Skip to main content

Advertisement

Log in

Advancing oral health: the antimicrobial power of inorganic nanoparticles

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Oral health is vital to overall well-being, with the human mouth being home to a myriad of microorganisms. Plaque biofilms, predominantly responsible for dental cavities, consist of diverse bacteria and fungi. These biofilms can lead to oral diseases, such as dental caries and periodontal diseases. In recent times, the spotlight has shifted to inorganic nanoparticles (NPs) as potential dental materials, attributed to their potent antibacterial properties which arise from their expansive-specific area, heightened charge density, and catalytic features. This review aims to explore the antimicrobial efficacy of inorganic NPs, discussing the range of oral diseases they combat and their underlying antibacterial mechanisms. Furthermore, it highlights the distinctive characteristics and applications of various inorganic NPs, with a particular emphasis on metal oxides and calcium phosphates. The review concludes by considering future prospects and developments in the realm of antibacterial inorganic NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Tuominen, J. Rautava, Oral microbiota and cancer development. Pathobiology 88, 116–126 (2020). https://doi.org/10.1159/000510979

    Article  CAS  PubMed  Google Scholar 

  2. S. Kitamoto, H. Nagao-Kitamoto, R. Hein, T.M. Schmidt, N. Kamada, The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 99, 1021–1029 (2020). https://doi.org/10.1177/0022034520924633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Kim, H. Ashida, M. Ogawa, Y. Yoshikawa, H. Mimuro, C. Sasakawa, Bacterial interactions with the host epithelium. Cell Host Microbe 8, 20–35 (2010). https://doi.org/10.1016/j.chom.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  4. P.D. Marsh, Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(Suppl 1), S14 (2006). https://doi.org/10.1186/1472-6831-6-S1-S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.A.F.T.V. Hijum, S. Kralj, L.K. Ozimek, L. Dijkhuizen, I.G.H.V. Geel-Schutten, Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70, 157–176 (2006). https://doi.org/10.1128/mmbr.70.1.157-176.2006

    Article  PubMed  PubMed Central  Google Scholar 

  6. M.I. Klein, S. Duarte, J. Xiao, S. Mitra, T.H. Foster, H. Koo, Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl. Environ. Microbiol. 75, 837–841 (2009). https://doi.org/10.1128/AEM.01299-08

    Article  ADS  CAS  PubMed  Google Scholar 

  7. P.D. Marsh, Dental plaque as a microbial biofilm. Caries Res. 38, 204–211 (2004). https://doi.org/10.1159/000077756

    Article  CAS  PubMed  Google Scholar 

  8. K. Hojo, S. Nagaoka, T. Ohshima, N. Maeda, Bacterial interactions in dental biofilm development. J. Dent. Res. 88, 982–990 (2009). https://doi.org/10.1177/0022034509346811

    Article  CAS  PubMed  Google Scholar 

  9. B. Nyvad, N. Takahashi, Integrated hypothesis of dental caries and periodontal diseases. J. Oral Microbiol. 12, 1710953 (2020). https://doi.org/10.1080/20002297.2019.1710953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Makvandi, U. Josic, M. Delfi, F. Pinelli, V. Jahed, E. Kaya, M. Ashrafizadeh, A. Zarepour, F. Rossi, A. Zarrabi, T. Agarwal, E.N. Zare, M. Ghomi, T. Kumar Maiti, L. Breschi, F.R. Tay, Drug delivery (nano)platforms for oral and dental applications: tissue regeneration, infection control, and cancer management. Adv. Sci. 8, 2004014 (2021). https://doi.org/10.1002/advs.202004014

    Article  CAS  Google Scholar 

  11. J.M.V. Makabenta, A. Nabawy, C.-H. Li, S. Schmidt-Malan, R. Patel, V.M. Rotello, Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36 (2021). https://doi.org/10.1038/s41579-020-0420-1

    Article  CAS  PubMed  Google Scholar 

  12. A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 249, 37–52 (2017). https://doi.org/10.1016/j.cis.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  13. D.-H. Kim, J. Bae, J.H. Heo, C.H. Park, E.B. Kim, J.H. Lee, Nanoparticles as next-generation tooth-whitening agents: progress and perspectives. ACS Nano 16, 10042–10065 (2022). https://doi.org/10.1021/acsnano.2c01412

    Article  CAS  PubMed  Google Scholar 

  14. Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020). https://doi.org/10.1002/adma.201904106

    Article  CAS  Google Scholar 

  15. I.R. Bordea, S. Candrea, G.T. Alexescu, S. Bran, M. Băciuț, G. Băciuț, O. Lucaciu, C.M. Dinu, D.A. Todea, Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab. Rev. 52, 319–332 (2020). https://doi.org/10.1080/03602532.2020.1758713

    Article  CAS  PubMed  Google Scholar 

  16. S. Kyrylenko, F. Warchoł, O. Oleshko, Y. Husak, A. Kazek-Kęsik, V. Korniienko, V. Deineka, M. Sowa, A. Maciej, J. Michalska, A. Jakóbik-Kolon, I. Matuła, M. Basiaga, V. Hulubnycha, A. Stolarczyk, M. Pisarek, O. Mishchenko, M. Pogorielov, W. Simka, Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation. Mater. Sci. Eng. C 119, 111607 (2021). https://doi.org/10.1016/j.msec.2020.111607

    Article  CAS  Google Scholar 

  17. R.Y. Pelgrift, A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803–1815 (2013). https://doi.org/10.1016/j.addr.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  18. Q. Sun, M. Duan, W. Fan, B. Fan, Ca–Si mesoporous nanoparticles with the optimal Ag–Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: an in vitro and in vivo study. J. Mater. Chem. B 9, 2200–2211 (2021). https://doi.org/10.1039/D0TB02704A

    Article  CAS  PubMed  Google Scholar 

  19. Y. Gao, P. Huang, R. Chen, M. Wang, Y. Wang, Y. Sa, T. Jiang, Mesoporous calcium silicate nanoparticles for superficial dental tissue reconstruction, in vitro and in vivo. RSC Adv. 11, 24681–24693 (2021). https://doi.org/10.1039/D1RA02114A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. Wu, J. Chang, W. Fan, Bioactive mesoporous calcium–silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth. J. Mater. Chem. 22, 16801–16809 (2012). https://doi.org/10.1039/C2JM33387B

