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Abstract
The SARS-CoV-2 virus, caused a novel emerged coronavirus disease, is growing rapidly worldwide. Few studies have evalu-
ated the efficacy and safety of Chloroquine (CQ), an old antimalarial drug, and Hydroxychloroquine (HCQ) in the treatment 
of COVID-19 infection. HCQ is derived from CQ by adding a hydroxyl group into it and is a less toxic derivative of CQ for 
the treatment of COVID-19 infection because it is more soluble. This article summarizes pharmacokinetic properties and 
toxicity considerations for CQ and HCQ, drug interactions, and their potential efficacy against COVID-19. The authors also 
look at the biochemistry changes and clinical uses of CQ and HCQ, and supportive treatments following toxicity occurs. It 
was believed that CQ and HCQ may provide few benefits to COVID-19 patients. A number of factors should be considered 
to keep the drug safe, such as dose, in vivo animal toxicological findings, and gathering of metabolites in plasma and/or 
tissues. The main conclusion of this review is that CQ and HCQ with considered to their ADMET properties has major 
shortcomings and fully irresponsible.
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Introduction

In late 2019, the first case of a novel pneumonia caused by 
a previously unknown pathogen was appeared in China [1]. 
On 12 January 2020, the World Health Organization (WHO) 
named this virus as SARS-CoV-2 as the cause of 2019 novel 
coronavirus infectious disease (COVID-19) [2, 3]. COVID-
19 could be dangerous, especially for the old persons [4]. 

According to the WHO, as of August, 16, 2020, there are 
21,294,845 confirmed cases and 761,779 deaths [5]. The 
virus binds to epithelial cells of the nasal cavity and repli-
cates, and ACE2 is the main receptor for COVID-19 [6]. The 
number of CD8 + and CD4 + T cells in the peripheral blood 
of COVID-19-infected patients is significantly decreased. 
Acute respiratory distress syndrome (ARDS) is the common 
immunopathological event and main death cause of COVID-
19 [7, 8]. Cytokine storm is one of the main mechanisms 
for ARDS, which cause multiple organ failure, and finally 
lead to death in severe cases of multiple organ COVID-19 
infection [7].

In 2003, at the time of the SARS-associated coronavirus 
epidemic [9], several drugs had been evaluated to assess 
their effectiveness on this virus; one of them is chloroquine 
(CQ) [10]. These findings have been forgotten, because of 
the disappearance of SARS for reasons that are neither clear 
nor explained [11]. Also, studies showed the in vitro activ-
ity of CQ against COVID-19 [12]. CQ and Hydroxychloro-
quine (HCQ) are both being considered for the treatment of 
COVID-19 [13].

CQ is an aminoquinolone derivative first developed for 
the treatment of malaria within the 1940s [14]. It was a 
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first-line drug for the prophylaxis and treatment of malaria 
until the development of newer antimalarial drugs like 
mefloquine, artemisinin, and pyrimethamine [15, 16]. CQ 
is also may apply to treat extra-intestinal amebiasis, systemic 
lupus erythematosus (SLE), and rheumatoid arthritis (RA) 
[17, 18]. HCQ is the other 4-aminoquinoline derivatives 
antimalarial drug synthesized in 1946 and is derived from 
CQ by adding a hydroxyl group into it [19]. This change 
makes HCQ more soluble and safer than CQ [20, 21]. It was 
used to treat rheumatic diseases such as juvenile idiopathic 
arthritis (JIA), SLE, RA, and Sjogren’s syndrome [18].

HCQ and CQ are relatively safe, and the most common 
side effects include dermatological changes, pruritus, gastro-
intestinal symptoms and that can occur in up to 10% of the 
patients. The most severe side effects include cardiotoxicity, 
neuromyopathy of proximal muscles, and irreversible retin-
opathy which have low incidence [22, 23]. Pharmacokinetic 
and pharmacodynamic properties of HCQ are similar to that 
of CQ [24]. Due to low therapeutic index and pharmacologi-
cal activities of its metabolites, assessment of CQ pharma-
cokinetic is necessary for its optimal clinical use [25].

