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Abstract
Chronic renal failure (CRF) resulting in vascular calcification, which does damage to blood vessels and endothelium, is an 
independent risk factor for stroke. It has been reported that cilostazol has a protective effect on the focal cerebral ischemic 
infarct. However, its impact on vascular injury in CRF combined stroke and its molecular protection mechanism have not 
been investigated. In this study, we carried out the effect of cilostazol on CRF combined stroke rats, and the results confirmed 
that it improved the neurobehavior, renal function as well as pathologic changes in both the kidney and brain. In addition, 
the inflammation and oxidative stress factors in the kidney and brain were suppressed. Moreover, the rates of brain edema 
and infarction were decreased. The injured brain-blood barrier (BBB) was recovered with less Evans blue extravasation and 
more expressions of zonula occludens-1(ZO-1) and occludin. More cerebral blood flow (CBF) in the ipsilateral hemisphere 
and more expression of CD31 and vascular endothelial growth factor (VEGF) in brain and kidney were found in the cilosta-
zol group. Furthermore, cell apoptosis and cell autophagy became less, on the contrary, proteins of vascular endothelial 
growth factor receptor 2 (VEGFR2) after the cilostazol treatment were increased. More importantly, this protective effect is 
related to the pathway of Janus Kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), mammalian target 
of rapamycin (mTOR), and the hypoxia inducible factor-1α (HIF-1α). In conclusion, our results confirmed that cilostazol 
exerted a protective effect on the brain and kidney function, specifically in vascular injury, oxidative stress, cell apoptosis, 
cell autophagy, and inflammation response in CRF combined with stroke rats which were related to the upregulation of 
JAK/STAT3/mTOR signal pathway.
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Introduction

Chronic renal failure (CRF) is a global health concern that 
is irreversible and can result in cardiovascular disease. Most 
CRF patients are asymptomatic, and eventually, only experi-
ence its typical side effects. Patients who do not need dialy-
sis and typically have glomerular filtration rates > 15 mL/
min may receive conservative treatment, whereas others may 
benefit from alternative therapies (hemodialysis, peritoneal 
dialysis, and kidney transplantation) [1]. Stroke as a com-
plication of CRF is the third most common cause of death 
and has high morbidity and disability rates [2]. Collectively, 

stroke and CRF cause a negative socioeconomic impact and 
lower quality of life. Few studies have examined how CRF 
progression affects brain-kidney interactions in stroke patho-
genesis, and the global prevalence of the stroke-CRF com-
bination remains unclear [3].

Studies have shown that CRF patients are at a higher risk 
of stroke than healthy individuals [4]. There is a growing 
evidence that the combination of CRF and stroke triggers 
a variety of pathogenic mechanisms such as inflamma-
tion, oxidative stress, neurohormone imbalances, uremic 
toxin formation, and vascular calcification, which worsen 
the endothelium and blood vessel conditions [5]. CRF 
patients are more likely to develop cognitive dysfunction, 
dementia, transitory infarctions, and white matter lesions 
[6]. The blood–brain barrier (BBB)-crossing uremic toxins 
induced by chronic renal illness results in cognitive impair-
ment and neurodegeneration [3]. Additionally, CRF causes 
vascular risk factors that lead to diabetes, atherosclerosis, 
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hypertension, and atrial fibrillation. Additionally, CRF hin-
ders the eligibility of stroke patients for various stroke treat-
ments, accelerates the course of the disease, and decreases 
recovery outcomes [7].

Cilostazol increases cAMP levels, inhibits phos-
phodiesterase type III, and has antiplatelet properties; 
compared to other antiplatelet medications, it has fewer 
hemorrhagic side effects. It also has several other prop-
erties. A study by Kim revealed that cilostazol exerts 
antidepressant effects after ischemic stroke [8], and the 
effect of cilostazol and aspirin as a pretreatment against 
subsequent transient focal cerebral ischemia has been 
studied in rats [9]. In addition, we noticed that cilostazol 
disrupts the Interleukin 6 (IL-6)/Janus activated kinase 2 
(JAK2)/signal transducer and activator of transcription-3 
(STAT3)/suppressor of cytokine signaling (SOCS3) path-
way in brain injury in Huntington’s disease, causing the 
destruction of BBB and increasing the density of blood 
vessels in rats [10]. Another study showed that cilosta-
zol activates the JAK2/STAT3 pathway to protect mice 
against myocardial ischemia and reperfusion injury [11]. 
Cilostazol alleviates brain injury by inhibiting the JAK/
STAT3 pathway. However, the direct molecular mecha-
nism by which cilostazol is involved in stroke-CRF com-
bination remains unclear.

