
Under acidic conditions, the dissolution and adsorption of 
potentially toxic heavy metals is usually increased, resulting 
in excess bioaccumulation and bioavailability of the PTEs 
(Reid, 2019). Nonetheless, acidic water is thought to have 
antibacterial properties, making it potentially beneficial for 
hair, skin, and washing agricultural products such as crops, 
fruits, and vegetables (McGrane, 2020).

TDS, EC, TH, Ca2+, and Mg2+ have a direct relation-
ship in water samples. The TDS of the water influences the 
EC and TH, while the Mg2+ and Ca2+ content influence the 
TDS, EC, and TH, in turn. The Ca2+ and Mg2+ levels in 
all the groundwater samples were found to be within the 
WHO (2017) permissible limits. This implies that the water 
samples are free from Ca2+ and Mg2+ pollution. The rela-
tionship between these parameters is more evident as the 
levels of TDS, EC, and TH were all within their permissi-
ble limits. The origin of Ca2+ and Mg2+ in the groundwater 
samples could be linked to silicate weathering, dissolution of 
dolomite, gypsum, and limestone present in the sedimentary 
basin (Bhakar & Singh, 2018; Egbueri, 2019; Egbueri et al., 
2021c). The major reason for the abundance of calcium in 
water is the natural occurrence of calcium in the earth's 
crust. The presence of calcium and magnesium in water 
within their permissible limits is very beneficial. Calcium 
aids in bone development and strengthening, as well as hor-
mone regulation, muscle contraction (improving heartbeat), 
blood clotting, and nerve impulses. When there is a calcium 
deficiency in the body, it begins to rely on (remove) calcium 
from the bones. This could lead to osteoporosis or increased 
susceptibility to bone fractures after even a minor fall. There 
is also some evidence that calcium and magnesium in drink-
ing water may help prevent pancreatic, gastric, rectal, and 
colon cancer, and that magnesium may help prevent ovarian 
and esophageal cancer (Ada McVean, 2019). Despite these 
benefits, calcium and magnesium can cause severe damage 
when consumed in excess. Irregular heartbeat, hypotension, 
depressed reflexes, Sweating, flaccid paralysis, hypothermia, 
low blood pressure, slowed breathing, and other symptoms 
are associated with excess magnesium consumption. As for 
calcium, excess consumption could lead to osteoporosis, 
hypertension, stroke, and kidney stones (Sahu, 2019). Cal-
cium is primarily responsible for water hardness and may 
have an adverse effect on the toxicity of other compounds. 
Zinc, lead, and Copper, for example, are much more toxic 

in soft water (Sahu, 2019). Calcium may immobilize iron in 
limed soils. Even if there is plenty of iron in the soil, this can 
lead to iron shortages (Sahu, 2019).

TDS in water samples refers to the amount of miner-
als, organic material, salts, and metals dissolved in a given 
volume of water. TDS levels affect everyone who lives in, 
drinks from, or uses water, especially in industrial settings 
with pipes, valves, and other equipment. TDS are influ-
enced by dissolved minerals, plankton, industrial sewage 
and waste, urban runoff, silt, winter road salts, fertilizers, 
and pesticides. TDS can also be emitted by air that contains 
sulfur, calcium bicarbonate, nitrogen, and other minerals, as 
well as from rocks. TDS levels above a certain threshold may 
indicate the presence of hazardous chemicals. It could also 
be due to hard water, which causes scale buildup in valves 
and pipes. High TDS levels in industrial and commercial set-
tings can cause cooling towers, boilers, and other machinery 
to malfunction. TDS is used to indicate the properties of 
drinking water as well as an aggregate indicator of the pres-
ence of a wide range of chemical contaminants (Subba Rao 
et al., 2021). The major distinguishing factor between TDS 
and TSS is that TSS cannot pass through a two-micrometer 
sieve but remains suspended in solution indefinitely.

Total suspended solids are a water quality metric defined 
as the measure of particles suspended in a particular volume 
of water that can be trapped by a filter (Egbueri & Agbasi, 
2022b). It is a component of a water sample's total solids, 
with total dissolved solids serving as its counterpart. Total 
Suspended Solids Plus Total Dissolved Solids equals Total 
Solids. TSS measurements are widely utilized in a variety 
of sectors. It is linked to the level of water pollution in a 
water body. TSS measurement is critical in industrial set-
tings because suspended particles can cause pipe obstruc-
tion and damage (Egbueri & Agbasi, 2022b). A variety of 
variables influence the accumulation of suspended particles 
in water. Soil erosion in outdoor systems causes more solid 
material to enter water bodies. TSS levels above a certain 
threshold are linked to water contamination (Egbueri & 
Agbasi, 2022b; WHO, 2017). When comparing TSS data, it 
is critical to examine the type of filter used as well as how 
the measurement was performed. Finer filters may trap more 
suspended materials, but they are more costly and filter at a 
considerably slower rate. The TSS does not have any WHO 
(2017) or SON (2015) guidelines. However, levels recorded 
in this investigation were found to be typically low (Table 4).