Therefore, in the face of relevance of HCQ and CQ in 
COVID-19 pandemic, we discuss here the pharmacokinetic 
properties and toxicity considerations and mechanisms of 
CQ obtained from clinical use of this drug in different dis-
eases. These should be considered when using HCQ and CQ 
for treating COVID-19-associated pneumonia.

Clinical uses

Antimalarial drugs such as the phosphate and sulfate salts 
of CQ have been used in the treatment and prevention of 
malaria [26]. Through CQ anti-histaminic activity in human, 
it can produce anti-inflammatory effects [27]. The in vitro 
antiviral activity of HCQ and CQ is that they could affect 
the growth of many different viruses such as SARS coro-
navirus [28], enterovirus EV-A71[29], Zika virus [30] and 
influenza A H5N1[31]. In a nonhuman primate model of 
CHIKV infection, CQ exacerbated severe fever and delayed 
the cellular immune response, caused an insufficient viral 
clearance [32]. CQ could be used for the treatment of infec-
tions caused by viruses requiring an acidic pH for infectivity 
[33]. CQ has been utilized in the therapy of HIV infection 
[34] and is additionally used in the medical care of human 
chronic hepatitis C [35].

Some facts have been reported on the efficacy of CQ 
in the treatment and prevention of pneumonia caused by 
COVID-19 at different levels of severity. Gao et al. [36] 
revealed that CQ phosphate is good in controlling the treat-
ment by prohibiting the aggravation of pneumonia, upgrad-
ing lung imaging findings, developing a virus negative con-
version, and reducing the disease course.

Mechanism

CQ has broad-spectrum activity against a range of viral, 
fungal, and bacterial infections [37–40]. In in vitro study, 
CQ has antiviral activity against RNA viruses [41]. CQ 
can interfere with viral particles that bind to their cellular 
cell surface receptor. It can inhibit quinone reductase 2 
[42] that are participated within the biosynthesis of sialic 
acids [43]. The broad antiviral spectrum of this drug may 
be because of interference of CQ with sialic acid biosyn-
thesis. Sialic acids are present on cell transmembrane pro-
teins as important components of ligand recognition [44]. 
So it interferes with the fusion process of SARS virus [44]. 
The virus use cell surface receptor ACE2, and CQ inhibit-
ing COVID-19 binding to target cell by interfering with 
glycosylation of ACE2 receptor. SARS-CoV upregulated 
the ACE2 expression in lung tissue thus viruses’ replica-
tion and outbreak may increase [45]. By interfering with 
the pH-dependent endosome-mediated viral entry of envel-
oped viruses through alkalization of endosomes CQ can 
impress another stage of virus replication [46–48]. Entry 
into the endosome could be necessary for the viral genome 
to be released into the cytoplasm of infected host cells 
[49]. But how changes in pH could affect the integrity 
of viral genome is unclear [50]. It can also interfere with 
the post-translational modification of viral proteins [51, 
52]. So that, by interfering with proteolytic processing of 
the M protein, it could alter virion assembly and budding 
[13]. Also CQ and HCQ inhibit autophagy by preventing 
the fusion of the autophagosome with the lysosome and 
deacidifying the lysosome and they have shown efficacy 
against many different types of viruses [53] including 
SARS-CoV-2 [54–56].

Through regulation of pro-inflammatory cytokines and 
cell signaling, CQ can affect the immune system [57]. 
One of the effects of CQ on the immune system is the 
enhancement of human cytotoxic CD8 + T and increasing 
the cross-presentation of viral antigens [50]. In addition, it 
can effect on regulation of pro-inflammatory cytokines and 
cell signaling by inhibiting the Toll-like receptor pathway 
[58]. Also CQ can inhibit virus replication through inhi-
bition of p38 mitogen-activated protein kinase (MAPK) 
(Fig. 1) [59–61].