    Article  CAS  Google Scholar 

  21. M. Duan, W. Fan, B. Fan, Mesoporous calcium–silicate nanoparticles loaded with low-dose triton-100+Ag+ to achieve both enhanced antibacterial properties and low cytotoxicity for dentin disinfection of human teeth. Pharmaceutics 13, 1518 (2021). https://doi.org/10.3390/pharmaceutics13091518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Li, M. Qi, C. Li, B. Dong, J. Wang, M.D. Weir, S. Imazato, L. Du, C.D. Lynch, L. Xu, Y. Zhou, L. Wang, H.H.K. Xu, Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. J. Mater. Chem. B 7, 6955–6971 (2019). https://doi.org/10.1039/C9TB01743G

    Article  CAS  PubMed  Google Scholar 

  23. N. Li, L. Xie, Y. Wu, Y. Wu, Y. Liu, Y. Gao, J. Yang, X. Zhang, L. Jiang, Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater. Today Bio 16, 100360 (2022). https://doi.org/10.1016/j.mtbio.2022.100360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. Wang, F. Dai, Y. Yang, Z. Zhang, Zeolitic imidazolate framework-8 with encapsulated naringin synergistically improves antibacterial and osteogenic properties of Ti implants for osseointegration. ACS Biomater. Sci. Eng. 8, 3797–3809 (2022). https://doi.org/10.1021/acsbiomaterials.2c00154

    Article  CAS  PubMed  Google Scholar 

  25. P.D. Marsh, Dental plaque: biological significance of a biofilm and community life-style. J. Clin. Periodontol. 32(Suppl 6), 7–15 (2005). https://doi.org/10.1111/j.1600-051X.2005.00790.x

    Article  CAS  PubMed  Google Scholar 

  26. R. Huang, M. Li, R.L. Gregory, Bacterial interactions in dental biofilm. Virulence 2, 435–444 (2011). https://doi.org/10.4161/viru.2.5.16140

    Article  PubMed  PubMed Central  Google Scholar 

  27. P.I. Diaz, N.I. Chalmers, A.H. Rickard, C. Kong, C.L. Milburn, R.J. Palmer Jr., P.E. Kolenbrander, Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72, 2837–2848 (2006). https://doi.org/10.1128/AEM.72.4.2837-2848.2006

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. Nyvad, M. Kilian, Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95, 369–380 (1987). https://doi.org/10.1111/j.1600-0722.1987.tb01627.x

    Article  CAS  PubMed  Google Scholar 

  29. P.E. Kolenbrander, R.J. Palmer Jr., A.H. Rickard, N.S. Jakubovics, N.I. Chalmers, P.I. Diaz, Bacterial interactions and successions during plaque development. Periodontol. 2000(42), 47–79 (2006). https://doi.org/10.1111/j.1600-0757.2006.00187.x

    Article  Google Scholar 

  30. P.D. Marsh, Are dental diseases examples of ecological catastrophes? Microbiology (Reading) 149, 279–294 (2003). https://doi.org/10.1099/mic.0.26082-0

    Article  ADS  CAS  PubMed  Google Scholar 

  31. J.A. Aas, B.J. Paster, L.N. Stokes, I. Olsen, F.E. Dewhirst, Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005). https://doi.org/10.1128/jcm.43.11.5721-5732.2005

    Article  PubMed  PubMed Central  Google Scholar 

  32. B.E. Costa Oliveira, A.P. Ricomini Filho, R.A. Burne, L. Zeng, The route of sucrose utilization by Streptococcus mutans affects intracellular polysaccharide metabolism. Front. Microbiol. 12, 636684 (2021). https://doi.org/10.3389/fmicb.2021.636684

    Article  PubMed  PubMed Central  Google Scholar 

  33. N. Takahashi, B. Nyvad, The role of bacteria in the caries process: ecological perspectives. J. Dent. Res. 90, 294–303 (2011). https://doi.org/10.1177/0022034510379602

    Article  CAS  PubMed  Google Scholar 

  34. W.J. Loesche, S.A. Syed, The predominant cultivable flora of carious plaque and carious dentine. Caries Res. 7, 201–216 (1973). https://doi.org/10.1159/000259844

    Article  CAS  PubMed  Google Scholar 

  35. A. Polizzi, M. Donzella, G. Nicolosi, S. Santonocito, P. Pesce, G. Isola, Drugs for the quorum sensing inhibition of oral biofilm: new frontiers and insights in the treatment of periodontitis. Pharmaceutics (2022). https://doi.org/10.3390/pharmaceutics14122740

    Article  PubMed  PubMed Central  Google Scholar 

  36. B.L. Pihlstrom, B.S. Michalowicz, N.W. Johnson, Periodontal diseases. Lancet 366, 1809–1820 (2005). https://doi.org/10.1016/S0140-6736(05)67728-8

    Article  PubMed  Google Scholar 

  37. S.S. Socransky, A.D. Haffajee, Periodontal microbial ecology. Periodontol. 2000(38), 135–187 (2005). https://doi.org/10.1111/j.1600-0757.2005.00107.x

    Article  Google Scholar 

  38. S.S. Socransky, A.D. Haffajee, M.A. Cugini, C. Smith, R.L. Kent Jr., Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998). https://doi.org/10.1111/j.1600-051X.1998.tb02419.x

    Article  CAS  PubMed  Google Scholar 

  39. R.M. Meffert, Periodontitis vs. peri-implantitis: The same disease? The same treatment? Crit. Rev. Oral Biol. Med. 7, 278–291 (1996). https://doi.org/10.1177/10454411960070030501

    Article  CAS  PubMed  Google Scholar 

  40. A. Skrzypczak-Wiercioch, K. Sałat, Lipopolysaccharide-induced model of neuroinflammation: mechanisms of action, research application and future directions for its use. Molecules (2022). https://doi.org/10.3390/molecules27175481

    Article  PubMed  PubMed Central  Google Scholar 

  41. D. Dymock, A.J. Weightman, C. Scully, W.G. Wade, Molecular analysis of microflora associated with dentoalveolar abscesses. J. Clin. Microbiol. 34, 537–542 (1996). https://doi.org/10.1128/jcm.34.3.537-542.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. B. Chi, M. Qi, H.K. Kuramitsu, Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res. Microbiol. 154, 637–643 (2003). https://doi.org/10.1016/j.resmic.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  43. T. Imamura, The role of gingipains in the pathogenesis of periodontal disease. J. Periodontol. 74, 111–118 (2003). https://doi.org/10.1902/jop.2003.74.1.111