The concentration of nitrates (NO3
–) in the groundwater 

samples was within its permissible limits. Although S11, 
S12, S14, and S19 were observed to have high concentra-
tions of nitrate. Nitrate is a naturally occurring chemical 
with several man-made origins. Natural processes such as 
plant breakdown create nitrate, which is detected in safe and 
healthy quantities in various foods such as carrots and spin-
ach (Anderson, 2019; Patil et al., 2013; Reinik et al., 2008). 
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Table 4   Physicochemical registers of the analyzed groundwater samples

Sample number Source pH EC TDS TSS TH Na+ K+ Ca2+ Mg2+

1 BH 5.800 16.000 35.000 0.000 10.000 15.000 5.000 2.000 0.200
2 BH 4.600 22.000 13.000 0.000 13.000 13.000 4.000 4.000 0.300
3 HW 4.800 14.000 15.000 1.000 16.000 17.000 8.000 8.000 0.600
4 BH 4.700 73.000 62.000 2.000 45.000 10.000 3.000 20.000 0.700
5 BH 4.800 33.000 28.000 0.000 16.000 8.000 7.000 8.000 0.500
6 BH 4.800 16.000 11.000 0.000 18.000 10.000 4.000 3.000 0.600
7 BH 5.900 102.000 76.000 1.000 52.000 27.000 7.000 25.000 16.000
8 BH 4.300 14.000 12.000 0.000 8.000 15.000 3.000 6.000 0.400
9 HW 5.100 20.000 13.000 0.000 8.000 15.000 0.000 4.000 0.200
10 BH 6.000 42.000 19.000 1.000 24.000 16.000 4.000 11.000 0.600
11 BH 4.000 53.000 32.000 0.000 33.000 15.000 12.000 10.000 0.000
12 BH 5.000 10.000 8.000 0.000 6.000 17.000 0.000 2.000 0.500
13 BH 6.400 43.000 33.000 1.000 32.000 12.000 5.000 8.000 0.600
14 BH 4.900 28.000 12.000 3.000 8.000 38.000 9.000 4.000 0.400
15 BH 5.300 32.000 21.000 4.000 12.000 12.000 8.000 3.000 0.300
16 BH 4.600 19.000 31.000 1.000 14.000 14.000 3.000 3.000 0.300
17 HW 4.100 15.000 11.000 2.000 16.000 20.000 8.000 7.000 0.300
18 BH 4.400 8.000 10.000 0.000 8.000 11.000 3.000 5.000 0.000
19 BH 4.800 12.000 11.000 2.000 10.000 12.000 11.000 7.000 1.000
20 BH 5.400 21.000 23.000 0.000 10.000 14.000 8.000 2.000 0.300
Min – 4.000 8.000 8.000 0.000 6.000 8.000 0.000 2.000 0.000
Max – 6.400 102.000 76.000 4.000 52.000 38.000 12.000 25.000 16.000
Avg – 4.985 29.650 23.800 0.900 17.950 15.550 5.600 7.100 1.190
SD – 0.645 23.611 17.893 1.165 12.911 6.684 3.299 5.964 3.494
WHO (2017) – 6.5–8.5 1000 600–1000 – 200 12 75 50
SON (2015) – 6.5–8.5 1000 1000 – 200 – – 0.20