Absorption

The absorption of CQ was rapid and almost completed; 
so that it’s oral tablets have a bioavailability of 67–114% 
[62]. HCQ like CQ is also fully and quickly absorbed 
after oral administration [63]. When administered with 
food, the mean plasma peak concentrations were signifi-
cantly higher but the time to reach the peak concentration 
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was similar. However, the effect of food seems to be sub-
jected to large inter-individual variability. Also, the bio-
availability of CQ is significantly enhanced when given 
along with food [64].

Distribution

Apparent volume of distribution (Vd) of CQ is 200–800 
L/kg when calculated from plasma concentrations, and 
protein binding of CQ is about 60% [65–68]. CQ and 
HCQ accumulate in different tissues in varying concen-
trations [69]. High concentrations of these drugs are 
found in the cardiac tissue, lungs, kidneys, liver, skeletal 
muscle, skin, and eye [69]. Due to significant interindi-
vidual pharmacokinetic variability, after administration of 
standardized doses, variable tissue concentrations might 
be found [25].

Metabolism

Following single or multiple doses there are determined 
interindividual variations in the pharmacokinetics of CQ 
[67, 70–74]. About 30–50% of an administered dose of CQ 
is transformed by the liver [73]. After administration, CQ 
is rapidly dealkylated into the pharmacologically active 
metabolites such as bisdesethylchloroquine (BDCQ), 
desethylchloroquine (DCQ), and 7-chloro-4-aminoquin-
oline [64, 65, 70, 72] (Fig. 2). These metabolites have 
been involved in CQ-induced heart failure (cardiotoxic-
ity) [74, 75]. It has been demonstrated that BDCQ is more 
cardiotoxic than CQ [75]. Like CQ, DCQ was showed to 
be active against the Zika virus [76]. Nonetheless, no data 
are available on the performance of DCQ in COVID-19 
[77]. Studies show the minimal contribution of BDCQ 
formation in the metabolism of CQ in comparison with 
DCQ [77].

Fig. 1  Possible effects of CQ 
on the SARS-CoV-2 replica-
tion cycle. (1) CQ interferes 
with glycosylation of ACE-2 
receptor. Also it could limit the 
biosynthesis of sialic acids that 
may be required for cell surface 
binding of SARS-CoV-2. (2) 
CQ interferes with the pH-
dependent-endosome-mediated 
viral entry of enveloped 
viruses through alkalization of 
endosome. So, it can inhibit 
fusion of the viral envelope and 
phospholipidic membrane of the 
endosomes resulting in release 
of the viral genome into the cell 
cytoplasm. (3) CQ interferes 
with post translational modi-
fication of viral proteins. CQ 
also interferes with proteolytic 
processing of the M protein (M 
protein is interacting with the 
other proteins of the virus, and 
plays an essential role during 
viral assembly) and alter virion 
assembly and budding. (4) CQ 
inhibits the activation (phospho-
rylation) of p38 MAPK. Also, it 
may inhibit virus replication
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CQ and its active metabolites have long half-lives [74]. 
CQ can be N-dealkylated via the cytochrome P450 (CYP) 
enzyme system [69, 78]. Individual CYP data indicate that 
CYP2D6 is a main isoform of CQ metabolism, but differ-
ent results showing a relatively weak relationship between 
the CYP2D6 and the formation of DCQ [63]. When the 
inhibition of the DCQ formation was estimated, by CYP-
selective inhibitors, ketoconazole (a potent inhibitor of 
CYP3A4/5) and quercetin (a CYP2C8 inhibitor) showed 
a significant inhibition [61, 78]. The other CYP-selective 
chemical inhibitors showed weak inhibition of the metabo-
lism of CQ [61]. So that, the CYP3A4/5 and CYP2C8 are 
the main enzymes in the CQ N-deethylation into DCQ 
[61]. Also, HCQ is a substrate of CYP2D6, CYP3A4/5, 
and CYP2C8 and it leads to CYP2D6 inhibition [79]. 
It has been indicated that CQ-induced pruritus may be 
related to the activity of CYP2C8 and CYP3A4/5 [61]. 
Nonetheless, CYP2D6 and CYP3As are 2 major isoforms 
involved in and affected by the metabolism of CQ [80].