    Article  CAS  PubMed  Google Scholar 

  44. J.C. Fenno, Treponema denticola interactions with host proteins. J. Oral Microbiol. (2012). https://doi.org/10.3402/jom.v4i0.9929

    Article  PubMed  PubMed Central  Google Scholar 

  45. A. Amano, Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J. Periodontol. 74, 90–96 (2003). https://doi.org/10.1902/jop.2003.74.1.90

    Article  CAS  PubMed  Google Scholar 

  46. S. Yoon, Y. Chung, J.W. Lee, J. Chang, J.G. Han, J.H. Lee, Biologically benign multi-functional mesoporous silica encapsulated gold/silver nanorods for anti-bacterial applications by on-demand release of silver ions. BioChip J. 13, 362–369 (2019). https://doi.org/10.1007/s13206-019-3407-0

    Article  CAS  Google Scholar 

  47. M. Godoy-Gallardo, U. Eckhard, L.M. Delgado, Y.J.D. de Roo Puente, M. Hoyos-Nogués, F.J. Gil, R.A. Perez, Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact. Mater. 6, 4470–4490 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. E.Z. Gomaa, Silver nanoparticles as an antimicrobial agent: a case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 63, 36–43 (2017). https://doi.org/10.2323/jgam.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  49. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-positive and Gram-negative bacteria: a preliminary study. J. Nanomater. 2015, 720654 (2015). https://doi.org/10.1155/2015/720654

    Article  CAS  Google Scholar 

  50. Y. Qiao, L. Ma, Quantification of metal ion induced DNA damage with single cell array based assay. Analyst 138, 5713–5718 (2013). https://doi.org/10.1039/C3AN00967J

    Article  ADS  CAS  PubMed  Google Scholar 

  51. J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013). https://doi.org/10.1038/nrmicro3028

    Article  CAS  PubMed  Google Scholar 

  52. S. Cheeseman, A.J. Christofferson, R. Kariuki, D. Cozzolino, T. Daeneke, R.J. Crawford, V.K. Truong, J. Chapman, A. Elbourne, Antimicrobial metal nanomaterials: from passive to stimuli-activated applications. Adv. Sci. 7, 1902913 (2020). https://doi.org/10.1002/advs.201902913

    Article  CAS  Google Scholar 

  53. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668 (2000). https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::AID-JBM10%3E3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  54. A. Ayala, M.F. Muñoz, S. Argüelles, Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014). https://doi.org/10.1155/2014/360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  56. S. Ahmad, H. Khan, U. Shahab, S. Rehman, Z. Rafi, M.Y. Khan, A. Ansari, Z. Siddiqui, J.M. Ashraf, S.M. Abdullah, S. Habib, M. Uddin, Protein oxidation: an overview of metabolism of Sulphur containing amino acid, cysteine. Front. Biosci. (Schol. Ed.) 9, 71–87 (2017). https://doi.org/10.2741/S474

    Article  PubMed  Google Scholar 

  57. R.L. Auten, J.M. Davis, Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr. Res. 66, 121–127 (2009). https://doi.org/10.1203/PDR.0b013e3181a9eafb

    Article  CAS  PubMed  Google Scholar 

  58. W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu, Z. Zhang, Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20, 085102 (2009). https://doi.org/10.1088/0957-4484/20/8/085102

    Article  ADS  CAS  PubMed  Google Scholar 

  59. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  60. R.P. Pandey, R. Mukherjee, A. Priyadarshini, A. Gupta, A. Vibhuti, E. Leal, U. Sengupta, V.M. Katoch, P. Sharma, C.E. Moore, V.S. Raj, X. Lyu, Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed. Pharmacother. 141, 111943 (2021). https://doi.org/10.1016/j.biopha.2021.111943

    Article  CAS  PubMed  Google Scholar 

  61. M. Liu, X. Fang, Y. Yang, C. Wang, Peptide-enabled targeted delivery systems for therapeutic applications. Front. Bioeng. Biotechnol. (2021). https://doi.org/10.3389/fbioe.2021.701504

    Article  PubMed  PubMed Central  Google Scholar 

  62. Z. Wei, Y. Zhou, R. Wang, J. Wang, Z. Chen, Aptamers as smart ligands for targeted drug delivery in cancer therapy. Pharmaceutics (2022). https://doi.org/10.3390/pharmaceutics14122561

    Article  PubMed  PubMed Central  Google Scholar 

  63. H. Lim, J. Chang, K.-I. Kim, Y. Moon, S. Lee, B. Lee, J.H. Lee, J. Lee, On-chip selection of adenosine aptamer using graphene oxide-coated magnetic nanoparticles. Biomicrofluidics (2022). https://doi.org/10.1063/5.0095419

    Article  PubMed  PubMed Central  Google Scholar 

  64. J.H. Lee, Y. Yeo, Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75–84 (2015). https://doi.org/10.1016/j.ces.2014.08.046

    Article  CAS  PubMed  Google Scholar 

  65. R. Wardlow, C. Bing, J. VanOsdol, D. Maples, M. Ladouceur-Wodzak, M. Harbeson, J. Nofiele, R. Staruch, A. Ramachandran, J. Malayer, R. Chopra, A. Ranjan, Targeted antibiotic delivery using low temperature-sensitive liposomes and magnetic resonance-guided high-intensity focused ultrasound hyperthermia. Int. J. Hyperthermia 32, 254–264 (2016). https://doi.org/10.3109/02656736.2015.1134818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M.J. Ndolomingo, N. Bingwa, R. Meijboom, Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 55, 6195–6241 (2020). https://doi.org/10.1007/s10853-020-04415-x

    Article  ADS  CAS  Google Scholar 

  67. K.-I. Kim, S. Yoon, J. Chang, S. Lee, H.H. Cho, S.H. Jeong, K. Jo, J.H. Lee, Multifunctional heterogeneous carbon nanotube nanocomposites assembled by DNA-binding peptide anchors. Small 16, 1905821 (2020). https://doi.org/10.1002/smll.201905821