Based on these observations, we aimed to explore 
whether cilostazol reduces vascular injury in rats with CRF 
combined with stroke and investigate its possible mechanism 
of action.

Materials and methods

Animals and experiments

Forty male Sprague Dawley (SD) rats (6–8 weeks old) 
obtained from the Zhejiang Weitong Lihua Laboratory Ani-
mal Technology Co., Ltd. (animal production license no: 
SCXK (Zhe) 2019-0001), weighing 180–220 g, were kept 
under constant temperature (20–24 °C), humidity (55%), 
12 h light and dark cycle, and wind change times 15–20 
times/h. The animal research was approved by the Ethics 
Committee of the Animal Center of Zhejiang Eyong Phar-
maceutical Research and Development Center (animal use 
license number: SYXK (Zhe) 2021–0033).

Establishment of middle cerebral artery occlusion 
(MCAO) combined CRF model

Forty rats were divided into five groups of eight rats each: 
control, sham, MCAO + CRF, cilostazol, and aspirin. In 

the treatment group, cilostazol (30 mg/kg; 73963-72-1, 
Sigma, China) or aspirin (10 mg/kg; 50-78-2, Sigma, China) 
was administered daily by gavage for 7 days. In the sham 
group, the perirenal fat was removed from the kidney, and 
no nephrectomy was performed. Based on previous studies 
[12, 13], CRF rats underwent a complete nephrectomy on 
the right kidney and a two-third nephrectomy on the left kid-
ney, simultaneously. Antibiotics were used to prevent inci-
sion infection in each group during the procedure. After the 
CRF rats were anesthetized, as described in a previous study 
[14], a nylon thread was prepared, and the external and com-
mon carotid arteries were ligated using a silk thread. The 
prepared nylon cord was then inserted along the common 
carotid artery into the left internal carotid artery, the vas-
cular clamp was released, the threaded plug was advanced 
to obstruct the ipsilateral middle cerebral artery, and the 
threaded plug was fixed above the incision of the left com-
mon carotid artery to complete the modeling of MCAO in 
rats. Neither ligation nor obstruction was performed in the 
sham group.

Body weight, urine volume, and 24‑h urinary 
protein level

After 7 days of administration, body weight, urine protein 
content, and total urine volume in 24 h were measured.

Modified neurological severity score (mNSS)

The mNSS is frequently used for neurobehavioral evaluation 
after MCAO. The score range is 0–18; the higher the score, 
the more severe the neurological impairment is. Each group 
of rats was trained before testing.

Sample collection

On the seventh day, the drug was administered for 30 min, 
and the mNSS score was evaluated. Blood was collected 
from the submaxillary vein, and brain and kidney tissues 
were collected and quickly placed on an ice plate to deter-
mine the brain water content. The remaining samples were 
used for molecular and biochemistry experiments, and some 
were stained in sections.

Determination of brain water content

The brain tissue was weighed, and after diluting the excess 
water and blood stains on the surface using disposable sterile 
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gauze, the brain tissue was weighed using a balance, and 
the weight was noted as wet mass. Subsequently, the brain 
tissue was incubated in the oven at 60 °C for 48–96 h, and 
the brain tissue was repeatedly weighed until the mass no 
longer changed (termed as the dry mass). Brain water con-
tent = (wet mass − dry mass)/wet mass × 100%.

Triphenyltetrazolium chloride (TTC) staining

Brain tissues were coronally sectioned with a thickness of 
2 mm. They were stained in 1% TTC at 37 °C for 30 min 
and fixed in 10% formaldehyde solution for 6 h. The infarct 
volume was calculated using the Medical Image Processing 
System software.

Nissl staining

Nissl staining was performed according to the manufacturer’s 
instructions. After deparaffinizing and rehydrating coronal 
slices, the slides were stained for 5 min at 37 °C in Nissl Stain-
ing Solution (C0117, Beyotime, Jiangsu, China). The ImageJ 
software was used to count the cells.

Hematoxylin–eosin (H&E) staining

The brain tissues were fixed, dehydrated, and immersed in 
wax. The tissues were cut into 5 μm slices and affixed to 
the anti-peeling slides. The slices were treated at 60 °C for 
1–2 h, dewaxed, hydrated with xylene and gradient ethanol, 
and stained with H&E staining (G1005, Servicebio, Wuhan, 
China). Finally, ethanol in increasing concentrations was 
added for dehydration. After vitrification with xylene, the 
slices were sealed with neutral balsam and observed under a 
microscope.