Sample number Cl– SO4
2– HCO3

– NO3
– Fe Zn Ni Cr Pb

1 2.000 70.000 2.000 0.900 0.400 0.200 0.020 0.001 2.000
2 4.000 10.000 0.000 0.000 0.400 0.030 0.000 0.000 0.021
3 8.000 115.000 3.200 0.020 0.400 0.110 0.000 0.000 0.000
4 4.000 48.000 0.000 0.030 0.500 0.320 0.000 0.015 0.000
5 2.000 13.000 0.000 1.900 0.200 0.040 0.000 0.000 0.012
6 21.000 24.000 0.400 0.030 0.300 0.000 0.000 0.000 0.000
7 20.000 67.000 3.500 0.000 0.100 0.100 0.000 0.000 0.000
8 12.000 8.000 3.200 0.200 0.100 0.060 0.000 0.000 0.061
9 3.000 40.000 3.200 0.000 2.400 0.000 0.000 0.000 0.000
10 5.000 25.000 2.000 0.300 0.400 0.010 0.120 0.000 0.001
11 3.000 33.000 0.400 18.480 0.400 0.000 0.000 0.000 0.000
12 3.000 18.000 0.000 8.400 0.300 0.000 0.000 0.000 0.000
13 4.000 26.000 3.000 0.060 0.400 0.010 0.120 0.000 0.001
14 33.000 72.000 5.000 4.200 0.100 0.400 0.340 0.004 1.980
15 25.000 8.000 0.400 1.680 0.300 0.120 0.000 0.000 0.000
16 23.000 25.000 0.600 0.030 0.200 0.000 0.000 0.000 0.000
17 9.000 130.000 0.600 0.030 0.000 0.110 0.000 0.000 0.000
18 10.000 64.000 0.000 1.800 0.400 0.000 0.000 0.000 0.011
19 21.000 15.000 0.000 14.400 0.200 0.340 0.230 0.012 1.430
20 3.000 70.000 1.500 1.240 0.300 0.200 0.020 0.001 2.000
Min 2.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 33.000 130.000 5.000 18.480 2.400 0.400 0.340 0.015 2.000
Avg 10.750 44.050 1.450 2.685 0.390 0.103 0.043 0.002 0.376
SD 9.514 35.039 1.562 5.156 0.492 0.126 0.092 0.004 0.766
WHO (2017) 200–300 250 250 50 0.3 4 0.07 0.05 0.01
SON (2015) 250 100 – 50 0.3 3 0.02 0.05 0.01
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Nitrate is found in many fertilizers used on golf courses, 
lawns, animal manure, crops, and sewage discharge (Wakida 
& Lerner, 2005; Eller and Katz 2017; Katz et al. 2009). In 
different parts of the world, nitrate has been discovered in 
a variety of lakes, rivers, and groundwater (Qasemi et al., 
2022; Wang et al. 2012; Unigwe et al., 2022). In water, 
nitrate cannot be tasted, smelled, or seen (Bergren, 2022). 
High nitrate levels in water can be due to runoff or leakage 
from wastewater, fertilized soil, landfills, septic systems, 
urban drainage, or animal feedlots (Akhtar et al., 2021; Gau-
tam et al., 2021; Verma et al., 2020). Because of multiple 
sources of nitrate, determining the source of nitrate in drink-
ing water may be challenging. Too much nitrate in drink-
ing water can be dangerous, especially for children. Exces-
sive nitrate consumption can alter how the blood transports 
oxygen, resulting in blue baby syndrome (Brender, 2020; 
LaVoie, 2021; Zhang et al., 2018). Bottle-fed babies under 
the age of six months are at the greatest risk of develop-
ing methemoglobinemia (Egbueri & Agbasi, 2022a; WHO, 
2017). Methemoglobinemia (blue baby syndrome) is a blood 
disorder that causes the skin to become blue and can lead to 
serious sickness or death (Egbueri & Agbasi, 2022a; SON, 
2015; WHO, 2017). Only lately has scientific information 
been gathered to examine the health effects of drinking 
water containing high levels of nitrate on adults. A growing 
amount of evidence shows that nitrate or nitrite exposure is 
connected to a variety of health effects, including high heart 
rate, nausea, headaches, and stomach cramps (Camargo & 
Alonso, 2006; Hunault et al., 2009). Some studies also imply 
that dietary nitrate or nitrite consumption is connected with 
an increased risk of cancer, particularly gastric cancer. How-
ever, there is no scientific consensus on this subject.

Heavy metals (PTEs) are among the most significant pol-
lutants in groundwater sources (Marcovecchio et al., 2007). 
Some of these heavy metals are required for the growth, 
development, and health of living beings, but others are not 
required, and the majority of them are poisonous to organ-
isms (Underwood, 1956). The toxicity of heavy metals is 
determined by their concentration in the environment. In 
this study, the heavy metal analysis showed that 35%, 0%, 
20%, 0%, and 40% of the groundwater samples contained 
Fe, Zn, Ni, Cr, and Pb, respectively, above their permissible 
limits (Table 4).

Iron in groundwater is caused by dissolved iron from soil 
and rock formations when rainfall seeps, percolates, and 
drains down the soil and rocks (Orjiekwe et al., 2006). For-
tunately, having iron in your home's water does not pose a 
direct health threat. Iron is required for the body to operate. 

