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Abstract
Polypropylene (PP), polystyrene (PS), and polyethylene (PE) plastics are commonly used in household items such as elec-
tronic housings, food packaging, bottles, bags, toys, and roofing membranes. The presence of inhalable microplastics in 
indoor air has become a topic of concern as many people spent extended periods of time indoors during the COVID-19 pan-
demic lockdown restrictions, however, the toxic effects on the respiratory system are not properly understood. We examined 
the toxicity of PP, PS, and PE microplastic fragments in the pulmonary system of C57BL/6 mice. For 14 days, mice were 
intratracheally instilled 5 mg/kg PP, PS, and PE daily. The number of inflammatory cells such as macrophages, neutrophils, 
and eosinophils in the bronchoalveolar lavage fluid (BALF) of PS-instilled mice was significantly higher than that in the 
vehicle control (VC). The levels of inflammatory cytokines and chemokines in BALF of PS-instilled mice increased com-
pared to the VC. However, the inflammatory responses in PP- and PE-stimulated mice were not significantly different from 
those in the VC group. We observed elevated protein levels of toll-like receptor (TLR) 2 in the lung tissue of PP-instilled 
mice and TLR4 in the lung tissue of PS-instilled mice compared with those to the VC, while TLR1, TLR5, and TLR6 pro-
tein levels remained unchanged. Phosphorylation of nuclear factor kappa B (NF-κB) and IĸB-α increased significantly in 
PS-instilled mice compared with that in VC. Furthermore, Nucleotide‑binding oligomerization domain‑like receptor family 
pyrin domain‑containing 3 (NLRP3) inflammasome components including NLRP3, apoptosis-associated speck-like protein 
containing a caspase recruitment domain (ASC), and Caspase-1 in the lung tissue of PS-instilled mice increased compared 
with that in the VC, but not in PP- and PE-instilled mice. These results suggest that PS microplastic fragment stimulation 
induces pulmonary inflammation due to NF-ĸB and NLRP3 inflammasome activation by the TLR4 pathway.
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Introduction

Microplastics have become ubiquitous in the environment 
owing to the increasing production and consumption of 
plastic products, coupled with inadequate disposal and 
slow biodegradation [1–3]. Microplastics exist primar-
ily as purposefully manufactured micro-sized products, or 
secondary microplastics formed from the disintegration of 
plastic debris exposed to ultraviolet radiation, mechanical 
stress, and biological actions in the environment [4]. As a 
result, the occurrence of microplastics in the environment 
is diverse, consisting of a wide range of polymer types such 
as polypropylene (PP), polystyrene (PS), and polyethylene 
(PE), with different sizes and shapes including beads, frag-
ments, and fibres [2, 5]. Microplastic pollution has been pre-
viously discussed as a marine environmental issue. However, 
in recent times, its occurrence in both indoor and outdoor 
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air environments has been confirmed, with reports suggest-
ing that inhalation is a more dominant route of exposure 
[6–9]. Although research on airborne microplastic exposure 
has primarily focused on outdoor environments, a limited 
number of studies have revealed that indoor microplastic 
concentrations are notably elevated. These elevated indoor 
microplastic levels may exert adverse effects on human 
health [10–12]. Furthermore, the COVID-19 pandemic 
and associated lockdown regulations have led to prolonged 
indoor periods for individuals, underscoring the significance 
of this study. Despite the potential risks involved, our under-
standing of the pulmonary toxicity of inhaled microplastics 
in humans remains limited.

In recent studies, the fragment and fibre shapes in atmos-
pheric microplastics were observed to be the most predomi-
nant, and it has also been reported that humans are exposed 
to an average of 55,000 particles annually via the inhalation 
route [13–15]. In addition, microplastics of 12 polymer types 
including PP, PS, and PE were detected in the lung tissue of 
humans, with most of them being fragments (43%) and fibre 
(49%) [16]. Microplastic particles have also been observed 
in the sputum of patients with various respiratory diseases 
[17]. Previous studies have reported that some occupational 
workers with long-term exposure to microplastics developed 
pulmonary diseases including lung cancer and asthma [2, 3, 
18–21]. Although some studies have highlighted the poten-
tial health risks associated with the inhalation of microplas-
tics, our understanding of the toxicity mechanisms of dif-
ferent types of microplastics within the respiratory system 
remains limited.

