Skip to main content
Log in

Core–shell-structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics

  • Review Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Magnetorheological (MR) fluids are a type of smart material of which rheological properties can be controlled through mesostructural transformations. They are generally magnetically responsive particle suspensions, which consist of magnetizable particles dispersed in a non-magnetic liquid medium. Ferromagnetic or ferrimagnetic particles with a micrometer size are suitable for MR fluid suspensions, since they can be polarized by the external magnetic field to form chain-like aggregates (mesostructures) that have a strong yield strength and can induce a high shear viscosity. Fe3O4 particles are good candidates for high-performance MR materials due to their low density and high magnetic properties as well as their excellent surface activities. To improve the stability of the MR suspension, many studies on the synthesis of Fe3O4-containing nanocomposites have been carried out recently. This review deals with the latest advances in the fabrication of Fe3O4 nanocomposite particles with a core–shell structure as well as their critical characteristics and advantages to be used in MR suspensions. We focused on the synthesis strategy of various Fe3O4 nanoparticles with a core–shell structure as well as their performance in the magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright: American Chemical Society, 2012)

Fig. 2

Copyright: Elsevier, 2017)

Fig. 3

Copyright: Elsevier, 2017)

Fig. 4
Fig. 5

Copyright: Royal Society of Chemistry, 2015)

Scheme 1

Copyright: Royal Society of Chemistry, 2015)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Copyright: Royal Society of Chemistry 2018)

Fig. 26

Copyright: Royal Society of Chemistry 2018)

Fig. 27

Copyright: Royal Society of Chemistry 2018)

Fig. 28

Copyright: MDPI 2018)

Similar content being viewed by others

References

  1. Y.P. Seo, S. Han, J. Choi, A. Takahara, H.J. Choi, Y. Seo, Searching for a stable high-performance magnetorheological suspension. Adv. Mater. 30, 1704769 (2018)

    Google Scholar 

  2. W.H. Chuah, W.L. Zhang, H.J. Choi, Y. Seo, Magnetorheology of core-shell structured carbonyl iron/ polystyrene foam nanoparticles suspension with enhanced stability. Macromolecules 48(19), 7311–7319 (2015)

    CAS  Google Scholar 

  3. A. Ghaffari, S.H. Hashemabadi, M. Ashtiani, A review on the simulation and modeling of magnetorheological fluids. J. Intell. Material Syst. Struct. 26(8), 881–904 (2015)

    CAS  Google Scholar 

  4. Y.D. Liu, J. Lee, S.B. Choi, H.J. Choi, Silica-coated carbonyl iron microsphere based magnetorheological fluid and its damping force characteristics. Smart Mater. Struct. 22(6), 065022 (2013)

    Google Scholar 

  5. S. Han, J. Choi, Y.P. Seo, I.J. Park, H.J. Choi, Y. Seo, High-performance magnetorheological suspensions of pickering-emulsion-polymerized polystyrene/Fe3O4 particles with enhanced stability. Langmuir 34(8), 2807–2814 (2018)

    CAS  Google Scholar 

  6. J. Choi, S. Han, H. Kim, E. Sohn, H.J. Choi, Y. Seo, Suspensions of hollow polydivinylbenzene nanoparticles decorated with Fe3O4 nanoparticles as magnetorheological fluids for microfluidics applications. ACS Appl. Nano Mater. 2(11), 6939–6947 (2019)

    CAS  Google Scholar 

  7. B.J. Park, F.F. Fang, H.J. Choi, Magnetorheology: materials and application. Soft Matter 6(21), 5246–5253 (2010)

    CAS  Google Scholar 

  8. I. Bica, Y.D. Liu, H.J. Choi, Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 19(2), 394–406 (2013)

    CAS  Google Scholar 

  9. J.W. Lee, K.P. Hong, S.H. Kwon, H.J. Choi, M.W. Cho, Suspension rheology and magnetorheological finishing characteristics of biopolymer-coated carbonyl iron particles. Ind. Eng. Chem. Res. 56(9), 2416–2424 (2017)