    Article  CAS  Google Scholar 

  68. S.H. Kim, S. Oh, S. Chae, J.W. Lee, K.H. Choi, K.E. Lee, J. Chang, L. Shi, J.-Y. Choi, J.H. Lee, Exceptional mechanical properties of phase-separation-free Mo3Se3—chain-reinforced hydrogel prepared by polymer wrapping process. Nano Lett. 19, 5717–5724 (2019). https://doi.org/10.1021/acs.nanolett.9b02343

    Article  ADS  CAS  PubMed  Google Scholar 

  69. M.-H. Hong, J.H. Lee, H.S. Jung, H. Shin, H. Shin, Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater. Res. 26, 42 (2022). https://doi.org/10.1186/s40824-022-00288-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J.H. Lee, G.S. Yi, J.W. Lee, D.J. Kim, Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J. Periodontal Implant Sci. 47, 388–401 (2017). https://doi.org/10.5051/jpis.2017.47.6.388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. J.W. Lee, S. Chae, S. Oh, S.H. Kim, K.H. Choi, M. Meeseepong, J. Chang, N. Kim, K. Yong Ho, N.-E. Lee, J.H. Lee, J.-Y. Choi, Single-chain atomic crystals as extracellular matrix-mimicking material with exceptional biocompatibility and bioactivity. Nano Lett. 18, 7619–7627 (2018). https://doi.org/10.1021/acs.nanolett.8b03201

    Article  ADS  CAS  PubMed  Google Scholar 

  72. J.W. Lee, S. Chae, S. Oh, D.-H. Kim, S.H. Kim, S.J. Kim, J.-Y. Choi, J.H. Lee, S.Y. Song, Bioessential inorganic molecular wire-reinforced 3D-printed hydrogel scaffold for enhanced bone regeneration. Adv. Healthc. Mater. 12, 2201665 (2023). https://doi.org/10.1002/adhm.202201665

    Article  CAS  Google Scholar 

  73. J.W. Lee, S. Chae, S. Oh, S.H. Kim, M. Meeseepong, K.H. Choi, J. Jeon, N.-E. Lee, S.Y. Song, J.H. Lee, J.-Y. Choi, Bio-essential inorganic molecular nanowires as a bioactive muscle extracellular-matrix-mimicking material. ACS Appl. Mater. Interfaces 13, 39135–39141 (2021). https://doi.org/10.1021/acsami.1c12440

    Article  CAS  PubMed  Google Scholar 

  74. M.J. Kim, D.H. Jung, C.Y. Lee, S. Hong, J.H. Heo, J.H. Lee, Structurally engineered silica shells on gold nanorods for biomedical applications. Small Struct. 4, 2300047 (2023). https://doi.org/10.1002/sstr.202300047

    Article  CAS  Google Scholar 

  75. S. Yoon, B. Lee, C. Kim, J.H. Chang, M.J. Kim, H.B. Bae, K.E. Lee, W.K. Bae, J.H. Lee, Surface polarity-insensitive organosilicasome-based clustering of nanoparticles with intragap distance tunability. Chem. Mater. 33, 5257–5267 (2021). https://doi.org/10.1021/acs.chemmater.1c01339

    Article  CAS  Google Scholar 

  76. B. Kang, M.-K. Shin, S. Han, I. Oh, E. Kim, J. Park, H.Y. Son, T. Kang, J. Jung, Y.-M. Huh, S. Haam, E.-K. Lim, Magnetic nanochain-based smart drug delivery system with remote tunable drug release by a magnetic field. BioChip J. 16, 280–290 (2022). https://doi.org/10.1007/s13206-022-00072-1

    Article  CAS  Google Scholar 

  77. J.H. Heo, M. Sung, T.Q. Trung, Y. Lee, D.H. Jung, H. Kim, S. Kaushal, N.-E. Lee, J.W. Kim, J.H. Lee, S.-Y. Cho, Sensor design strategy for environmental and biological monitoring. EcoMat 5, e12332 (2023). https://doi.org/10.1002/eom2.12332

    Article  Google Scholar 

  78. S. Kannappan, J. Chang, P.R. Sundharbaabu, J.H. Heo, W.-K. Sung, J.C. Ro, K.K. Kim, J.B.B. Rayappan, J.H. Lee, DNA-wrapped CNT sensor for small nucleic acid detection: influence of short complementary sequence. BioChip J. 16, 490–500 (2022). https://doi.org/10.1007/s13206-022-00088-7

    Article  CAS  Google Scholar 

  79. R.R. Suresh, A.J. Kulandaisamy, N. Nesakumar, S. Nagarajan, J.H. Lee, J.B.B. Rayappan, Graphene quantum dots—hydrothermal green synthesis, material characterization and prospects for cervical cancer diagnosis applications: a review. ChemistrySelect 7, e202200655 (2022). https://doi.org/10.1002/slct.202200655

    Article  CAS  Google Scholar 

  80. S.E. Heo, J.W. Ha, Single-particle study: refractive index sensitivity of localized surface plasmon resonance inflection points in mesoporous silica-coated gold nanorods. BioChip J. 16, 183–190 (2022). https://doi.org/10.1007/s13206-022-00061-4

    Article  CAS  Google Scholar 

  81. G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. A 78A, 595–604 (2006). https://doi.org/10.1002/jbm.a.30789

    Article  CAS  Google Scholar 

  82. P. Shankar, P. Srinivasan, B. Vutukuri, A.J. Kulandaisamy, G.K. Mani, K.J. Babu, J.H. Lee, J.B.B. Rayappan, Boron induced c-axis growth and ammonia sensing signatures of spray pyrolysis deposited ZnO thin films—relation between crystallinity and sensing. Thin Solid Films 746, 139126 (2022). https://doi.org/10.1016/j.tsf.2022.139126

    Article  ADS  CAS  Google Scholar 

  83. P. Shankar, M.Q.H. Ishak, J.K. Padarti, N. Mintcheva, S. Iwamori, S.O. Gurbatov, J.H. Lee, S.A. Kulinich, ZnO@graphene oxide core@shell nanoparticles prepared via one-pot approach based on laser ablation in water. Appl. Surf. Sci. 531, 147365 (2020). https://doi.org/10.1016/j.apsusc.2020.147365

    Article  CAS  Google Scholar 

  84. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 7, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  PubMed  Google Scholar 

  85. C. Pushpalatha, J. Suresh, V. Gayathri, S. Sowmya, D. Augustine, A. Alamoudi, B. Zidane, N.H. Mohammad-Albar, S. Patil, Zinc oxide nanoparticles: a review on its applications in dentistry. Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2022.917990