Excretion

Both CQ and HCQ concentrations decrease slowly with 
elimination half-life of twenty to sixty days. Despite its long 
half-life, CQ has a relatively high total clearance, 0.7–1 L/h/
kg from plasma and approximating 0.10 L/h/kg from whole 

blood. Its excretion is ≥ 50% as unchanged drug in urine, 
where acidification of urine will increase its elimination 
[66, 73]. Kidneys excreted 50% of CQ, therefore it is sug-
gested that lowered doses must be consumed in patients with 
renal impairment. More than 50 mg/day of CQ should not 
be used in patients with a glomerular filtration rate (GFR) 
of 10–20 mL/min [81].

Toxicity

1) Nervous toxicity
  CQ and HCQ are extremely toxic in overdose. Over-

dose of CQ and HCQ causes rapid onset of central nerv-
ous system toxicity (coma and seizures). CQ and HCQ 
can cause psychosis, mania, depression, paranoia, cata-
tonia, hallucinations, suicidal ideation agitation, insom-
nia and confusion during acute or chronic use [82–85].

2) Cardiovascular toxicity
  Overdose of CQ and HCQ causes cardiovascu-

lar collapse by inhibiting of cardiac potassium and 
sodium channels, which cause QRS widening and QT 
interval prolongation and hypokalemia resulting from 
intracellular shifting [86]. CQ induced cardiac toxic-
ity indicates itself in the form of cardiomyopathy and 
conduction disorders [87]. Therapeutic doses cause QT 
interval prolongation, T wave inversion, and ST-segment 

Fig. 2  Chemical structures of chloroquine and of its three main metabolites, bisdesethylchloroquine, desethylchloroquine and 7-chloro4-amino-
quinoline (ChemDraw)
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depression in resting electrocardiogram [88]. Clinical 
manifestations of congestive heart failure usually occur 
years after a third degree AV block [89]. Also, cardio-
vascular collapse and hypotension can occur about 2 h 
after overdose [89]. In patients that use CQ for LE and 
RA, because of increasing number of CQ cardiotoxic-
ity cases at low doses and difficult diagnosis, an elec-
trocardiogram (ECG) should be included with annual 
ophthalmological check-ups [90–92]. Furthermore, if 
CQ-induced cardiotoxicity detected early through ECG, 
it can improve the patient outcome [93].

3) Ocular toxicity
  Ocular toxicity is caused by HCQ and CQ to vari-

ous parts of the eye such as the retina, ciliary body, and 
cornea. High daily dosage and long exposure associated 
with toxic retinopathy, and it was the main side effect 
of CQ and HCQ therapy [94]. HCQ and CQ bind to the 
melanin of the retinal pigment epithelium (RPE), inhib-
ited RPE lysosome activity and reduced phagocytosis 
of shed photoreceptor that all resulted in clinical degen-
eration of RPE cells [95]. Early retinal toxicity may be 
asymptomatic but patients with advanced stage of toxic-
ity may complain of paracentral scotomas or color vision 
changes. While toxic retinopathy is usually irreversible, 
early detection is the best treatment [96]. The risk of 
retinal toxicity can be kept at low levels through paying 
attention to appropriate dosing and risk factors such as 
tamoxifen usage and renal disease [97]. Corneal deposits 
observed within the first 2 or 3 weeks of HCQ and CQ 
treatment due to binding of drug to cellular lipids and 
deposition of the drug in the basal epithelial layer of 
the cornea. Haloes and glare are symptoms of corneal 
deposits, and keratopathy appear most often with CQ 
than HCQ, and these symptoms may also vanish with 
dose reduction [94].