Toll-like receptors (TLRs) are pattern recognition recep-
tors (PRRs) that detect both exogenous pathogen-associated 
molecular patterns (PAMPs) and endogenous danger-asso-
ciated molecular patterns (DAMPs), thereby triggering host 
defense responses and inflammations [22–24]. TLRs can 
activate multiple intracellular signals, including the nuclear 
factor κB (NF-κB) pathway, which plays a major role in 
regulating inflammatory responses [25]. Recent research has 
indicated that NF-κB serves as an integral component of 
the initiation signal required for stimulation of the NLRP3 
inflammasome, which subsequently triggers the activation of 
Caspase-1 and consequent release of interleukin (IL)-1β [26, 
27]. TLR-mediated inflammation is implicated in pulmonary 
diseases including asthma, pulmonary fibrosis, and chronic 
obstructive pulmonary disease (COPD) [28–32]. Recent 
research has reported that air pollution agents such as par-
ticulate matter, activated TLR2- and TLR4-mediated lung 
inflammations [33–35], however, the mechanism of patho-
genesis for lung inflammation due to microplastic exposure 
is still unclear.

This study investigated inflammatory responses includ-
ing inflammatory cytokine and chemokine levels, cellular 
changes, and histopathological analysis of bronchoalveolar 

lavage fluid (BALF) and lung tissue of PP-, PS-, and PE-
instilled mice. Additionally, we examined the mechanism 
of toxicity of TLR-mediated lung inflammation in the lung 
tissues of microplastic-instilled mice.

Materials and methods

PP, PS, and PE microplastic fragments

PP beads (PropylTex® 50, Micro Powders Inc., New York, 
NY, USA) and PE beads (5 mm) were purchased to pre-
pare PP and PE microplastic fragments of size approxi-
mately <20 µm. PP and PE beads were frozen at −78 °C 
and subsequently ground into a powder using a blade-shaped 
homogenizer, a process lasting approximately 4 h. PP and PE 
beads were frozen at -78 °C and subsequently homogenized 
to a powder using a blade-shaped device; this process lasted 
approximately 4 h. The resulting powder was passed through 
a 50-µm mesh and washed five times with ethanol. The sam-
ples were then dried at 50 °C for 48 h. To produce PP and PE 
microplastics with particle sizes of approximately <20 µm, 
microplastics were dispersed in ethanol and subjected to 
high-pressure homogenization (four passes at 600 bar). 
Subsequently, the resulting particles were passed through 
15-µm mesh filters, subjected to five ethanol washes, and 
then dried for 48 h at 50 °C. PS microplastic fragments were 
supplied by the Korea Testing and Research Institute. To 
prepare microplastic fragments for experimentation, PP, PS, 
and PE microplastics were dispersed in a solution consisting 
of 1% DMSO in saline. The resulting solution was sonicated 
in a water bath for 30 min. Field-Emission Scanning Elec-
tron Microscopy (FE-SEM) (S-4800, Hitachi, Japan) analy-
sis was performed to determine the shape and size of the 
three microplastic fragments. Zeta potentials (ELSZ-2000, 
Otsuka, Japan) were measured in triplicate to determine their 
respective surface charges.

Animals and experimental design

Male C57BL/6 mice of seven weeks old were procured 
from Orient Bio Inc. (Seongnam, Korea) and housed in a 
controlled environment at constant temperature and relative 
humidity of 22 ± 3 °C and 50 ± 20% respectively, and a 12 h 
light/dark cycle. Throughout the experiment, mice were pro-
vided with standard experimental rodent pellets (PMI Nutri-
tion International, Richmond, IN, USA) and UV-sterilized 
and filtered tap water ad libitum. Experimental procedures 
were carried out with approval from the Institutional Animal 
Care and Use Committee at the Korea Institute of Toxicol-
ogy (IACUC #2108–0023). In the PP, PS, and PE experi-
mental groups, mice were subjected to intratracheal instilla-
tion of 5 mg/kg of PP, PS, and PE suspended in a 50 μl saline 
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solution over the 2 weeks, employing an automatic instillator 
[36]. Similarly, mice in the vehicle control (VC) group were 
also intratracheally instilled with saline. Mice of all groups 
were sacrificed on day 15.