    Article  PubMed  PubMed Central  Google Scholar 

  86. E.H. Abdulkareem, K. Memarzadeh, R.P. Allaker, J. Huang, J. Pratten, D. Spratt, Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J. Dent. 43, 1462–1469 (2015). https://doi.org/10.1016/j.jdent.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  87. Y. Wang, H. Hua, W. Li, R. Wang, X. Jiang, M. Zhu, Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. J. Dent. 80, 23–29 (2019). https://doi.org/10.1016/j.jdent.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  88. M.F. Gutiérrez, L.F. Alegría-Acevedo, L. Méndez-Bauer, J. Bermudez, A. Dávila-Sánchez, S. Buvinic, N. Hernández-Moya, A. Reis, A.D. Loguercio, P.V. Farago, J. Martin, E. Fernández, Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J. Dent. 82, 45–55 (2019). https://doi.org/10.1016/j.jdent.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  89. V. Andrade, A. Martínez, N. Rojas, H. Bello-Toledo, P. Flores, G. Sánchez-Sanhueza, A. Catalán, Antibacterial activity against Streptococcus mutans and diametrical tensile strength of an interim cement modified with zinc oxide nanoparticles and terpenes: an in vitro study. J. Prosthet. Dent. 119(862), e861-862.e867 (2018). https://doi.org/10.1016/j.prosdent.2017.09.015

    Article  CAS  Google Scholar 

  90. P. Bhattacharya, A. Dey, S. Neogi, An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J. Mater. Chem. B 9, 5329–5339 (2021). https://doi.org/10.1039/D1TB00875G

    Article  CAS  PubMed  Google Scholar 

  91. D. Bouras, M. Fellah, A. Mecif, R. Barillé, A. Obrosov, M. Rasheed, High photocatalytic capacity of porous ceramic-based powder doped with MgO. J. Korean Ceram. Soc. 60, 155–168 (2023). https://doi.org/10.1007/s43207-022-00254-5

    Article  CAS  Google Scholar 

  92. Y. He, S. Ingudam, S. Reed, A. Gehring, T.P. Strobaugh, P. Irwin, Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 14, 54 (2016). https://doi.org/10.1186/s12951-016-0202-0

    Article  CAS  Google Scholar 

  93. M.A. Kaiyum, A. Ahmed, M.H. Hasnat, S. Rahman, Effect of MgO on physical and mechanical properties of dental porcelain. J. Korean Ceram. Soc. 58, 42–49 (2021). https://doi.org/10.1007/s43207-020-00083-4

    Article  CAS  Google Scholar 

  94. S. Varshney, A. Nigam, N. Mishra, S.J. Pawar, Microwave-assisted synthesis of magnesium oxide nanoflakes via green chemistry approach using Ficus Racemosa leaf extract: characterization and antibacterial activity. J. Korean Ceram. Soc. 60, 62–74 (2023). https://doi.org/10.1007/s43207-022-00236-7

    Article  CAS  Google Scholar 

  95. A.-P. Rodríguez-Hernández, A.L. Vega-Jiménez, A.R. Vázquez-Olmos, M. Ortega-Maldonado, L.-A. Ximenez-Fyvie, Antibacterial properties in vitro of magnesium oxide nanoparticles for dental applications. Nanomaterials 13, 502 (2023). https://doi.org/10.3390/nano13030502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Y. Wang, Z. Wu, T. Wang, W. Tang, T. Li, H. Xu, H. Sun, Y. Lin, B.S.H. Tonin, Z. Ye, J. Fu, Bioactive dental resin composites with MgO nanoparticles. ACS Biomater. Sci. Eng. 9, 4632–4645 (2023). https://doi.org/10.1021/acsbiomaterials.3c00490

    Article  CAS  PubMed  Google Scholar 

  97. G.H. Naguib, H.M. Nassar, M.T. Hamed, Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact. Mater. 8, 49–56 (2022). https://doi.org/10.1016/j.bioactmat.2021.06.011

    Article  CAS  PubMed  Google Scholar 

  98. A. Rangrazi, M.S. Daneshmand, K. Ghazvini, H. Shafaee, Effects of magnesium oxide nanoparticles incorporation on shear bond strength and antibacterial activity of an orthodontic composite: an in vitro study. Biomimetics 7, 133 (2022). https://doi.org/10.3390/biomimetics7030133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. J. Choi, J. Kim, K. Han, U. Kim, Antibacterial behavior of copper glazes: effect of copper(II) oxide concentrations and sintering atmospheres. J. Korean Ceram. Soc. 58, 287–296 (2021). https://doi.org/10.1007/s43207-021-00112-w

    Article  CAS  Google Scholar 

  100. S. Meghana, P. Kabra, S. Chakraborty, N. Padmavathy, Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 5, 12293–12299 (2015). https://doi.org/10.1039/C4RA12163E

    Article  ADS  CAS  Google Scholar 

  101. M. Eshed, J. Lellouche, S. Matalon, A. Gedanken, E. Banin, Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28, 12288–12295 (2012). https://doi.org/10.1021/la301432a

    Article  CAS  PubMed  Google Scholar 

  102. B. Ramazanzadeh, A. Jahanbin, M. Yaghoubi, N. Shahtahmassbi, K. Ghazvini, M. Shakeri, H. Shafaee, Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus Mutans. J. Dent. (Shiraz) 16, 200–205 (2015)

    PubMed  Google Scholar 

  103. M. Eshed, J. Lellouche, A. Gedanken, E. Banin, A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv. Funct. Mater. 24, 1382–1390 (2014). https://doi.org/10.1002/adfm.201302425

    Article  CAS  Google Scholar 

  104. N.-D. Jaji, H.L. Lee, M.H. Hussin, H.M. Akil, M.R. Zakaria, M.B.H. Othman, Advanced nickel nanoparticles technology: from synthesis to applications. Nanotechnol. Rev. 9, 1456–1480 (2020). https://doi.org/10.1515/ntrev-2020-0109

    Article  CAS  Google Scholar 

  105. J. Iqbal, B.A. Abbasi, T. Mahmood, S. Hameed, A. Munir, S. Kanwal, Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem. 33, e4950 (2019). https://doi.org/10.1002/aoc.4950