Quantitative real‑time polymerase chain reaction 
PCR (qRT‑PCR)

Pure brain tissue RNA was extracted using TRIzol (B511311; 
Sangon Biotech, Shanghai, China) and transcribed into cDNA 
using a reverse transcription kit (CW2569; Jiangsu Cowin Bio-
tech). The primers, diethypyrocarbonate (DEPC), cDNA, and 
SYBR Green (RR820A; Takara, Beijing, China) were used to 
prepare the corresponding system for amplification products 

in the PCR instrument. The primer sequences are listed in 
Table 1. The fold changes of mRNA were calculated using 
the  2−ΔΔCT method.

TUNEL assay

The TUNEL assay was performed following the manufactur-
er’s instructions. Deparaffinized tissue slices was treated with 
Proteinase K (G1205, Servicebio, Wuhan, China) for 15 min 
in a humid environment, followed by incubation sections in 3% 
hydrogen peroxide for 10 min and terminal deoxynucleotidyl 
transferase (G1501, Servicebio, Wuhan, China) labeling buffer 
at 37 °C for 1 h. TUNEL-positive cells were stained red; nuclei 
were stained with diamidinylphenyl indole (DAPI) to observe 
the TUNEL-positive cells.

Evans blue (EB) staining

One hour before anesthetization with isoflurane, EB physi-
ological saline solution (E8010, Solarbio, Beijing, China) was 
injected into the femoral vein of the mice to ascertain the EB 
content. The conjunctiva of the eyes and limbs turned blue 
after the injection, and after 1 h of circulation, heart perfu-
sion was performed. The brains of the mice were promptly 
sectioned, collected, and placed under an inverted fluorescence 
microscope with blue excitation light to observe EB leakage. 
The amount of EB present in the brain tissue was determined 
using a fluorescence spectrophotometer.

Cerebral blood flow (CBF) evaluation

At 7 days post-treatment, the dynamic blood flow value of 
the wound was measured using a laser Doppler blood flow 
meter (SKK-1100, Shenzhen Reward Life Technology Co., 
LTD, China). Before testing, the skin was excised to expose 
the skull, and a MSP200XP surface probe was placed on the 
wound surface of the brain. Three points were chosen on each 
wound surface; each point was recorded for 30 s, and the 
PowerLab Chart5 v5.2.2 image analysis software was used 
for analysis. Color-coded images represented different perfu-
sion levels. The average value of the measurements from these 
three points was considered as the blood flow value of the 
intraoral wound.

Table 1  Primer sequence Gene Forward primer (5′–3′) Reverse primer (5′–3′)

Rat VEGF TCA TCA GCC AGG GAG TCT GT TTA ACT CAA GCT GCC TCG CC
Rat VEGFR2 ACG ACT GAA AGC CCA GAT TGT AGC TGA AAT CAA GCC CCA CG
Rat β-actin AAG GCC AAC CGT GAA AAG AT GCT CGA AGT CTA GGG CAA CA
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Enzyme‑linked immunosorbent assay (ELISA) assay

The serum levels of endothelin-1 (ET-1) (MM-0560R1; 
MEIMIAN, Jiangsu, China), nitrous oxide (NO) (MM-
20607R1; MEIMIAN, Jiangsu, China), interleukin-1β (IL-
1β) (MM-0047R1; MEIMIAN, Jiangsu, China), IL-6 (MM-
0190R1; MEIMIAN, Jiangsu, China), tumor necrosis factor-α 
(TNF-α) (MM-0180R1; MEIMIAN, Jiangsu, China), endothe-
lial nitric oxide synthase (eNOS) (RX300651R; RUIXING, 
Fujian, China), malonaldehyde (MDA) (S0131S; Biyuntian 
Biotechnology Co., LTD. Jiangsu, China), glutathione (GSH) 
(S0053; Biyuntian Biotechnology Co., LTD. Jiangsu, China), 
and superoxide dismutase (SOD) (S0101S; Shanghai Biyun-
tian Biotechnology Co., LTD. China) were tested using the 
ELISA kits following the manufacturer’s instructions. The 
serum creatinine (Scr) and blood urea nitrogen (BUN) levels 
of cilostazol in MCAO rats were determined using an auto-
matic biochemical analyzer.