4) Enhance oxidative stress
  Some studies have indicated that CQ inhibited 

CYP450 activity and lead to inhibition of the mito-
chondrial functions, and oxidative stress, particularly in 
erythrocytes [98, 99]. CQ could enhance oxidative stress 
by diminishing non-enzymatic and enzymatic antioxi-
dant defenses, and causing DNA damage in brain, liver, 
and kidney of rats [100]. Studies have demonstrated that 
ROS (reactive oxygen species) arising, a metabolite of 
CQ, mediated oxidative stress and affect antioxidant 
enzymes in humans [101, 102].

5) Serum abnormalities
  Omotosho et al. [103, 104] studied on hematology 

and serum biochemistry of male Wistar rats treated with 
CQ and showed that there is a significant decrease in 
a type of infection-fighting WBC called neutrophils in 
CQ treated group. CQ can suppress the cytokine storm 

in COVID-19 patients through inhibiting the production 
and release of IFN γ, IL-1, IL-6, and TNF α.

  There was a considerable increase in serum creatinine 
level in the CQ treated group, which is usually seen in 
renal functional impairment. AST and ALT levels were 
significantly elevated, which shows that therapy with 
CQ has the potential of causing skeletal muscle, eryth-
rocytes, hepatocytes, or necrosis of the myocardial cells 
that may be related to duration and dose of the therapy 
[104]. Also hypokalemia is present in overdose [105].

6) Other toxicities

Other toxicities of CQ include affecting on serum glucose 
levels and caused hypoglycemia through increasing insulin 
sensitivity, reducing insulin clearance, and enhancing pan-
creatic insulin release [106, 107], interfering with hemo-
globin (Hb) clearance pathway, thereby inhibiting heme 
detoxification, heme–iron recycling, and causing anemia 
[108], neuromuscular effects such as myopathy [93], and 
extrapyramidal syndrome [109]. CQ and HCQ interfere with 
ventricular repolarization, causing QT prolongation, which 
could increase the risk of torsades de pointes [110]. Pruritus, 
headaches, dizziness, and gastrointestinal upset are common, 
non-ocular side effects of CQ and HCQ and discoloration 
of hair, skin, nails, and the oral cavity are the other rare 
side effects [111]. Hearing loss is typically bilateral, mild to 
moderate, and may be accompanied by vestibular dysfunc-
tion including vertigo [112].

Due to lower level of tissue accumulation, HCQ has fewer 
side effects than CQ [58]. While CQ exerts different severe 
side events on fetal development, HCQ is strongly suggested 
for pregnant patients with an autoimmune disorder because 
it prevents the event of development of inborn heart block 
because of a possible inhibitory effect of production of type I 
interferon (INF-I) [113, 114]. The outbreak of SARS-CoV-2 
has engaged several pregnant females at high risk of infec-
tion; HCQ, instead of CQ, must be considered as a suitable 
therapy for these patients, given its safety profile in preg-
nancy condition [115, 116]. Some examples of the toxicity/
side effects of CQ and HCQ in human, animal and cell lines 
are listed in Table 1.

Possible drug interaction

Pharmacodynamic drug–drug interactions (DDIs) occur 
when there is an antagonistic or synergistic effect of two 
or more drugs at a specific receptor site. Combinations of 
HCQ and CQ with other QT-prolonging medications, such 
as anti-emetics (e.g. ondansetron, droperidol, haloperidol, 
and promethazine), amiodarone, tricyclic antidepressants, 
quinolones, methadone, and numerous others may elevate 
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the risk of developing a toxic arrhythmia such as ventricular 
fibrillation [117]. Combination of azithromycin and HCQ, 
one of the regimens which used for treatment of COVID-19, 
could theoretically increase the risk of torsades de pointes 
[118].

CQ and HCQ are both inhibitors of P-glycoprotein (P-gp) 
transport system, which is an efflux transporter, found in 
blood–brain barrier endothelial cells and gut luminal [119]. 
HCQ can increase digoxin levels and both of CQ and HCQ 
increasing cyclosporine levels, so they are attributable to 
HCQ and CQ inhibiting P-gp activity, insofar as both digoxin 
and cyclosporine are well-known substrates of this cellular 
pump. Additionally, there are several reports of the interac-
tion of CQ and cyclosporine [120]. There is an increased 
risk for a more severe and more frequent COVID-19 clinical 
course for immunologically-challenged patients, so, clini-
cians should be especially aware of these DDIs [117].