    Article  CAS  Google Scholar 

  106. N.C.Z. Moghadam, S.A. Jasim, F. Ameen, D.H. Alotaibi, M.A.L. Nobre, H. Sellami, M. Khatami, Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst. Eng. 45, 1201–1210 (2022). https://doi.org/10.1007/s00449-022-02736-6

    Article  CAS  PubMed  Google Scholar 

  107. E. Nazaripour, F. Mosazadeh, S.S. Rahimi, H.Q. Alijani, E. Isaei, F. Borhani, S. Iravani, M. Ghasemi, M.R. Akbarizadeh, E. Azizi, F. Sharifi, M. Haghighat, S. Hadizadeh, M.D. Moghadam, M. Abdollahpour-Alitappeh, M. Khatami, Ferromagnetic nickel (II) oxide (NiO) nanoparticles: biosynthesis, characterization and their antibacterial activities. Rend. Lincei Sci. Fis. Nat. 33, 127–134 (2022). https://doi.org/10.1007/s12210-021-01042-9

    Article  ADS  Google Scholar 

  108. S.V. Gudkov, D.A. Serov, M.E. Astashev, A.A. Semenova, A.B. Lisitsyn, Ag2O nanoparticles as a candidate for antimicrobial compounds of the new generation. Pharmaceuticals 15, 968 (2022). https://doi.org/10.3390/ph15080968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. W. Shen, P. Li, H. Feng, Y. Ge, Z. Liu, L. Feng, The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles. Mater. Sci. Eng. C 75, 610–619 (2017). https://doi.org/10.1016/j.msec.2017.02.080

    Article  CAS  Google Scholar 

  110. B.A. Abbasi, J. Iqbal, J.A. Nasir, S.A. Zahra, A. Shahbaz, S. Uddin, S. Hameed, F. Gul, S. Kanwal, T. Mahmood, Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: characterization and diverse biomedical applications. Microsc. Res. Tech. 83, 1308–1320 (2020). https://doi.org/10.1002/jemt.23522

    Article  CAS  PubMed  Google Scholar 

  111. V. Manikandan, P. Velmurugan, J.-H. Park, W.-S. Chang, Y.-J. Park, P. Jayanthi, M. Cho, B.-T. Oh, Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 7, 72 (2017). https://doi.org/10.1007/s13205-017-0670-4

    Article  PubMed  PubMed Central  Google Scholar 

  112. D. Carol López de, C. Matias Guerrero, B.M. Fernanda, S. Camilo, G. Maria José, Antimicrobial effect of titanium dioxide nanoparticles in antimicrobial resistance, ed. By M. Mihai, L. Swee Hua Erin, L. Kok-Song, C. Romeo-Teodor (IntechOpen, Rijeka, 2020). https://doi.org/10.5772/intechopen.90891

  113. A.A. EL-Awady, H.N. Al-Khalifa, R.E. Mohamed, M.M. Ali, K.F. Abdallah, M.M. Hosny, A.A.S. Mohamed, K.S. ElHabbak, F.A. Hussein, Shear bond strength and antibacterial efficacy of cinnamon and titanium dioxide nanoparticles incorporated experimental orthodontic adhesive—an in vitro comparative study. Appl. Sci. 13, 6294 (2023). https://doi.org/10.3390/app13106294

  114. F.L. Esteban Florez, R.D. Hiers, P. Larson, M. Johnson, E. O’Rear, A.J. Rondinone, S.S. Khajotia, Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Mater. Sci. Eng. C 93, 931–943 (2018). https://doi.org/10.1016/j.msec.2018.08.060

    Article  CAS  Google Scholar 

  115. A. Zane, R. Zuo, F.A. Villamena, A. Rockenbauer, A.M. Digeorge Foushee, K. Flores, P.K. Dutta, A. Nagy, Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations. Int. J. Nanomed. 11, 6459–6470 (2016). https://doi.org/10.2147/IJN.S117584

    Article  CAS  Google Scholar 

  116. C. Chambers, S.B. Stewart, B. Su, H.F. Jenkinson, J.R. Sandy, A.J. Ireland, Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. Dent. Mater. 33, e115–e123 (2017). https://doi.org/10.1016/j.dental.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  117. H.B. Dias, M.I.B. Bernardi, T.M. Bauab, A.C. Hernandes, A.N. de Souza Rastelli, Titanium dioxide and modified titanium dioxide by silver nanoparticles as an anti biofilm filler content for composite resins. Dent. Mater. 35, e36–e46 (2019). https://doi.org/10.1016/j.dental.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  118. J. Sun, Y. Xu, B. Zhu, G. Gao, J. Ren, H. Wang, Y. Lin, B. Cao, Synergistic effects of titanium dioxide and cellulose on the properties of glassionomer cement. Dent. Mater. J. 38, 41–51 (2019). https://doi.org/10.4012/dmj.2018-001

    Article  CAS  PubMed  Google Scholar 

  119. L.S. Jairam, A. Chandrashekar, T.N. Prabhu, S.B. Kotha, M.S. Girish, I.M. Devraj, M. Dhanya-Shri, K. Prashantha, A review on biomedical and dental applications of cerium oxide nanoparticles—unearthing the potential of this rare earth metal. J. Rare Earths (2023). https://doi.org/10.1016/j.jre.2023.04.009

    Article  Google Scholar 

  120. A. Arumugam, C. Karthikeyan, A.S. Haja Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C 49, 408–415 (2015). https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  121. R. Pol, K. Ashwini, Cerium oxide nanoparticles: synthesis, characterization and study of antimicrobial activity. J. Nanomater. Mol. Nanotechnol. (2017). https://doi.org/10.4172/2324-8777.1000219

    Article  Google Scholar 

  122. M. Zhang, C. Zhang, X. Zhai, F. Luo, Y. Du, C. Yan, Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater. 62, 1727–1739 (2019). https://doi.org/10.1007/s40843-019-9471-7

    Article  CAS  Google Scholar 

  123. D. Sanju, V.A. Kumari, T. Thomas, J.T. Thomas, R. Sujeer, Comparative evaluation of cerium oxide nanoparticles and calcium hydroxide as intracanal medicament against Enterococcus faecalis on tooth substrate: an: in vitro: study. Endodontology (2022). https://doi.org/10.4103/endo.endo_25_22