Immunofluorescence assay

Brain tissues were fixed and then stabilized in 0.5% Tri-
ton X-100. After blocking with blocking buffer, the tissues 
were incubated with occludin (DF7504, Affinity, Jiangsu, 
China), LC3 (AF5402, Affinity, Jiangsu, China), and zonula 
occludens-1 (ZO-1) (21773-1-AP, proteintech, Shanghai, 
China) overnight at 4 °C. The tissues were then incubated 
with an anti-rabbit antibody and counterstained with DAPI. 
The cells were observed under a microscope.

Immunohistochemistry (IHC) assay

The brain tissue sections were dewaxed with xylene, fol-
lowed by addition of ethanol in decreasing concentrations for 
tissue rehydration, and the addition of antigen repair solu-
tion. Subsequently, the sections were washed with hydrogen 
peroxide to block endogenous peroxidase, sealed with bovine 
serum, and incubated overnight at 4 °C with transforming 
growth CD31 (AF6191, affinity, Jiangsu, China), vascular 
endothelial growth factor (VEGF) (ab72807, abcam, Shang-
hai, China), and Caspase 3 (Ab184787, abcam, Shanghai, 
China). On the next day, the sections were incubated in HRP 

secondary antibodies, and DAB (G1212, Servicebio, Wuhan, 
China) was added. The positive expression of DAB was 
brown-yellow, and the nuclei were stained with hematoxylin. 
Finally, ethanol in increasing concentrations was added for 
dehydration, and vitrification was performed with xylene. 
The slices were sealed with neutral balsam and observed 
under a microscope.

Western blotting

Pure protein was extracted from the brain tissue, and the 
protein concentration was measured using the bicinchoninic 
acid (BCA) method. After adding the loading buffer, the 
protein was denatured via boiling. The total protein was 
separated by electrophoresis, and the corresponding pro-
teins were transferred to a polyvinylidene fluoride mem-
brane (PVDF) membrane. The non-specific antigen was 
blocked with 5% milk, and the proteins on the membrane 

Table 2  Antibody information

Reagent Company No. Dilution ratio Lot

Bcl-2 antibody Affinity AF6139 1:1000 11o9905
Bax antibody Affinity AF0120 1:1000 44q6915
Caspase-3 antibody Affinity AF6311 1:1000 33d5960
LC3 antibody Affinity AF5402 1:1000 35y4418
Beclin1 antibody Affinity AF5128 1:1000 86s3201
p62 antibody Affinity AF5384 1:1000 43z8686
VEGF antibody Affinity DF7470 1:1000 71j8125
VEGFR2 antibody Affinity AF6281 1:1000 82z6076
JAK1 antibody Affinity AF5012 1:1000 95r2924
p-JAK1 antibody Affinity AF2012 1:1000 34u0236
STAT3 antibody Affinity AF6294 1:1000 15x8824
p-STAT3 antibody Affinity AF3293 1:1000 74m1478
HIF-1α antibody Affinity AF1009 1:1000 60h4847
mTOR antibody Affinity AF6308 1:1000 64m3376
p-mTOR antibody Affinity AF3308 1:1000 63a3839
Anti-rabbit IgG, 

HRP-linked 
antibody

CST 7074 1:6000 29

β-actin antibody Affinity AF7018 1:10,000 12w2944
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Fig. 1  Cilostazol attenuated 
inflammation and oxidative 
stress response and exert protec-
tive effect in the kidney of rats 
with MCAO combined with 
CRF. a The histomorphology of 
in kidney in rats was observed 
by HE staining (magnifica-
tion × 200, scale bar: 100 μm; 
magnification × 400, scale bar: 
50 μm), n = 3; b The weight and 
the urine volume and urine pro-
tein were record in each group, 
n = 8; The expression of inflam-
matory factors TNF-α, IL-6 in 
kidney (c), the oxidative stress 
factor MDA, SOD, GSH in 
kidney (d) and NO, ET-1, BUN 
and Scr in serum were tested by 
the ELISA kits, n = 8. ##P < 0.01 
versus sham group. $P < 0.05, 
$$P < 0.01 versus MCAO + CRF 
group. (Note: HE: hematoxylin–
eosin, TNF-α: tumor necrosis 
factor-α, IL-6: interleukin-6, 
MDA: malonaldehyde, SOD: 
superoxide dismutase, GSH: 
glutathione, NO: nitrous oxide, 
ET-1: endothelin-1, BUN: 
blood urea nitrogen, Scr: serum 
creatinine, ELISA: enzyme-
linked immunosorbent assay, 
MCAO + CRF: middle cerebral 
artery occlusion + chronic renal 
failure rats)
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were incubated with the target antibodies listed in Table 2. 
After incubation at 4 °C overnight, the proteins were incu-
bated with secondary antibodies. The images were captured 
using an ECL chemiluminescence imager.