Bronchoalveolar lavage fluid (BALF) analysis

At 24 h after the administration of the three microplastics 
(PP, PS, and PE), the mice were anesthetized using isoflu-
rane and euthanized by exsanguination. The left lung was 
ligated and the trachea cannulated. Subsequently, the right 
lung was lavaged three times, with 0.7 mL of phosphate-
buffered saline (PBS). Total cells of the collected BALF 
were counted with the help of a NucleoCounter (NC-250; 
ChemoMetec, Gydevang, Denmark). BALF cell smears were 
prepared for differential cell counts using Cytospin (Thermo 
Fisher Scientific) and stained with Diff-Quik solution (Dade 
Diagnostics, Aguada, Puerto, USA). A total of 200 cells 
were counted per slide.

Histopathological analysis

The left lung tissue of mice were fixed in 10% neutral-buff-
ered formalin. The tissue specimens were dehydrated and 
embedded in paraffin. Subsequently, Sects. (4-μm-thick) 
were stained with hematoxylin and eosin (H&E). All fields 
per section from each animal were analyzed using a Leica 
DM2500 microscope (Leica Instruments, Wetzlar, Germany) 
at 200 × and 400 × magnifications.

Inflammatory cytokine and chemokine levels 
in BALF

The levels of IL-1β, IL-6, monocyte chemoattractant 
protein-1 (MCP-1), macrophage inflammatory protein 
(MIP)-1α, MIP-2, and C-X-C motif chemokine ligand 1 
(CXCL1/KC) in BALF were measured using commercial 
ELISA kits (R&D System) according to the manufacturer’s 
instructions.

Preparation of protein extract and western blot 
analysis

Lung tissues were homogenized using RIPA buffer 
(Thermo Fisher Scientific) supplemented with a protease 
and phosphatase inhibitor cocktail, following the manu-
facturer's instructions. Protein concentrations were quan-
tified using the Bradford reagent (Bio-Rad). The samples 
were subsequently loaded and separated using sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis at 
90 V for 120 min. Following electrophoresis, the samples 
were transferred by the wet method unto polyvinylidene 
difluoride membranes (Merck Millipore) at a current of 

250 mA for 60 min. After blocking non-specific sites with 
5% non-fat dry milk in 0.1% Tween 20 in Tris-buffered 
saline (TBS-T) for 1 h, the membrane was incubated over-
night at 4 ℃ with TLR1 (Abeomics, San Diego, USA), 
TLR2 (Abcam, Cambridge, UK), TLR4 (Invitrogen, Mas-
sachusetts, USA), TLR5 (Abcam, Cambridge, UK), TLR6 
(Boster Bio, Pleasanton, USA), NF-κB (Cell Signaling, 
Massachusetts, USA), p-NF-κB (Cell Signaling, Massa-
chusetts, USA), IκB (Cell Signaling, Massachusetts, USA), 
p-IκB (Cell Signaling, Massachusetts, USA), NLRP3 
(AdipoGen Life Sciences, Inc. Liestal, Switzerland), 
ASC (AdipoGen Life Sciences, Inc. Liestal, Switzerland), 
Caspase-1 (AdipoGen Life Sciences, Inc. Liestal, Swit-
zerland), and β-actin (Santa Cruz Biotechnology, Dallas, 
TX, USA). Horseradish peroxidase-linked anti-rabbit IgG 
(Cell Signaling, Massachusetts, USA) and anti-mouse IgG 
(Cell Signaling, Massachusetts, USA) were used to detect 
antibody binding and with the help of iBright CL 1000 
imaging system (Thermo Fisher Scientific), bands were 
visualized after treatment with the ECL reagent (Thermo 
Fisher Scientific). The results of the densitometric analysis 
were expressed as the relative ratio of the target protein 
to the reference protein. The relative ratio of the target 
protein to the control was arbitrarily denoted as 1.