    Article  Google Scholar 

  124. S. Qi, J. Wu, Y. Xu, Y. Zhang, R. Wang, K. Li, Y. Xu, Chemical stability and antimicrobial activity of plasma-sprayed cerium oxide-incorporated calcium silicate coating in dental implants. Implant Dent. 28, 564–570 (2019). https://doi.org/10.1097/id.0000000000000937

    Article  PubMed  Google Scholar 

  125. C.C.L. Dos-Santos, I.A. Passos-Farias, A.D.J.D. Reis-Albuquerque, P.M.D.F.E. Silva, G.M.D. Costa-One, F.C. Sampaio, Antimicrobial activity of nano cerium oxide (IV) (CeO2) against Streptococcus mutans. BMC Proc. 8, 48 (2014). https://doi.org/10.1186/1753-6561-8-S4-P48

    Article  Google Scholar 

  126. F. Ostadhossein, S.K. Misra, I. Tripathi, V. Kravchuk, G. Vulugundam, D. LoBato, L.E. Selmic, D. Pan, Dual purpose hafnium oxide nanoparticles offer imaging Streptococcus mutans dental biofilm and fight it In vivo via a drug free approach. Biomaterials 181, 252–267 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  127. N. Eliaz, N. Metoki, Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel) (2017). https://doi.org/10.3390/ma10040334

    Article  PubMed  PubMed Central  Google Scholar 

  128. S.V. Dorozhkin, A detailed history of calcium orthophosphates from 1770s till 1950. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 3085–3110 (2013). https://doi.org/10.1016/j.msec.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  129. M.I. Kay, R.A. Young, A.S. Posner, Crystal structure of hydroxyapatite. Nature 204, 1050–1052 (1964). https://doi.org/10.1038/2041050a0

    Article  ADS  CAS  PubMed  Google Scholar 

  130. A.S. Posner, F. Betts, Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res. 8, 273–281 (1975). https://doi.org/10.1021/ar50092a003

    Article  CAS  Google Scholar 

  131. S.H. Kim, C.H. Park, J.H. Heo, J.H. Lee, Progress and perspectives of metal-ion-substituted hydroxyapatite for bone tissue engineering: comparison with hydroxyapatite. J. Korean Ceram. Soc. 59, 271–288 (2022). https://doi.org/10.1007/s43207-022-00198-w

    Article  CAS  Google Scholar 

  132. C. Kim, J.W. Lee, J.H. Heo, C. Park, D.-H. Kim, G.S. Yi, H.C. Kang, H.S. Jung, H. Shin, J.H. Lee, Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration. Biomater. Res. 26, 7 (2022). https://doi.org/10.1186/s40824-022-00253-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. J. Biggemann, P. Müller, D. Köllner, S. Simon, P. Hoffmann, P. Heik, J.H. Lee, T. Fey, Hierarchical surface texturing of hydroxyapatite ceramics: influence on the adhesive bonding strength of polymeric polycaprolactone. J. Funct. Biomater. 11, 73 (2020). https://doi.org/10.3390/jfb11040073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. D.H. Kim, K.I. Kim, S. Yoon, H.J. Kim, J.S. Ahn, S.H. Jun, H.C. Kang, C. Pang, J. Kim, H.J. Cha, K.H. Han, D.M. Kim, J.H. Lee, Dental hetero-graft materials with nano hydroxyapatite surface treatment. J. Nanosci. Nanotechnol. 15, 7942–7949 (2015). https://doi.org/10.1166/jnn.2015.11197

    Article  CAS  PubMed  Google Scholar 

  135. N. Strutynska, A. Malyshenko, N. Tverdokhleb, M. Evstigneev, L. Vovchenko, Y. Prylutskyy, N. Slobodyanik, U. Ritter, Design, characterization and mechanical properties of new Na+, CO32−-apatite/alginate/C60 fullerene hybrid biocomposites. J. Korean Ceram. Soc. 58, 422–429 (2021). https://doi.org/10.1007/s43207-020-00107-z

    Article  CAS  Google Scholar 

  136. A.A. Lopera, V.D.N. Bezzon, V. Ospina, J.L. Higuita-Castro, F.J. Ramirez, H.G. Ferraz, M.T.A. Orlando, C.G. Paucar, S.M. Robledo, C.P. Garcia, Obtaining a fused PLA-calcium phosphate-tobramycin-based filament for 3D printing with potential antimicrobial application. J. Korean Ceram. Soc. 60, 169–182 (2023). https://doi.org/10.1007/s43207-022-00255-4

    Article  CAS  Google Scholar 

  137. Q. Guan, B. He, J. Huang, H.H. Lu, M. Wang, Hybrid ceramics-based cancer theranostics. J. Korean Ceram. Soc. 59, 401–426 (2022). https://doi.org/10.1007/s43207-022-00217-w

    Article  CAS  Google Scholar 

  138. S.J. Kashyap, R. Sankannavar, G.M. Madhu, Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization. J. Korean Ceram. Soc. 59, 846–858 (2022). https://doi.org/10.1007/s43207-022-00225-w

    Article  CAS  Google Scholar 

  139. K. Alagarsamy, V. Vishwakarma, G.S. Kaliaraj, V. Kanagasabai, S. Ramasamy, Investigating biological impact of HAp from goat femur reinforced with Zr–Ag for bone tissue engineering application. J. Korean Ceram. Soc. 59, 480–493 (2022). https://doi.org/10.1007/s43207-022-00199-9

    Article  CAS  Google Scholar 

  140. M. Mudhafar, I. Zainol, H.A. Alsailawi, C.N. Aiza Jaafar, Synthesis and characterization of fish scales of hydroxyapatite/collagen–silver nanoparticles composites for the applications of bone filler. J. Korean Ceram. Soc. 59, 229–239 (2022). https://doi.org/10.1007/s43207-021-00154-0

    Article  CAS  Google Scholar 

  141. A. Kovtun, D. Kozlova, K. Ganesan, C. Biewald, N. Seipold, P. Gaengler, W.H. Arnold, M. Epple, Chlorhexidine-loaded calcium phosphate nanoparticles for dental maintenance treatment: combination of mineralising and antibacterial effects. RSC Adv. 2, 870–875 (2012). https://doi.org/10.1039/C1RA00955A