Iron is contained in 70% of the body's red blood cells and 
muscle cells, and it is required for oxygen delivery in the 
blood and muscle tissue (Ayejoto et al., 2022; Egbueri & 
Agbasi, 2022a). People who lack it might become weary 
and anemic (Ayejoto et al., 2022; Egbueri & Agbasi, 2022a). 
High levels of iron in home's water, on the other hand, may 
have a number of significant effects on the taste, smell, and 
sight of water (Ayejoto et al., 2022; Egbueri & Agbasi, 
2022a). Iron may also have an effect on skin and plumb-
ing fixtures, making them excellent breeding grounds for 
germs. Rarely, iron bacteria interact with iron to generate 
rust and bacterial slime. They are not known to cause illness. 
However, a study by Appenzeller et al. (2005) showed that 
the presence of iron in water might encourage the growth of 
bacteria such as Escherichia coli.

Zinc may be naturally introduced into water by the ero-
sion of minerals from soil and rocks, but because zinc ores 
are only marginally soluble in water, zinc is only dissolved in 
low amounts (Ayejoto et al., 2022). The bulk of zinc in water 
is delivered through artificial routes, such as byproducts of 
coal-fired power plants or steel production, zinc fertilizers, or 
waste material combustion (Damodharan, 2013; Fuge, 2013; 
Raja et al., 2015). The results observed in Boji Boji Agbor 
might be attributable to the fact that zinc, which is a com-
ponent of roofing sheets, has been carried down into the soil 
by rainfall before ending up in the subsurface water through 
leaching over decades (Oyem et al. 2015). Zinc is commonly 
used to coat iron, steel, and other metals to prevent rust and 
corrosion (Egbueri, 2022a). Zinc levels in soil may be high 
as a result of incorrect disposal of zinc-containing wastes 
by metal production firms and power utilities. The majority 
of the zinc in soil remains linked to solid particles. When 
soils have high quantities of zinc, such as at a hazardous 
waste site, the metal can leach into groundwater. Although 
severe zinc deficiency is uncommon, it can develop in people 
with unusual genetic abnormalities, nursing infants whose 
mothers are zinc deficient, anyone using certain immunosup-
pressive medications, and people with alcohol dependence 
(Kubala, 2018). Behavioral issues, delayed sexual matu-
rity, impaired growth and development, chronic diarrhea, 
impaired wound healing, and skin rashes are all symptoms of 
severe zinc deficiency (Nicolai et al., 2016). Milder types of 
zinc deficiency are more prevalent, particularly in children in 
underdeveloped nations where diets are frequently deficient 
in essential elements (Kubala, 2018). It is estimated that 
over 2 billion individuals globally are zinc deficient owing 
to low dietary consumption (Kamil et al., 2014). Just as a 
zinc deficit may lead to health problems, an overabundance 

Table 4   (continued)
BH borehole; HW hand-dug well; Min. Minimum; Max. Maximum; Avg. Average; SD Standard deviation. All parameters measured in mg/L, 
except pH and EC (measured in µS/cm)
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of zinc can have the same impact. Too much supplementary 
zinc is the most prevalent cause of zinc poisoning, which can 
result in both acute and chronic symptoms. Impaired immu-
nological function, lack of appetite, nausea and vomiting, 
diarrhea, headaches, and stomach cramps are all symptoms 
of zinc toxicity (Tubek, 2007). Excessive zinc consumption 
might lead to nutritional deficits in other areas. Chronically 
high zinc intake, for example, can interfere with copper and 
iron absorption. Despite the fact that there are several health 
risks associated with excessive zinc consumption, as well 
as the effect of zinc deficiency, research shows that zinc has 
significant health benefits: It hastens wound healing, may 
lower the risk of certain age-related disorders, strengthens 
your immune system, may aid in the treatment of acne, and 
reduces inflammation (Kubala, 2018).

Natural discharges such as volcanic eruptions and wind-
blown dust, as well as anthropogenic activities, cause nickel 
and its compounds to be released into the atmosphere (Gjikaj 
et al., 2015; Mohammed et al., 2011; Nagajyoti et al., 2010). 
The combustion of fuel and residuals accounts for about 
62% of all anthropogenic emissions, followed by municipal 
incineration, nickel metal refining, steel manufacturing, coal 
combustion, and other nickel alloy manufacturing (Bennett, 
1984; Schmidt & Andren, 1980). The primary anthropogenic 
source of nickel in streams is domestic waste water (Nriagu 
& Pacyna, 1988). Domestic waste water accounted for 29% 
of the nickel in influent streams at a water treatment facility 
in Stockholm, Sweden, according to Sörme and Lagerkvist 
(2002). Nickel is a micronutrient that is necessary for the 
healthy functioning of the human body since it stimulates 
hormonal activity and is involved in lipid metabolism (Zdro-
jewicz et al. 2016). Despite the fact that no evidence exists 
to support nickel's nutritional benefit in humans, it has been 
identified as an important nutrient for several microbes, 
plants, and animal species (Song et al., 2017). Nickel is nec-
essary for optimal plant growth and development, as well 
as a number of morphological and physiological activities 
such as seed germination and productivity (Giuseppe et al., 
2020). However, at high concentrations, nickel changes plant 
metabolism by reducing chlorophyll production, photosyn-
thetic electron transport, and enzyme activity (Sreekanth 
et al., 2013). As an immunotoxin and carcinogenic agent, Ni 
can induce a number of health problems, including respira-
tory tract cancer, lung fibrosis, contact dermatitis, asthma, 
and cardiovascular disease depending on the amount and 
duration of exposure (Chen et al., 2017).