Statistical analysis

All statistical analyses were performed using GraphPad 
InStat v. 3.0 (GraphPad Software, Inc., La Jolla, CA, USA). 
Statistical comparisons between more than two groups were 
performed using one-way analysis of variance (ANOVA) 
followed by Dunnett’s multiple comparison test, and sta-
tistical comparisons between two groups were conducted 
using Student’s t-test. Data are presented as the mean ± SD. 
A value of p <0.05 was considered to indicate statistically 
significant results.

Results

Characterization of PP, PS, and PE microplastic 
fragments

The microplastic particles generally appeared as irregular 
fragment shapes. The results revealed that the microplastic 
fragments had a diameter of 6.40 ± 1.48 µm for PP (Fig. 1a). 
Additionally, the average diameters of PS and PE microplas-
tics were 17.53 ± 2.11 µm and 21.27 ± 6.07 µm, respectively 
(Fig. 1b-c). The zeta potential of PP, PS, and PE fragments 
was −8.28 ± 1.37, −38.93 ± 4.49, and −5.71 ± 1.10 mV, 
respectively (Table 1).
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Inflammatory response in PP, PS, and PE‑stimulated 
mice

We examined the inflammatory response to PP, PS, and PE 
microplastic fragment stimulation. Our results showed that 
total cells, macrophages, neutrophils, and eosinophils were 
significantly increased in the PS stimulation mice compared 
to those in the VC (Fig. 2a). The percentage of macrophages 
in the BALF of PS-instilled mice decreased significantly to 
79.75% compared to that in VC. However, the neutrophil 
percentage (11.00%) and eosinophil percentage (9.25%) 
were significantly higher than those in VC (Fig. 2b). The 
inflammatory cellular changes in the BALF of PP- and PE-
instilled mice were not significantly different from those in 

the VC (Fig. 2). Histopathological analysis of the lung tis-
sues of PP-, PS-, and PE-instilled mice showed inflammatory 
cell infiltration. In addition, the PS-stimulated mice showed 
increased macrophage infiltration (Fig. 3). Furthermore, the 
levels of inflammatory cytokines such as IL-1β and IL-6 in 
the BALF of PS-instilled mice were higher than those in the 
VC, but not in PP- and PE-instilled mice (Fig. 4a, b). Our 
results showed that the levels of inflammatory chemokines 
including MCP-1, MIP-1α, MIP-2, and KC increased in the 
5 mg/kg PS-instilled mice compared to those in the VC; 
however, the inflammatory chemokine levels in PP- and PE-
instilled mice remained significantly unchanged (Fig. 4c–f).  

Microplastic fragment stimulation induces TLRs 
activation

TLRs are a group of proteins involved in the early stages 
of the host defense against invading pathogens, which 
is an important factor in the regulation of inflammatory 
response [22–25]. We investigated the protein levels of 
TLRs in the lung tissue of microplastic-instilled mice. 

Fig. 1   FE-SEM images of microplastic fragments a PP, b PS, and c PE. Scale bar 30 μm

Table 1   Surface charges of PP, PS, and PE microplastic fragments

Microplastic Fragments

PP PS PE

Zeta Potentials (mV) −8.28 ± 1.37 −38.93 ± 4.49 −5.71 ± 1.10

Fig. 2   a Cellular changes in the BALF of mice stimulated with three microplastics (PP, PS, and PE). b Total and differential cells in BALF. Data 
are presented as mean ± SD (n = 6–8 per group). #p ≤ 0.05; ##p ≤ 0.01 vs. VC
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Our results showed that PS-instilled mice had significantly 
increased expression levels of TLR4 as compared to the 
VC group. However, the levels of TLR1, 2, 5, and 6 in 
PS-instilled mice remained unchanged compared to those 
in the VC group (Fig. 5). Interestingly, PP-instilled mice 
showed a significant increase in the expression levels of 

TLR2 as compared to the VC group. The expression levels 
of TLR1, 4, 5, and 6 did not significantly increase in PP-
instilled mice (Fig. 5). In PE-instilled mice, the protein 
levels of all TLRs were not significantly different from 
those in VC (Fig. 5).