    CAS  Google Scholar 

  10. C. Miao, J.C. Lambropoulos, S.D. Jacobs, Process parameter effects on material removal in magnetorheological finishing of borosilicate glass. Appl. Opt. 49(10), 1951–1963 (2010)

    CAS  Google Scholar 

  11. J.C. Ramallo, E.A. Johnson, B.F. Spencer Jr., Smart basis isolation systems. J. Eng. Mech. 128(10), 1088–1099 (2002)

    Google Scholar 

  12. F. Oliveira, P.G. de Morais, A. Suleman, Semi-active control of base-isolated structures. Procedia Eng. 114, 401–409 (2015)

    Google Scholar 

  13. Z. Chen, X. Wang, J. Ko, Y. Ni, B.F. Spencer, G. Yang, MR damping system on Dongting Lake cable-stayed bridge. Proc. SPIE 5057, 229–236 (2003)

    Google Scholar 

  14. R. Tao, X. Xu, Reducing the viscosity of crude oil by pulsed electric or magnetic field. Energy Fuels 20(5), 2046–2051 (2006)

    CAS  Google Scholar 

  15. C. Jun, S.H. Kwon, H.J. Choi, Y. Seo, Polymeric nanoparticle-coated pickering emulsion-synthesized conducting polyaniline hybrid particles and their electrorheological study. ACS Appl. Mater. Interf. 9(51), 44811–44819 (2017)

    CAS  Google Scholar 

  16. Y.P. Seo, Y. Seo, Analysis of giant electrorheological fluids. J. Coll. Interf. Sci. 402, 90–93 (2013)

    CAS  Google Scholar 

  17. M. Sedlacik, V. Pavlinek, P. Saha, P. Svrcinova, P. Filip, J. Stejskal, Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles. Smart Mater. Struct. 19(11), 115008 (2010)

    Google Scholar 

  18. Y.P. Seo, S. Han, H.J. Choi, Y. Seo, Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles. Rheol. Acta 59(6), 415–423 (2020)

    CAS  Google Scholar 

  19. Y.P. Seo, Y. Seo, Modeling and analysis of electrorheological suspensions in shear flow. Langmuir 28(6), 3077–3084 (2012)

    CAS  Google Scholar 

  20. Y.P. Seo, H.J. Choi, Y. Seo, Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. Polymer 52(25), 5695–5698 (2011)

    CAS  Google Scholar 

  21. K.P.S. Parmar, Y. Meheust, B. Schjelderupsen, J.O. Fossum, Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24(5), 1814–1822 (2008)

    CAS  Google Scholar 

  22. H.J. Choi, W.L. Zhang, S. Kim, Y. Seo, Core-shell structured electro- and magneto-responsive materials, fabrication and characteristics. Materials 7(11), 7460–7471 (2014)

    Google Scholar 

  23. Y. Méheust, K.P.S. Parmar, B. Schjelderupsen, J.O. Fossum, The electrorheology of suspensions of Na-fluorohectorite clay in silicone oil. J. Rheol. 55(4), 809–833 (2011)

    Google Scholar 

  24. M.S. Cho, H.J. Choi, M.S. Jhon, Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46(25), 11484–11488 (2005)

    CAS  Google Scholar 

  25. H.J. Choi, M.S. Cho, J.W. Kim, C.A. Kim, M.S. Jhon, A yield stress scaling function for electrorheological fluids. Appl. Phys Lett. 78(24), 3806–3808 (2001)

    CAS  Google Scholar 

  26. Y.P. Seo, H.J. Choi, Y. Seo, (2015) Yield stress analysis of electrorheological suspensions containing core–shell structured anisotropic poly(methyl methacrylate) microparticles. Polym. Adv. Tech. 26(1), 117–120 (2015)

    CAS  Google Scholar 

  27. C. McIntyre, Y. Hengxi, F.P. Green, Electrorheology of suspensions containing interfacially active constituents. ACS Appl. Mater. Interf. 5(18), 8925–8931 (2013)

    CAS  Google Scholar 

  28. Y.P. Seo, H.J. Choi, Y. Seo, Modelling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. Colloids Surf. A. Physicochem. Eng. Asp. 457, 363–367 (2014)