Results

Cilostazol attenuated inflammation and oxidative 
stress response and exert protective effect 
in the kidney of rats with MCAO combined with CRF

As shown in Fig. 1a, the kidney tissue structures of the 
control and sham groups were normal with clear lay-
ers, and no obvious kidney injury was observed. In the 
MCAO + CRF group, the renal tissue was severely dam-
aged, with atrophy of the glomeruli, enlargement of the 
tubule cyst lumen, and atrophy of the lumen and lumen epi-
thelium at different sizes. Compared to the MCAO + CRF 
group, cilostazol and aspirin groups showed improved 
tissue structure. Treatment with cilostazol and aspirin 
promoted the recovery of body weight, urine volume, and 
urine protein levels that were abnormally stimulated in 
the MCAO + CRF group (Fig. 1b, P < 0.01). In addition, 
inflammatory factors in the kidney, such as TNF-α and 
IL-6, were increased in the MCAO + CRF group com-
pared to in the sham group; they were suppressed in the 
cilostazol and aspirin groups (Fig. 1c, P < 0.01). MDA 
expression was elevated in the kidneys of MCAO + CRF 
rats compared to in the sham rats, and treatment with 
cilostazol and aspirin promoted the recovery of MDA lev-
els (Fig. 1d, P < 0.01). The expression of SOD and GSH 
was reduced in the MCAO + CRF group compared to in 
the sham group; however, it was enhanced in the cilosta-
zol and aspirin groups (Fig. 1d, P < 0.01). In addition, in 
the serum, the expression of NO was reduced, but ET-1, 
BUN, and Scr levels were increased in the MCAO + CRF 
group compared to in the sham group (Fig. 1e, f, P < 0.01). 
This effect was reversed by cilostazol and aspirin treatment 
(Fig. 1e, f, P < 0.01).

Cilostazol alleviated brain injury and exert 
a neuroprotective effect in rats with MCAO 
combined with CRF

As shown in Fig. 2a, the mNSS score was lower in the 
cilostazol and aspirin groups than in the MCAO + CRF 
group (P < 0.01). In addition, rats in the MCAO + CRF 
groups had more severe brain edema than those in the 
sham group; however, this effect was reversed by cilosta-
zol and aspirin treatment (Fig. 2b, P < 0.01). As shown 
in Fig. 2c, d, the dynamic blood flow value of the wound 
in each group 7 days post-treatment was measured using 
a laser Doppler blood flow meter; the results showed that 
on day 1, the CBF in the ipsilateral hemisphere of the rat 
brain in the MCAO + CRF, cilostazol, and aspirin groups 
was lower than that in the sham group (P < 0.01). On day 
7, CBF in the ipsilateral hemisphere of the rat brain in the 
MCAO + CRF group was lower than that in the sham group 
(P < 0.05 or P < 0.01), whereas the cilostazol and aspirin 
groups had higher CBF in the ipsilateral hemisphere of the 
brain than that in the MCAO + CRF group (P < 0.05). Sub-
sequently, we used Evans blue staining and immunofluo-
rescence to test the permeability of the BBB and found that 
brain tissues of MCAO + CRF rats had more extravasation 
and fewer components of the BBB, including lower expres-
sion of occludin and ZO-1, than those of brain tissues of the 
sham rats (Fig. 2e, f, P < 0.01). In contrast, cilostazol and 
aspirin groups had reduced Evans blue extravasation and 
enhanced levels of occludin and ZO-1 compared to those 
in rats of the MCAO + CRF group (Fig. 2g, h, P < 0.05 or 
P < 0.01). As for the infarction rate (Fig. 3a, b), we used 
TTC staining to observe the brain infarction area, and the 
results showed that MCAO + CRF rats had the highest brain 
infarction rate among all groups, and the infarction was sup-
pressed by cilostazol and aspirin treatment (P < 0.01). In 
addition, MCAO + CRF rats had more neuronal injury, as 
demonstrated by the Nissl staining, compared to that of 
the sham rats (Fig. 3c, d, P < 0.01). Cilostazol and aspi-
rin groups had a higher survival of nerve cells than that 
observed in rats of the MCAO + CRF group (Fig. 3c, d, 
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Fig. 2  Cilostazol alleviated brain injury and exert a neuroprotective 
effect in rats with MCAO combined with CRF. a mNSS score was 
used to evaluate the severe of the neurofunction in each group of 
rats, n = 8; b The percentage of water content in brain was used to 
assess the brain edema in each group of rats, n = 3; c, d The dynamic 
blood flow value of the wound in each group of rats after mod-
eling and 7 days post-treatment was measured using a laser doppler 
blood flow meter, n = 3; e, f Evans Blue staining and the indicator of 