Many drinking water sources contain chromium in the + 3 
and + 6 oxidation states. Concerns about public health are 
focused on the presence of hexavalent Cr (chromium-6), 
which is classified as a proven human carcinogen when 
inhaled (Zhitkovich, 2011). Chromium-3 is a nutrient that is 

required by humans. It may be found in a variety of vegeta-
bles, fruits, meats, cereals, and yeast. Chromium-6 naturally 
arises in the environment as a result of the erosion of natural 
chromium deposits (Ayejoto et al., 2022). It can also be cre-
ated by industrial methods. There have been documented 
cases of chromium being released into the environment as 
a result of leakage, poor storage, or insufficient industrial 
waste disposal methods (Ayejoto et  al., 2022; Egbueri, 
2020). Cramping, stomach and intestinal bleeding, diarrhea, 
liver and kidney damage are among the side effects of hexa-
valent chromium exposure (Ayejoto et al., 2022; Egbueri 
& Agbasi, 2022a; WHO, 2017). Mutagenic hexavalent 
chromium toxic effects may be transmitted to offspring via 
the placenta (Ayejoto et al., 2022). The exact mechanism 
by which chromium improves the body is unknown, and 
instances of shortages in humans are uncommon. A deficit 
might potentially be linked to several health issues (WHO, 
2017). These may include less efficient cholesterol control, 
which increases the risk of atherosclerosis and heart disease, 
and decreased glucose tolerance, which leads to poor blood 
sugar management in people with type 2 diabetes (Ayejoto 
et al., 2022; WHO, 2017). Nonetheless, chromium is a trace 
mineral that can increase insulin sensitivity as well as pro-
tein, carbohydrate, and lipid metabolism (Ayejoto et al., 
2022; WHO, 2017).

Over the last two decades, steps have been taken to reduce 
lead exposure in tap water. These processes include those 
carried out in line with the Safe Drinking Water Act revi-
sions of 1986 and 1996 (Tiemann, 2014), as well as the 
United States Environmental Protection Agency's (EPA) 
Lead and Copper Rules (US-EPA, 1986). Lead in water 
can originate from residences that have lead service lines 
that link to the main water line. Homes without lead service 
lines may nevertheless have galvanized iron pipes, lead-sol-
dered brass/chrome-plated brass faucets, or other plumbing 
(Egbueri, 2020, 2022a, 2022b; Saha et al., 2017). Lead in 
drinking water cannot be seen, tasted, or smelled. The easiest 
way to determine the risk of lead in drinking water exposure 
is to identify probable lead sources in the service line and 
residential plumbing (US-EPA, 1986; WHO, 2017). Lead is 
very hazardous in very low quantities and has no recognized 
health benefits (Saha et al., 2017). Lead is bio-accumulative 
and has the potential to cause irreparable harm to bodily 
organs such as the reproductive system, neurological system, 
and kidneys (Todd et al., 1996). It has been shown that high 
lead levels in water are associated with acidic water (Jordana 
& Batista, 2004). All the water samples in this study were 
acidic, and this could explain why about 50% of the ground-
water samples were polluted with lead.
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4.2 � Indexical methods for groundwater pollution 
and quality assessment

4.2.1 � Water pollution index (WPI)

The groundwater samples were classed using the WPI and 
the results are presented in Table 5. Based on the classifi-
cation scheme of the WPI model, the water samples were 
grouped as: excellent water (S3, S6, S7, S10, S12, S13, S15, 
and S16), good water (S2, S4, S5, S17, and S18), moderately 
contaminated (S8 and S11), and highly polluted water (S1, 
S9, S14, S19, and S20). It was observed that lead pollution 
was the most influential factor in the depreciation of ground-
water quality. Therefore, it is recommended that proper 
water treatment measures are taken before the consumption 
of the polluted water samples.