    Article  ADS  CAS  Google Scholar 

  142. J. Wu, M.D. Weir, M.A.S. Melo, H.H.K. Xu, Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. J. Dent. 43, 317–326 (2015). https://doi.org/10.1016/j.jdent.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Y. Li, X. Hu, J. Ruan, D.D. Arola, C. Ji, M.D. Weir, T.W. Oates, X. Chang, K. Zhang, H.H.K. Xu, Bonding durability, antibacterial activity and biofilm pH of novel adhesive containing antibacterial monomer and nanoparticles of amorphous calcium phosphate. J. Dent. 81, 91–101 (2019). https://doi.org/10.1016/j.jdent.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  144. R. AlSahafi, A.A. Balhaddad, H. Mitwalli, M.S. Ibrahim, M.A.S. Melo, T.W. Oates, H.H.K. Xu, M.D. Weir, Novel crown cement containing antibacterial monomer and calcium phosphate nanoparticles. Nanomaterials (Basel) (2020). https://doi.org/10.3390/nano10102001

    Article  PubMed  Google Scholar 

  145. C. Chen, M.D. Weir, L. Cheng, N.J. Lin, S. Lin-Gibson, L.C. Chow, X. Zhou, H.H.K. Xu, Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent. Mater. 30, 891–901 (2014). https://doi.org/10.1016/j.dental.2014.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Y. Li, X. Hu, Y. Xia, Y. Ji, J. Ruan, M.D. Weir, X. Lin, Z. Nie, N. Gu, R. Masri, X. Chang, H.H.K. Xu, Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dent. Mater. 34, 1310–1322 (2018). https://doi.org/10.1016/j.dental.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. M.A.S. Melo, L. Cheng, K. Zhang, M.D. Weir, L.K.A. Rodrigues, H.H.K. Xu, Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater. 29, 199–210 (2013). https://doi.org/10.1016/j.dental.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  148. A. Shakerimoghaddam, H. Safardoust-Hojaghan, O. Amiri, M. Salavati-Niasari, A. Khorshidi, A. Khaledi, Ca19Zn2(PO4)14 Nanoparticles: synthesis, characterization and its effect on the colonization of Streptococcus mutans on tooth surface. J. Mol. Liq. 350, 118507 (2022). https://doi.org/10.1016/j.molliq.2022.118507

    Article  CAS  Google Scholar 

  149. Q. Wang, P. Li, P. Tang, X. Ge, F. Ren, C. Zhao, J. Fang, K. Wang, L. Fang, Y. Li, C. Bao, X. Lu, K. Duan, Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids Surf. B 182, 110359 (2019). https://doi.org/10.1016/j.colsurfb.2019.110359

    Article  CAS  Google Scholar 

  150. X. Ge, Y. Leng, C. Bao, S.L. Xu, R. Wang, F. Ren, Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J. Biomed. Mater. Res. A 95A, 588–599 (2010). https://doi.org/10.1002/jbm.a.32862

    Article  CAS  Google Scholar 

  151. M. Ai, Z. Du, S. Zhu, H. Geng, X. Zhang, Q. Cai, X. Yang, Composite resin reinforced with silver nanoparticles–laden hydroxyapatite nanowires for dental application. Dent. Mater. 33, 12–22 (2017). https://doi.org/10.1016/j.dental.2016.09.038

    Article  CAS  PubMed  Google Scholar 

  152. Y. Zhou, J. Deng, Y. Zhang, C. Li, Z. Wei, J. Shen, J. Li, F. Wang, B. Han, D. Chen, C. Fan, H. Zhang, K. Liu, Y. Wei, Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications. Adv. Mater. 34, 2202180 (2022). https://doi.org/10.1002/adma.202202180

    Article  CAS  Google Scholar 

  153. A.C.P. Janini, G.F. Bombarda, L.E. Pelepenko, M.A. Marciano, Antimicrobial activity of calcium silicate-based dental materials: a literature review. Antibiotics 10, 865 (2021). https://doi.org/10.3390/antibiotics10070865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0

    Article  ADS  CAS  Google Scholar 

  155. B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014). https://doi.org/10.1039/C4TA02984D

    Article  CAS  Google Scholar 

  156. N. Batool, S. Yoon, S. Imdad, M. Kong, H. Kim, S. Ryu, J.H. Lee, A.K. Chaurasia, K.K. Kim, An antibacterial nanorobotic approach for the specific targeting and removal of multiple drug-resistant Staphylococcus aureus. Small 17, 2100257 (2021). https://doi.org/10.1002/smll.202100257

    Article  CAS  Google Scholar 

  157. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2742324

    Article  PubMed  Google Scholar 

  158. G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, E. Banin, Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8, 3326–3337 (2012). https://doi.org/10.1002/smll.201200772

    Article  CAS  PubMed  Google Scholar 

  159. A. Morgan, Vital guide to preventing dental caries. Vital 5, 21–24 (2008). https://doi.org/10.1038/vital840

    Article  Google Scholar 

  160. P. Abbott, C. Yu, A clinical classification of the status of the pulp and the root canal system. Aust. Dent. J. 52, S17–S31 (2007). https://doi.org/10.1111/j.1834-7819.2007.tb00522.x

    Article  CAS  PubMed  Google Scholar 

  161. T. Madiba, A. Bhayat, Periodontal disease—risk factors and treatment options. S. Afr. Dent. J. 73, 571–575 (2018). https://doi.org/10.17159/2519-0105/2018/v73no9a5

    Article  Google Scholar 

  162. D. Rokaya, V. Srimaneepong, W. Wisitrasameewon, M. Humagain, P. Thunyakitpisal, Peri-implantitis update: risk indicators, diagnosis, and treatment. Eur. J. Dent 14, 672–682 (2020). https://doi.org/10.1055/s-0040-1715779

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020R1A2C2006100) and the Ministry of Education (NRF-2019R1A6A1A03033215). In addition, this study was supported by the Bio & Medical Technology Development Program (NRF-2022M3A9G8017220) of the National Research Foundation (NRF), funded by the Ministry of Science and ICT. J.H.H. acknowledges the support of the NRF funded by the Ministry of Education through the Basic Science Research Program (NRF2022R1C1C2002823).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-Ho Hong, Jun Hyuk Heo or Jung Heon Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicting financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Kim, J., Lee, C.Y. et al. Advancing oral health: the antimicrobial power of inorganic nanoparticles. J. Korean Ceram. Soc. 61, 201–223 (2024). https://doi.org/10.1007/s43207-023-00358-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00358-6

Keywords

Navigation