extravasation was used to assess the permeability of the BBB, n = 3; 
g, h Immunofluorescence was used to stain occluding and ZO-1 in 
rats’ brain respectively and the fluorescence intensity of them were 
recorded in each group (magnification, × 400, scale bar: 50  μm), 
n = 3; ##P < 0.01 versus sham group. $P < 0.05, $$P < 0.01 versus 
MCAO + CRF group. (Note: mNSS: Modified Neurological Sever-
ity Score; ZO-1: zonula occludens-1, MCAO + CRF: middle cerebral 
artery occlusion + chronic renal failure rats)
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Fig. 3  Cilostazol alleviated brain injury and exert a neuroprotective 
effect in rats with MCAO combined with CRF. a, b The TTC stain-
ing was applied to calculate the infarction rate in rats, n = 3. c, d The 
histomorphology of in brain cortex in rats was observed by Nissl 
staining (magnification × 200, scale bar: 100 μm; magnification × 400, 
scale bar: 50  μm), and the survival nerve cells in each group were 

calculated, n = 3. e The content of eNOS, TNF-α, IL-6, IL-1β in 
brain were tested by ELISA kit, n = 8. ##P < 0.01 versus sham group. 
$P < 0.05, $$P < 0.01 versus MCAO + CRF group. (Note: TTC: triphe-
nyltetrazolium chloride; BBB: blood brain barrier; eNOS: endothelial 
nitric oxide synthase, MCAO + CRF: middle cerebral artery occlu-
sion + chronic renal failure rats)
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P < 0.01). Furthermore, we used the ELISA kits to test for 
pro-inflammatory factors (Fig. 3e). The results revealed that 
the expression levels of eNOS, TNF-α, IL-6, and IL-1β were 
higher in MCAO + CRF rats than in sham rats. Cilostazol 
and aspirin groups showed a decrease in the above expres-
sions compared to the MCAO + CRF group (P < 0.01).

Cilostazol reduced cell apoptosis and autophagy 
and improved angiogenesis in the brain tissues 
of rats with MCAO combined with CRF

Immunohistochemical staining was used to measure CD31, 
VEGF, and Caspase 3 proteins expression, and we found 
that cilostazol- and aspirin-treated rats had higher CD31 and 
VEGF expressions in the brain and kidney than those of 
MCAO + CRF rats (Fig. 4a, b, P < 0.05 and P < 0.01, respec-
tively). Furthermore, the expression of caspase 3 was higher 
in the brain of the MCAO + CRF rats than in the sham rats; 
this expression level was reversed by cilostazol and aspi-
rin treatment (Fig. 5a, P < 0.05 and P < 0.01, respectively). 
In addition, the western blotting results confirmed that the 
MCAO + CRF group had higher expression of caspase 3 and 
BAX but lower expression of Bcl-2 than those of the sham 
group, and cilostazol and aspirin treatment caused oppo-
site effects (Fig. 5b, P < 0.05 and P < 0.01, respectively). 
As shown in Fig. 5c, the percentage of TUNEL-positive 
cells was higher in the MCAO + CRF group than in the 
sham group; this percentage was reduced after cilostazol 
and aspirin treatment (P < 0.01). The results of the LC3 
immunofluorescence staining of the brain were comparable 
among the groups (Fig. 5d, P < 0.05 and P < 0.01). In addi-
tion, western blotting showed that the expression of LC3 
and Beclin1 increased, whereas p62 expression decreased in 
the MCAO + CRF group than in the sham group. This effect 
was reversed by cilostazol and aspirin treatment (Fig. 5e; 
P < 0.05 and P < 0.01, respectively).