Fig. 3   Representative H&E-stained section of lung tissue. Black and red arrows indicate inflammatory cell infiltration and macrophage 
increased. Scale bar 100 μm

Fig. 4   Inflammatory cytokines & chemokines levels, including a IL-1β, b IL-6, c MCP-1, d MIP-1α, e MIP-2, and f KC in the BALF of mice 
instilled with PP, PS, and PE microplastic fragments. Data are presented as mean ± SD (n = 6–8 per group). #p ≤ 0.05; ##p ≤ 0.01 vs. VC
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PS microplastic fragments stimulation activates 
NLRP3 Inflammasome through NF‑κB signaling 
pathway

Our results showed that the p-IκB-α protein levels in 
the lung tissue of PS-instilled mice were significantly 
increased compared to those in VC. Additionally, the 
p-NF-κB protein levels in the lung tissue of PS-stimu-
lated mice increased compared to those in the VC (Fig. 6). 
However, the protein levels of IκB-α and NF-κB phospho-
rylation in the lung tissues of PP- and PE-instilled mice 
remained unchanged (Fig. 6). Furthermore, we observed 
the protein levels of NLRP3 inflammasome components 
such as NLRP3, ASC, and Caspase-1. Our results showed 
that NLRP3, ASC, and Caspase-1 expression were signif-
icantly increased in the lung tissue of PS-stimulated mice 
compared to that in the VC, while PP- and PE-instilled 
mice did not show significant changes (Fig. 7).

Discussion

We investigated the molecular mechanism of the pulmonary 
toxicity response to PP, PS, and PE microplastic fragment 
stimulation in mice. Our results showed the inflammatory 
response including inflammatory cells, cytokines, and 
chemokines in BALF of PS intratracheal instillation mice 
increased compared to the VC. Histopathological analysis of 
the lung tissue of PS-instilled mice revealed lung injury such 
as inflammatory infiltration in the perivascular/peribronchial 
region. The PS fragments stimulation significantly increased 
the protein levels of TLR4 in the lung tissue with respect 
to the VC, but not protein levels of TLR1, 2, 5, and 6. The 
protein levels of IκB-α and NF-κB phosphorylation in the 
lung tissue of PS-treated mice were significantly increased 
compared to those in VC. PS stimulation led to a significant 
increase in NLRP3 inflammasome components including 
NLRP3, ASC, and Caspase-1. These results suggest that 
PS microplastic fragments may contribute to NF-κB and 
NLRP3-mediated inflammation via the TLR4 signaling 
pathway in the respiratory system.

Fig. 5   Representative western 
blotting analysis and relative 
density of TLRs 1, 2, 4, 5, and 
6 in the lung tissue of PP-, 
PS-, and PE-instilled mice. 
Data were normalized against 
β-actin. Data are presented as 
mean ± SD (n = 6–8 per group). 
##p ≤ 0.01 vs. VC

Fig. 6   a Representative western blot analysis of p-IκB-α, IκB-α, 
p-NF-κB, and NF-κB in the lung tissue of PP-, PS-, and PE-instilled 
mice. b Relative density analysis of p-IκB-α levels. Data were nor-

malized against IκB-α. c Relative density analysis of p-NF-κB lev-
els. Data were normalized against NF-κB. Data are presented as 
mean ± SD (n = 6–8 per group). ##p ≤ 0.01 vs. VC
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The detrimental effects of airborne microplastics on the 
pulmonary system have been rarely reported. Although 
in vitro and in vivo studies have demonstrated threats, the 
variations in the characteristics of environmental micro-
plastics require wider toxicity investigations for a better 
understanding. Previous studies have explored the effects 
of microplastic exposure on different polymers in the pul-
monary system. Specifically, 6.25 mg/kg of PS microplastic 
intratracheal instillation in mice has been observed to induce 
pulmonary inflammation [37]. In another study, the admin-
istration of PS microplastic via intranasal instillation daily 
at a dose of 40 mg/kg for 21 days resulted in a significant 
increase in the levels of inflammatory cytokines in the lungs 
of mice [38]. PE microplastics have also been reported to 
exert inflammatory effects on mouse lungs at concentrations 
ranging between 500 to 2,000 mg/kg after 28 days of expo-
sure via oral administration. In this study, the no-observed-
adverse-effect level (NOAEL) was estimated to be less than 
1,000 mg/kg in male mice and <500 mg/kg in female mice 
[39]. An evaluation of the toxicity of polypropylene frag-
ments through oral administration in mice showed that the 
NOAEL for PP microplastics was greater than 2,000 mg/
kg [40]. Nonetheless, it is worth noting that intratracheal 
instillation of PP microplastic in mice induces inflammation 
at a dose of 2.5 mg/kg, as demonstrated in a previous study 
[41]. This discrepancy in microplastic doses among toxicity 
assessments highlights the variations in our understanding of 
their effects. Furthermore, the environmental concentrations 
of microplastics tend to vary depending on the catchment 
area. A recent study in Shanghai estimated that daily human 