The main family of enzymes which is responsible for 
oxidative metabolism of many drugs is CYP P450 system. 
The main metabolic enzymes of CQ and HCQ include 

CYP3A4/5, CYP2C8, and CYP2D6 [61, 77]. Polymor-
phisms in these enzymes can alter disposition [121].

Cimetidine is a CYP450 pan-inhibitor. Cimetidine leads 
enzymatic inhibition after several days. Then, HCQ/cimeti-
dine and/or CQ/cimetidine co-administration results in pos-
sible increases in both HCQ and CQ levels [122]. Clinicians 
should also be aware that co-administration of CYP 3A4/5 
inhibitors (ciprofloxacin, most macrolide antibiotics, azole 
anti-fungal agents, diltiazem, and verapamil, among others) 
and CYP2C8 inhibitors (clopidogrel and gemfibrozil) may 
increase the blood levels of HCQ and CQ [117]. The ability 
of CQ and HCQ to inhibit CYP2D6 might reduce the anal-
gesic efficacy of opioids which are metabolised by CYP2D6 
[123, 124].

Also, the co-administration of CQ with other drugs or 
substances that are substrates of the CYP enzymes (e.g., 
paracetamol and ethanol) can result in adverse effects to the 
kidney [125–127].

Table 1  The toxicity/side effects of CQ and HCQ in human, animal and cell line

AKT protein kinase B, APO E apolipoprotein E, APE-19 a human retinal pigment epithelial cell line, cAMP cyclic adenosine monophosphate, 
CQ chloroquine, HCQ hydroxychloroquine, NPs nanoparticles, PKA protein kinase A, ROS reactive oxygen species

Drug Concentration/
dose

Route of adminis-
tration

Duration Species/cell line Toxicity/side 
effects

Mechanism of 
toxicity

References

CQ 25, 50, 75,100 and 
500 μM

– 12, 24 and 48 h Schwann cells Inner glial cells 
toxicity

Ascorbic acid 
prevented CQ-
induced ROS 
production and 
CQ toxicity

[113]

CQ 10–250 μM – 24 h ARPE-19 Cells Retinotoxicity Activation of 
autophagy and 
causing cell 
death

[114]

CQ 50 mg/kg/day Oral 4 weeks Rat Kidney toxicity Inhibiting cAMP/
PKA/AKT sign-
aling pathway

[115]

CQ 32 mg/kg Subcutaneously 1 day Female Mice Pruritus side effect Green synthesized 
ZnO NPs affect 
the CQ-induced 
pruritus

[116]

CQ 50 mg/kg/day Oral 2 months Rat Cardio toxicity Via up-regulation 
of Rho-kinase1

[117]

CQ a) 100–300 g
b) > 300 g
c) Patients who 

never received 
chloroquine

Oral 3 months Human Macular toxicity Depends on APO 
E genotype

[118]

CQ and HCQ a) CQ: 250–
500 mg/day

b) HCQ: 200–
400 mg/day

Oral 2 months Human Ocular toxicity HCQ has a sig-
nificantly lower 
risk of causing 
ocular toxicity 
than CQ for its 
more solubility

[119]



143Toxicol Res. (2022) 38:137–148 

1 3

Supportive treatment and recommendation

Current advanced ocular examination methods like optical 
coherence tomography (OCT), multifocal electroretinog-
raphy, and fundus autofluorescence have allowed earlier 
recognition of retinopathy, often before patients experience 
symptoms [128, 129]. Once definitive symptoms of retinopa-
thy are known, the choice to prevent medication should be 
created in conjunction with the patient and the prescribing 
physician to make sure that medical risks are controlled. The 
patient will be advised about the danger of further visual loss 
counting on the severity of the retinopathy [130]. Patients 
with age-related maculopathy or macular dystrophies gener-
ally are suggested to continue intake of zeaxanthin and lutein 
and keep away from sun exposure [94, 95]. The most neces-
sary changes in practice guidelines include dose calculation 
supported total weight, dose reduction after long-term use, 
and intense screening with techniques including OCT after 
5 years [23].