Cilostazol prompted the JAK/STAT3/mTOR pathway 
in the brain tissues of rats with MCAO combined 
with CRF

As shown in Fig. 6a, qRT-PCR was used to test the expres-
sion of VEGF and vascular endothelial growth factor 
receptor 2 (VEGFR2), and the results showed that VEGF 
decreased in the MCAO + CRF group and was enhanced 
in the cilostazol and aspirin groups (P < 0.05 and P < 0.01, 
respectively). However, VEGFR2 expression were not 

different among the groups (Fig. 6a). As shown in Fig. 6b, 
e, the expression of VEGFR2 in cilostazol and aspirin 
groups was higher than that in the MCAO + CRF group 
(P < 0.05 and P < 0.01, respectively). In addition, the p-JAK, 
p-STAT3, and p-mTOR expression in the MCAO + CRF 
group was lower than that in the sham group; this expression 
was improved by cilostazol and aspirin treatment (P < 0.05 
and P < 0.01, respectively). The expression levels of JAK, 
STAT3, and mTOR did not differ among the groups. Addi-
tionally, the expression of the hypoxia inducible factor-1α 
(HIF-1α) was intensified in the MCAO + CRF group com-
pared to the sham group; this expression was reduced by 
cilostazol and aspirin treatment (both P < 0.01).

Discussion

CRF is rather common (10–13% of the population), irre-
versible, progressive, and linked to an increased risk of 
cardiovascular disease [11]. According to the Atheroscle-
rosis Risk in Communities Research, a substantial stroke 
risk is found in CRF patients. Cilostazol is a potentially 
effective treatment for intimal hyperplasia occurring after 
endothelial damage and CRF [15]. In this study, we inves-
tigated the effect and mechanism of action of cilostazol in 
rats with CRF combined with stroke.

First, we successfully established a CRF combined with 
stroke model in rats, which was reflected in the renal patho-
logical changes observed in the H&E staining. Meanwhile, 
the 24 h urine protein content, urine volume, body weight, 
and BUN and Scr serum levels dramatically changed in 
the CRF model. These results indicated that nephrectomy 
induced kidney injury in CRF rats. In addition, cilostazol, 
to some extent, alleviated renal pathological changes and 
acted as an indicator of renal injury. Specifically, the 24 h 
urine protein content, urine volume, and BUN and Scr serum 
levels were restrained after treatment with cilostazol. Simul-
taneously, aspirin was used as a positive control. Consist-
ently, a study by Lee confirmed that cilostazol ameliorates 
albuminuria and restores serum albumin levels in rats with 
type 1 diabetes [16].

Oxidative stress and chronic inflammation are known to 
contribute to the CRF development, which has been linked 
to oxidative stress markers such as SOD, oxidized low-den-
sity lipoprotein (LDL), homocysteine, and GSH [17, 18]. 
In our study, the expression of MDA, SOD, and GSH in the 
kidney and NO and ET-1 in the serum were altered in the 
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Fig. 4  Cilostazol improved angiogenesis in the brain tissues of rats 
with MCAO combined with CRF. a, b The positive expression of the 
CD31 and VEGF in brain was stained by immunohistochemistry, and 
the average of the density of the CD31 and VEGF was represented as 
graphs (magnification × 200, scale bar: 100 μm; magnification × 400, 
scale bar: 50  μm), n = 3. c, d The positive expression of the CD31 
and VEGF in kidney was stained by immunohistochemistry, and the 
average of the density of the CD31 and VEGF was represented as 
graphs (magnification × 200, scale bar: 100 μm; magnification × 400, 
scale bar: 50  μm), n = 3. #P < 0.05 versus sham group. $P < 0.05, 
$$P < 0.01 versus MCAO + CRF group. (Note: VEGF: vascular 
endothelial growth factor; MCAO + CRF: middle cerebral artery 
occlusion + chronic renal failure rats).

◂

CRF model. Similarly, elevated blood levels of pro-inflam-
matory molecules such as IL-6, TNF-α, osteocalcin, and 
fibroblast growth factor have been reported in CRF patients 
[19]. As expected, cilostazol treatment ameliorated CRF-
induced inflammation and oxidative stress in the kidneys 
and serum. A study has verified that cilostazol restrained 
amikacin-induced nephrotoxicity in rats by reducing the lev-
els of oxidation parameters, including MDA, GSH, SOD, 
and a significant reduction of inflammatory mediators such 
as TNF-α, IL-6 expression in the kidney tissue [20].