exposure to inhalable indoor aerosols is approximately 
704 ± 254 microplastic items with approximately 526 ± 203 
microplastic items deposited in the pulmonary airway [42]. 
In other parts, microplastic concentrations range between 
230 ± 94 and 358 ± 132 items/m3, mostly as fragments and 
fibres [43]. Generally, adult humans inhale approximately 
6.5–8.97 μg/kg microplastics daily. However, this rate can 
be significantly higher in infants, ranging from 3 to 50 times 
the adult levels [44]. Therefore, we observed the pulmonary 
toxic effects of 5 mg/kg (daily concentration) in PP-, PS-, 
and PE-instilled mice.

Previous studies have revealed various physiological 
dysfunctions caused by microplastic exposure in vivo and 
in vitro [38, 41, 45, 46]. These effects depend on factors 
such as size and shape [3]. Using FE-SEM imaging, we 
confirmed the shapes and sizes of PP, PS, and PE micro-
plastic fragments. PP, PS, and PE particles were observed to 
have relatively irregular morphologies with average sizes of 
about 6.40 ± 1.48 µm, 17.53 ± 2.11 µm, and 21.27 ± 6.07 µm 
respectively (Fig. 1). Studies have reported that microplastic 
exposure induces toxicity in various biological systems in 
a size-dependent manner [5, 47]. However, in this study, 
PS-instilled mice showed significantly higher toxicity 
responses, including an increase in cellular recruitment and 
inflammatory cytokine and chemokine levels than PP- and 
PE-instilled mice (Figs. 2 and 4), although PP microplas-
tic fragments were the smallest. We hypothesized that a 
combination of other additional properties such as surface 
charges might account for these responses. Owing to their 
elevated surface-to-volume ratio, the surface charges of 

Fig. 7   a Representative western 
blot analysis of NLRP3, ASC, 
and Caspase-1 in lung tissue of 
PP-, PS-, and PE-instilled mice. 
b Relative density analysis 
of NLRP3 levels. c Relative 
density analysis of ASC levels. 
d Relative density analysis of 
Caspase-1 levels. Data were 
normalized against β-actin. Data 
are presented as mean ± SD 
(n = 6–8 per group). #p ≤ 0.05; 
##p ≤ 0.01 vs. VC
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microplastics have been reported to play a crucial role in 
influencing their functions and interactions within biological 
systems, potentially resulting in adverse effects [48]. Zeta 
potential measurements provide information about particle 
charges and dispersion stability, with absolute values above 
30 mV indicating low aggregation that leads to good homog-
enization following exposure [49, 50]. Although the role 
of surface charge in microplastic toxicity has been sparsely 
reported, inhalation of negatively charged PS microplastic 
(zeta potential of—35.98 ± 0.26 mV) reportedly induced an 
influx of leukocytes and inflammatory cytokine expression 
in BALF and lung tissues of mice [51]. In accordance with 
the findings of Shao et al., polymeric particles that share 
similar charges, irrespective of whether negative or positive, 
tend to exhibit increased cytotoxicity and enhanced affin-
ity for cells as their charge values increase [52]. Similarly, 
the mean zeta potentials recorded for PP, PS, and PE frag-
ments in this study were −8.28 ± 1.37, −38.93 ± 4.49, and 
−5.71 ± 1.10 mV, respectively (Table 1), following a toxicity 
trend of PE (−5.71 ± 1.10 mV) < PP (−8.28 ± 1.37 mV) < PS 
(−38.93 ± 4.49 mV). The interplay of these properties may 
contribute to the inflammatory response for microplastic 
exposure. Hence, further studies are imperative to gain a 
comprehensive understanding of the precise roles and mech-
anisms through which these physicochemical characteristics 
influence both short-term and long-term exposure effects.