    CAS  Google Scholar 

  29. T.C. Papanastasiou, Flows of materials with yield. J. Rheol. 31(5), 385–404 (1987)

    CAS  Google Scholar 

  30. Y.P. Seo, H.J. Choi, Y. Seo, A simplified model for analyzing the flow behavior of electrorheological fluids containing silicananoparticle-decorated polyaniline nanofibers. Soft Matter 8(17), 4659–4663 (2012)

    Google Scholar 

  31. W. Han, S. Piao, H. Choi, Y. Seo, Core–shell structured mesoporous magnetic nanoparticles and their magnetorheological response. Colliod Surf. A 524(5), 79–86 (2017)

    CAS  Google Scholar 

  32. Y.P. Seo, S. Kwak, H.J. Choi, Y. Seo, Static yield stress of a magnetorheological fluid containing pickering emulsion polymerized Fe2O3/polystyrene composite particles. J. Coll. Interf. Sci. 463(1), 272–278 (2016)

    CAS  Google Scholar 

  33. F.F. Fang, H.J. Choi, Y. Seo, Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl. Mater. Interf. 2(1), 54–60 (2010)

    CAS  Google Scholar 

  34. M. Mrlik, M. Ilcikova, V. Pavlinek, J. Mosnacek, P. Peer, P. Filip, Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. J. Coll. Interf. Sci. 396, 146–151 (2013)

    CAS  Google Scholar 

  35. F.F. Fang, Y.D. Liu, H.J. Choi, Y. Seo, Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS Appl. Mater. Interf. 3(9), 3487–3495 (2011)

    CAS  Google Scholar 

  36. D.E. Park, H.S. Chae, H.J. Choi, A. Maity, Magnetite–polypyrrole core–shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J. Mater. Chem. C 3(13), 3150–3158 (2015)

    CAS  Google Scholar 

  37. Y.Q. Wang, B.F. Zou, T. Gao, X.P. Wu, S.Y. Lou, S.M. Zhou, Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(VI) ion removal properties. J. Mater. Chem. 22(18), 9034–9040 (2012)

    CAS  Google Scholar 

  38. Y.J. Kim, Y.D. Liu, Y. Seo, H.J. Choi, Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their magnetoresponsive characteristics. Langmuir 29(16), 4959–4965 (2013)

    CAS  Google Scholar 

  39. J. Zhou, X. Qiao, B.P. Binks, K. Sun, M. Bai, Y. Li, Y. Liu, Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. Langmuir 27(7), 3308–3316 (2011)

    CAS  Google Scholar 

  40. L. Blaney, Magnetite (Fe3O4): properties, synthesis, and applications. Lehigh Rev. 15(5), 33–81 (2007)

    Google Scholar 

  41. I. Kim, J.G. Park, Y.H. Han, S.Y. Kim, J.F. Shackelford, Wet foam stability from colloidal suspension to porous ceramics: a review. J. Korean Ceramic Soc. 56(3), 211–232 (2019)

    CAS  Google Scholar 

  42. H.T. Pu, F.J. Jiang, Z.L. Yang, Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite. Mater. Chem. Phys. 100(1), 10–14 (2006)

    CAS  Google Scholar 

  43. T.H. Yang, J.H. Koo, S.Y. Kim, K.U. Kyung, D.S. Kwon, Application of magnetorheological fluids for a miniature haptic button: experimental evaluation. J. Intellig. Mater. Syst. Struct 23(9), 1025–1031 (2012)

    Google Scholar 

  44. D.T. Nosse, M.J. Dapino, Magnetorheological valve for hybrid electrohydrostatic actuation. J. Intellig. Mater. Struct. 18(11), 1121–1136 (2007)

    Google Scholar 

  45. H. Chiriac, G. Stoian, Influence of the particles size and size distribution on the magnetorheological fluids properties. IEEE Trans. Magn. 45(10), 4049–4051 (2009)

    Google Scholar 

  46. S.G. Sherman, N.M. Wereley, Effect of particle size distribution on chain structures in magnetorheological fluids. IEEE Trans. Magn. 49(7), 3430–3433 (2013)