4.2.2 � Pollution index of groundwater (PIG)

The PIG was also used to classify the groundwater samples. 
The essence of using more than one indexical method is to 
remove the bias associated with the use of stand-alone mod-
els. The results of the PIG model are presented in Table 5. 
The results suggest that pollution levels in S3, S5, S6, S7, 
S12, S15, S16, and S17 were minor, but pollution levels 
in S1, S9, S14, S19, and S20 were quite high. The very 
high pollution status was also greatly influenced by lead 

poisoning. Moreover, low levels of pollution were observed 
in S2, S4, S10, S11, S13, and S18, whereas S8 was grouped 
in the moderately polluted class. Furthermore, a simple lin-
ear regression analysis was performed between the findings 
of the two indexical models (Fig. 2). Despite the fact that 
the PIG was computed using assigned weights, there was a 
significant positive correlation between the PIG and WPI. 
This shows that the weightage assignment was properly done 
and the two indexical models have a strong agreement.

4.3 � Simulation and prediction of PTEs and water 
quality indices

4.3.1 � Multiple linear regression

Table 6 shows the statistical metrics for evaluating the per-
formance of the MLR modelling of water quality parameters 
and indices. The models’ parity graphs are shown in Fig. 3. 
The findings demonstrated that the MLR models performed 
exceptionally well in predicting all variables. However, there 
was some diversity in performance. Despite the fact that all 
of the R, and R2 values were high, the SEE differed (Table 6). 
Models having a greater coefficient of determination (R2), 
closer to one, outperformed their peers. Furthermore, when 
two or more models have the same R2 value, error values 
may be utilized to compare the models. Models with lower 
error levels are seen to be superior to models with larger 
error values. Based on the explained facts, the hierarchical 
order of the MLR model performances for the water quality 
parameters is as follows: Cr > Zn > Pb > Ni > Fe > NO3

–. Fur-
thermore, the models for WPI and PIG performed equally 
well. This result coincides with the linear regression analy-
sis of the two models. It was also discovered that the MLR 
performed better in predicting the two water quality indica-
tors than the six physicochemical factors. Nonetheless, the 

Table 5   Results of the WPI and PIG computed using the physico-
chemical data

Sample number Source WPI PIG

1 BH 12.0648 49.3372
2 BH 0.6871 1.2903
3 HW 0.4897 0.9994
4 BH 0.5380 1.2031
5 BH 0.5255 0.9243
6 BH 0.4810 0.7378
7 BH 0.3616 0.9323
8 BH 0.8323 1.9173
9 HW 1.1129 2.9482
10 BH 0.3633 1.3727
11 BH 0.7914 1.0647
12 BH 0.4964 0.6959
13 BH 0.3237 1.4233
14 BH 34.8771 49.7662
15 BH 0.3727 0.7959
16 BH 0.4474 0.6236
17 HW 0.5328 0.5567
18 BH 0.7043 1.0944
19 BH 9.0209 36.1776
20 BH 12.1065 49.2321

Fig. 2   Linear regression graph and equation showing the high corre-
lation between the WPI and PIG models
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Table 6   Performance summary of the multilinear regression and artificial neural network models

Predicted 
parameter

a. MLR modeling b. MLP-NN modeling

Multiple correla-
tion coefficient 
(R)

Coefficient of 
determination 
(R2)

Adjusted R2 Standard 
error of 
estimates

R2 Sum of square errors Relative error Residual error plot

NO3 0.950 0.903 0.078 4.9497 0.856 0.001 0.013 Figure 5a
Fe 0.950 0.903 0.078 0.4723 0.901 0.071 1.032 Figure 5b
Zn 0.997 0.995 0.951 0.0281 0.972 0.051 0.984 Figure 5c
Ni 0.981 0.963 0.648 0.0548 0.970 0.004 0.975 Figure 5d
Cr 0.998 0.995 0.957 0.0009 0.936 0.000 0.323 Figure 5e
Pb 0.988 0.976 0.775 0.3634 0.999 4.964E−5 0.351 Figure 5f
WPI 1.000 1.000 1.000 0.0000 0.999 0.004 0.001 Figure 5g
PIG 1.000 1.000 1.000 0.0000 0.999 0.005 0.001 Figure 5h

Fig. 3   Parity plots showing the R2 values of the MLR predictions of a NO3, b Fe, c Zn, d Ni, e Cr, f Pb g WPI, and h PIG
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overall findings of the MLR imply that it is appropriate for 
the predictive modelling of water quality parameters.