A slight decline in renal function is associated with 
some degree of peripheral and central nervous system 
(CNS) complication [21–24]. Therefore, we established 
an MCAO model based on CRF rats to simulate stroke 
complications. The success of the model was confirmed 
by neurobehavioral scores, CBF, cerebral water content, 
TTC, and Nissl staining, which indicated that the brain 
was infarcted and impaired, accompanied with the destruc-
tion of BBB after MCAO surgery in CRF rats. The BBB is 
compromised in the early stages of CRF owing to oxida-
tive stress and low-grade inflammation, which also encour-
ages the infiltration of white blood cells and admission of 
uremic toxins into the CNS [23]. By reducing endothelial 
inflammation and apoptotic death, cilostazol pretreat-
ment protects against cold hepatic ischemia–reperfusion 

injury [25]. In our study, oxidative stress, inflammatory 
cytokines, and BBB-related junction proteins in brain 
tissues were significantly altered in the MCAO + CRF 
group. EB staining showed that BBB integrity was dam-
aged; however, the condition was improved after cilostazol 
intervention. Cilostazol protects brain tissue cells from 
apoptosis and autophagy. A previous study using primary 
rat brain capillary endothelial cells, and the protective 
effect of cilostazol on the barrier activities of BBB-related 
endothelial cells [26] indicated that cilostazol exerted a 
protective effect against stroke after CRF injury.

Cilostazol stimulates angiogenesis in a rat model of 
myocardial ischemia–reperfusion injury by increasing the 
number of new blood vessels and VEGF expression [27]. 
In our study, the expression of VEGF and VEGFR2 was 
enhanced after cilostazol treatment. According to previous 
studies, JAK and STAT3 are sufficient to shield the myo-
cardium from apoptosis [28]. The JAK/STAT3 pathway is 
a crucial signaling pathway involved in several physiologi-
cal processes, including apoptosis and inflammation [29]. 
Additionally, we discovered that cilostazol suppressed 
HIF-1α while greatly increasing the phosphorylation of 
JAK/STAT3/mTOR proteins. Therefore, our findings 
reveal a novel signaling pathway involving JAK/STAT3/
mTOR, in which cilostazol protects against kidney and 
brain injuries. However, because our animal model had 
both brain and kidney injuries, we should further explore 
more phases of the disease, i.e., the acute and recovery 
phases, to have an overall observation.

In summary, cilostazol exerted a protective effect on the 
brain and kidney function in rats with MCAO combined 
with CRF, specifically against vascular injury, oxidative 
stress, cell apoptosis, cell autophagy, and inflammatory 
response. This effect may be related to the upregulation of 
JAK/STAT3/mTOR pathway. This study provides a basis 
for further clinical and experimental studies on cilostazol 
treatment for CRF combined with stroke.
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Fig. 5  Cilostazol reduced cell apoptosis and autophagy in the brain 
tissues of rats with MCAO combined with CRF. a The positive 
expressions of Caspase 3 of the brain tissues in rats were examined by 
immunohistochemistry (magnification × 200, scale bar: 100 μm; mag-
nification × 400, scale bar: 50 μm), n = 3; b Western bolt was used to 
evaluate the expression of the Bcl-2, BAX and Caspase 3 protein in 
brain of rats in each group, n = 3; c The percentage of the TUNEL-
positive cells in the brain tissues was recorded by TUNEL staining, 

n = 3; d Immunofluorescence was used to stain LC3 in brain tissues 
of rats in each group, n = 3; e Western bolt was used to evaluate the 
expression of the LC3, Beclin 1 and p62 proteins in brain of rats in 
each group, n = 3; ##P < 0.01 versus sham group. $P < 0.05, $$P < 0.01 
versus MCAO + CRF group. (Note: Bcl-2: B-cell lymphoma-2, BAX: 
Bcl-2-associated X; MCAO + CRF: middle cerebral artery occlu-
sion + chronic renal failure rats)
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Fig. 6  Cilostazol prompted the JAK/STAT3/mTOR pathway in the 
brain tissues of rats with MCAO combined with CRF. a qRT-PCR 
was used to test the level of the VEGF and VEFGR2 in brain tissues, 
n = 3; b–e Western bolt was used to evaluate the expression of the 
VEGF, VEFGR2, JAK1, p-JAK1, STAT3, p-STAT3, HIF-1α, mTOR, 
p-mTOR in brain of rats in each group, n = 3; ##P < 0.01 versus sham 
group. $P < 0.05, $$P < 0.01 versus MCAO + CRF group. (Note: qRT-

PCR: quantitative real-time PCR; VEGF: vascular endothelial growth 
factor; VEFGR2: vascular endothelial growth factor receptor 2; 
MCAO + CRF: middle cerebral artery occlusion + chronic renal fail-
ure rats, JAK: Janus Kinase; STAT3: signal transducer and activator 
of transcription 3; mTOR: mammalian target of rapamycin; HIF-1α: 
hypoxia inducible factor-1α)
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