    Google Scholar 

  47. E. Lemaire, A. Meunier, G. Bossis, J. Liu, D. Felt, P. Bashtovoi, N. Matoussevitch, Influence of the particle size on the rheology of magnetorheological fluids. J. Rheol. 39(5), 1011–1020 (1995)

    CAS  Google Scholar 

  48. S.J. Park, H.S. Lim, Y. Lee, K.D. Suh, Facile synthesis of monodisperse poly(MAA/EGDMA)/Fe3O4 hydrogel microspheres with hollow structures for drug delivery systems: the hollow structure formation mechanism and effects of various metal ions on structural changes. RSC Adv. 5(13), 10081–10088 (2015)

    CAS  Google Scholar 

  49. Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017)

    Google Scholar 

  50. R.F. Butler, S.K. Banerjee, Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80(29), 4049–4058 (1975)

    CAS  Google Scholar 

  51. X. Wu, X. Xiao, Z. Tian, F. Chen, W. Jian, Effect of particle characteristics and temperature on shear yield stress of magnetorheological fluid. J. Magnet. 21(2), 244–248 (2016)

    Google Scholar 

  52. A.G. Kolhatkar, Y. Chen, P. Chinwangso, I. Nekrashevich, G.C. Dannangoda, A. Singh, A.C. Jamison, O. Zenasni, I.A. Rusakova, K.S. Martirosyan, D. Litvinov, S. Xu, R.C. Willson, T.R. Lee, Magnetic sensing potential of Fe3O4 nanocubes exceeds that of Fe3O4 nanospheres. ACS Omega 2(11), 8010–8019 (2017)

    CAS  Google Scholar 

  53. H. Kim, S. Kim, Y. Seo, High-performance magnetorheological suspensions of Fe3O4-deposited carbon nanotubes with enhanced stability. MRS Adv 4(3/4), 217–224 (2019)

    CAS  Google Scholar 

  54. M. Mrlik, M. Ilcikova, M. Sedlacik, J. Mosnacek, P. Peer, P. Filip, Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field. Coll Polym. Sci. 292, 2137–2143 (2014)

    CAS  Google Scholar 

  55. C. Huiqun, Z. Meifang, L.J. Yaogang, Novel carbon nanotube iron oxide magnetic nanocomposites. J. Magn. Magnet. Mater. 305, 321–324 (2006)

    Google Scholar 

  56. H.T. Pu, F.J. Jiang, “Towards high sedimentation stability: magnetorheological fluids based on CNT/Fe3O4 nanocomposites. Nanotechnology 16(9), 1486–1489 (2005)

    CAS  Google Scholar 

  57. J. Yin, X. Xia, L. Xiang, Y. Qiao, X. Zhao, The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions. Smart Mater. Struct. 18, 095007 (2009)

    Google Scholar 

  58. C. Yoon, Y. Jang, S. Lee, J. Jang, Dual electric and magnetic responsivity of multilayered magnetite-embedded core/shell silica/titania nanoparticles with outermost silica shell. J. Mater. Chem. C 6(38), 10241–10249 (2018)

    CAS  Google Scholar 

  59. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.H. Park, N.-M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)

    CAS  Google Scholar 

  60. W. Stöber, A. Fink, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 26(1), 62–69 (1968)

    Google Scholar 

  61. Y. Fu, J. Yao, H. Zhao, G. Zhao, Z. Wan, Y. Qiu, Bidisperse magnetic particles coated with gelatin and graphite oxide: magnetorheology, dispersion stability, and the nanoparticle-enhancing effect. Nanomaterials 8(9), 714–727 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute of Engineering Research at Seoul National University, Creative Materials Discovery Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT(NRF-2017M3D1A1039377), and POSCO through the project of “RIAM Future Material Solution Center”. HJC appreciates the financial support from the National Research Foundation of Korea (2018R1A4A1025169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsok Seo or Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y., Choi, H.J. Core–shell-structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics . J. Korean Ceram. Soc. 57, 608–631 (2020). https://doi.org/10.1007/s43207-020-00070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00070-9

Keywords

Navigation