4.3.2 � Artificial neural network modelling

The ANN approach was employed alongside the MLR for 
simulating the water quality indices and variables. Table 6 
shows the performance metrics of the ANN models devel-
oped in this study. The results of the modeling revealed 
that the ANN models performed well. The models’ parity 
charts are displayed in Fig. 4, and the residual error plots 
are provided in Fig. 5. The ANN models have very low 
modelling errors. The following appears to be their order 
of performance in modeling of water quality parameters: 
Pb > Zn > Ni > Cr > Fe > NO3

– (Table 6). Furthermore, the 

models for water quality indices performed similarly in 
terms of their R2 ratings. However, the WPI model per-
formed better than the PIG model by a fractional differ-
ence in terms of their sum of square errors (Table 6). The 
MLP-NN models, like the MLR models, also proved to 
be efficient and cost-effective for computing and predict-
ing groundwater quality parameters. A sensitivity analysis 
was also carried out to see how the input elements influ-
enced the groundwater quality prediction. The results of 
the analysis are shown in Fig. 6. For the models, only input 
variables with a sensitivity score (normalized relevance) 
greater than 50% were considered important. For the mod-
els of NO3

–, Fe, Zn, Ni, Cr, and Pb, three (K > pH > Ni), 
four (HCO3

− > Mg2+  > pH > K+), three (Pb > TSS > Cr), 
seven (HCO3

− > TSS > Zn > EC > Cl− > TDS > Pb), seven 
(Ca2+  > Th > K > Zn > Na+  > Ni > Pb), and two (Zn > Ni) 

Fig. 4   Parity plots showing the R2 values of the ANN predictions of a NO3, b Fe, c Zn, d Ni, e Cr, f Pb, g WPI, and h PIG
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input variables significantly influenced them, respectively 
(Fig. 6a–f). On the other hand, only Pb was shown to be an 
important predictor in the models of WPI and PIG (Fig. 6g 
and h). This also corresponds to the initial findings of the 
WPI and PIG, which suggested that lead pollution greatly 
influenced the groundwater samples.

4.3.3 � Comparing the performances of MLR and ANN 
models

It is vital to have trustworthy models that can predict 
parameters of interest to save money on groundwater mon-
itoring and evaluation. In this study, both MLR and ANN 
techniques were employed for the computation and predic-
tion of WPI, PIG, NO3

–, Zn, Fe, Ni, Cr, and Pb. Although 
both strategies functioned admirably, it is thought impor-
tant to establish which one outperformed the other. With 
the exception of Pb, the MLR models outperformed the 
ANN models in terms of modelling the groundwater 

parameters and indices. As a result, in our study, we find 
the MLR to be a more efficient model. However, some 
studies suggest that the ANN algorithm is better than MLR 
(Abba et al., 2020; Abdullahi et al., 2020; Faloye et al., 
2022; Ghadimi, 2015).

The present study was also compared with previous studies 
in the literature that predicted the occurrence of similar PTEs 
in various water sources (Table 7). From the literature analysis, 
the following observations were made: (1) the present study 
may be the first to model nickel and chromium in groundwater 
using the MLR algorithm, (2) PTEs predicted with more input 
variables had better R2/R rating, (3) input variable type influ-
enced the models’ performances, and (4) the influence of input 
variable type on the performance of the models was greater 
than the number of input variables employed. In terms of the 
R2/R value, the present study had the best modelling result 
in most scenarios (Table 7). It is hoped that the information 
presented in this study will promote better modelling of PTEs 
in future studies.

Fig. 5   Parity plots showing the residual errors of the ANN predictions of a NO3, b Fe, c Zn, d Ni, e Cr, f Pb, g WPI, and h PIG
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5 � Conclusions and recommendations

Artificial neural network and multiple linear regres-
sion proved to be reliable for monitoring groundwater 
resources. The two models performed very well; although, 
MLR (95–100%) performed better than ANN (85–99%) 
in modelling most of the PTEs and water quality indi-
ces. The PIG and WPI model characterized the quality 
of groundwater in the study area similarly. They revealed 
that groundwater resources in the area are classed into two 
major groups, the suitable groundwater samples (65–70%) 
and the unsuitable groundwater samples (30–35%). Simple 
linear regression also confirmed that there is significant 
agreement between the results of WPI and PIG. Based 

on the computation of the ANN, PIG, and WPI models, 
Pb was the most influencing parameter that degraded the 
quality of groundwater in the study area.

The sustainability of groundwater resources requires 
the collective efforts of the government, researchers, 
and inhabitants of every locality. Better environmentally 
friendly practices should be adopted in waste management, 
energy generation, and consumption. Recycling and reuse 
of materials should be encouraged to reduce waste genera-
tion. It is hoped that the methodologies and findings of the 
present research could provide insights for future works 
on groundwater resources. Further studies that propose 
new ways of assessing and monitoring the quality of water 
resources are encouraged.