Immune cells play an essential role in homeostasis 
maintenance in the lung by recognizing and eliminating 
inhaled foreign substances; however, excessive infiltration 
of inflammatory cells may cause lung injury [53–55]. Our 
results showed that PS stimulation significantly increased 
the number of inflammatory cells including macrophages, 
neutrophils, and eosinophils, in the BALF of mice (Fig. 2). 
In addition, the levels of inflammatory chemokines, 
including MCP-1, MIP-1α, MIP-2, and KC in the BALF 
of PS-instilled mice significantly increased compared to 
those in the VC (Fig. 4c-f). Previous studies have reported 
that airborne particles such as particulate matter increased 
the number of macrophages, neutrophils, and eosino-
phils in the BALF of mice and the levels of inflamma-
tory chemokines, including MCP-1 were increased com-
pared to those in the VC [56]. MCP-1 is a key chemokine 
involved in the migration and infiltration of monocytes/
macrophages and also plays a role in the recruitment of 
eosinophils to acute and chronic inflammatory sites [57, 
58]. Recent studies reported that diesel exhaust particle 
stimulation increased the number of neutrophils and the 
levels of inflammatory cytokines and chemokines such as 
IL-6, MCP-1, MIP-2, and KC in the lung tissue of mice 
[59]. The chemokines MIP-2 and KC are linked to the 
influx of neutrophils in the rodent lung [60], both of which 
have been implicated in the inflammatory process [61, 62]. 
These results suggest that PS stimulation causes cellular 

recruitment and inflammatory cytokine and chemokine 
release, which might lead to pulmonary inflammation in 
the respiratory system.

TLRs are essential components of the innate immune sys-
tem against invading pathogens through their recognition of 
molecular patterns and subsequent initiation of the inflam-
matory response [33–35]. Recent studies have reported that 
most air pollution agents, such as particulate matter, induce 
inflammations through TLR2- and TLR4-mediated signal-
ing, which is detected by the endogenous DAMP ligands 
released by tissue injury [63–65]. Recent studies have dem-
onstrated differences in the functions of TLRs. TLR1, TLR2, 
and TLR6 require heterodimer formation such as TLR1/
TLR2 and TLR2/TLR6 for the activation of inflammatory 
responses including IL-1β secretion, whereas TLR4 acti-
vates the inflammatory responses as a homodimer [66–68]. 
TLRs initiate signaling pathways that result in the nuclear 
translocation of NF-κB and NLRP3 inflammasome activa-
tion, which play an essential role in the pathogenesis of lung 
inflammation via cytokine release and mediators [63]. We 
examined the protein levels of TLRs in the lung tissues of 
PP, PS, and PE microplastic fragment-stimulated mice. The 
TLR2 level in the lung tissue of PP-stimulated mice sig-
nificantly increased compared with that in the VC, but the 
levels of TLR1, TLR4, TLR5, and TLR6 did not increase 
(Fig. 5). PP-instilled mice showed no change in protein lev-
els of p-IκB-α, p-NF-κB, and NLRP3 inflammasome com-
ponents compared with those in the VC (Fig. 6 and 7). These 
results show that PP stimulation increases the TLR2 level; 
however, the absence of TLR1 and TLR6 might result in no 
heterodimer formation. On the other hand, PS stimulation 
significantly increased the protein level of TLR4 (Fig. 5). 
The protein levels of p-IκB-alpha and p-NF-κB in the lung 
tissues of PS-instilled mice significantly increased com-
pared to the VC (Fig. 6). In addition, a significant increase 
in the protein levels of NLRP3 inflammasome components 
including NLRP3, ASC, and Caspase-1 of lung tissue in 
PS-stimulated mice as compared to the VC (Fig. 7). These 
results showed that PS microplastic fragment stimulation 
may induce pulmonary inflammation linked to NLRP3 and 
NF-κB through the TLR4 signaling pathway.
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