Fig. 6   Bar charts showing the sensitivities of the input variables in the ANN predictions of a NO3, b Fe, c Zn, d Ni, e Cr, f Pb, g WPI, and h PIG
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Table 7   Comparing the performances of MLR and ANN prediction of PTEs in water with previous studies

No Output Input variables R2 R References Location

(a) MLR modelling
 1 NO3 Soil conditions (Field capacity, Soil groups, Humus content 

in top soil); Hydrology and hydrogeology (Nitrate con-
centration in groundwater recharge, Seepage water rate, 
Hydrogeological units, Nitrate concentration in seepage 
water); and Land use (N-surplus on agricultural land, for-
est, Arable land, Special crops, Urban land, Grassland)

0.35 – Knoll et al. (2019) Germany

NO3 Field parameter (Dissolved oxygen (DO), Temperature 
(temp), EC, pH); Topography (Slope, Elevation); Land 
use (Farmland, Orchard, Natural area, Residential area); 
Soil depth and type (Soil depth, Cobble-bearing silty 
loam, Pebble-bearing silty loam, Sandy loam, Silt and 
silty clay loam, Rounded cobble-bearing silty loam, Sand 
and rounded cobble)

0.83 – Jung et al. (2016) South Korea

NO3 Ca, Cl, Cr, EC, Fe, HCO3, K, Mg, Na, Ni, Pb, pH, SO4, 
TDS, TH, TSS, and Zn

0.950 – Present study Nigeria

 2 Fe pH, Mg, and SO4 – 0.169 Rooki et al. (2011) Iran
Fe EC and TDS 0.189 – Calvert (2020) India, Burkina 

Faso, 
Mexico, 
Nigeria

Fe Aquifer Thickness, Hydraulic Head, Depth to water table, 
Transmissivity, Latitude, Longitude, Distance from the 
loading bay, Hydraulic Conductivity, Elevation, and 
Specific Yield

0.830 – Akakuru and Akudinobi (2018) Nigeria

Fe Ca, Cl, Cr, EC, HCO3, K, Mg, Na, Ni, NO3, Pb, pH, SO4, 
TDS, TH, TSS, and Zn

0.950 – Present study Nigeria

 3 Zn pH, Mg, and SO4 – 0.854 Rooki et al. (2011) Iran
Zn SO4 and HCO3 0.620 – Ghadimi (2015) Iran
Zn Ca, Cl, Cr, EC, Fe, HCO3, K, Mg, Na, Ni, NO3, Pb, pH, 

SO4, TDS, TH, and TSS
0.997 – Present study Nigeria

Zn pH, temp, DO, conductivity (Cond), TDS, alkalinity 
(CaCO3), K, Mg, Ca, NO3, SO4, Cl, phosphorus (P), 
ammoniacal nitrogen (NH4), and total sodium

0.400 – El Chaal and Aboutafail (2022) Morocco

 4 Pb Aquifer Thickness, Hydraulic Head, Depth to water table, 
Transmissivity, Latitude, Longitude, Distance from the 
loading bay, Hydraulic Conductivity Elevation, and 
Specific Yield

0.600 – Akakuru and Akudinobi (2018) Nigeria

Pb SO4 and HCO3 0.630 – Ghadimi (2015) Iran
Pb Ca, Cl, Cr, EC, Fe, HCO3, K, Mg, Na, Ni, NO3, pH, SO4, 

TDS, TH, TSS, and Zn
0.988 – Present study Nigeria

(b) ANN modelling
 5 NO3 Cr, Fe, pH, Ni, Pb, and Zn 0.794 – Egbueri (2021) Nigeria

NO3 Ca, Cl, EC, HCO3, Mg, Na, pH, SO4, TDS, temperature 
(temp), and TH

– 0.840 Zare et al. (2011) Iran

NO3 Ca, Cl, Cr, EC, Fe, HCO3, K, Mg, Na, Ni, Pb, pH, SO4, 
TDS, TH, TSS, and Zn

0.856 – Present study Nigeria

 6 Fe Cl, SO4, and TDS 0.540 – Bayatzadeh Fard et al. (2017) Iran
Fe BOD, COD, EC, pH, suspended solids (SS), and temp 0.842 – Ucun Ozel et al. (2020) Turkey
Fe Ca, Cl, Cr, EC, HCO3, K, Mg, Na, Ni, NO3, Pb, pH, SO4, 

TDS, TH, TSS, and Zn
0.901 – Present study Nigeria

 7 Zn EC, Fe, NO3–N, pH, and river flow 0.780 – Li et al., (2020) Germany
Zn Ca, CaCO3, Cl, Cond, DO, HCO3, K, Mg, Na, NO3, NH4, P, 

pH, SO4, temp, and TDS
0.990 – Chaal and Aboutafail (2021) Morocco

Zn Ca, Cl, Cr, EC, Fe, HCO3, K, Mg, Na, Ni, NO3, Pb, pH, 
SO4, TDS, TH, and TSS

0.972 – Present study Nigeria
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