Use of general treatments including gastric lavage, fluid 
resuscitation, sodium bicarbonate, or single-or multiple-dose 
activated charcoal, were important elements in the treatment 
of CQ overdose. Administrations of diazepam and epineph-
rine and mechanical ventilation have been proposed as 
important factors in CQ poisoning situations [131, 132]. In 
addition, intravenous thiopentone administration could be 
effective in the treatment of cardiac arrest of patients poi-
soned with CQ [133]. Also, administration of hypertonic 
saline or sodium bicarbonate could be beneficial for sub-
stantial QRS widening and arrhythmia [134]. Studies sug-
gest that free radical scavenging and antioxidant activity of 
lipoate may prevent the CQ-induced lipid peroxidation. So, 
lipoic acid can protect renal tissue from CQ-induced oxida-
tive damage [135].

Stopping the drug, using supplemental glucose or paren-
teral dextrose, and administration of octreotide (50–100 µg 
subcutaneously Queryor intravenously every 8 h) are sup-
portive treatments for management of hypoglycemia [136].

Resolution of neuropsychiatric effects is predicated upon 
stopping the drug, although symptoms might not resolve 
immediately [137].

Conclusion

For decades, CQ has been applied for the treatment of 
various diseases and disorders. CQ and HCQ are antima-
larial, antiamoebic, immunomodulatory, and potential 
broad-spectrum antiviral drugs. Studies have suggested CQ 
and HCQ can interfere with ACE2 receptors glycosylation 
of the coronavirus, increase endosomal pH, interfere with 
post translational modification of viral proteins, inhibit 

the activation of p38 MAPK thus inhibiting viral fusion, 
decreasing viral load, altering virion assembly and inhibiting 
virus replication.

Being aware of ADMET considerations for CQ and also 
biochemical and hematological changes through taking CQ 
in patients could help us to reach optimal efficacy and lower 
toxicity. Through the study of pharmacokinetics of CQ, 
we observed that CQ and HCQ have rapid gastrointestinal 
absorption [62], a high volume of distribution, long half-
lives [66, 73] and pharmacologically active metabolites [73].

COVID-19 has rapidly increased in epidemic scale 
since its first appearance in Wuhan, China, in December 
2019[138]. There are limited data to support the use of CQ 
and HCQ for COVID-19. The drugs have some in vitro 
activity against several viruses, including influenza and 
coronaviruses, but previous randomized trials in patients 
with influenza have been negative [139, 140]. One small 
nonrandomized study from France showed benefit of CQ 
and HCQ, and a follow-up study still lacked a control group 
[141, 142]. Another randomized and small study in patients 
with mild to moderate COVID-19 from China showed no 
difference in recovery rates [143]. Other clinical trials from 
China have already shown promising results for using these 
drugs in COVID-19 [144, 145]. In a small sample size study, 
HCQ therapy was significantly associated with a reduction 
in viral load and worked synergistically with azithromycin 
against COVID-19. In an in vitro study, a similar synergis-
tic effect was obtained in combination therapy of HCQ and 
azithromycin, as both reduce the acidity of the lysosome 
to impair viral replication. On the other hand, a high risk 
of HCQ’s QT prolongation was observed with concurrent 
treatment with azithromycin [141, 146, 147]. Reports of 
adverse events have increased and several countries report-
ing poisonings. Common side effects of CQ and HCQ are 
retinopathy, mental status changes, and hypoglycemia. In 
patients receiving these drugs, clinical screening for visual 
and mental disturbances, glucose levels, hepatic and renal 
function, and monitoring of heart rate and the QT interval 
are recommended. Recent studies have shown that CQ can 
decrease in neutrophil count [104] and it could be beneficial 
in COVID-19 related neutrophilia. COVID-19 can increase 
secretion of hyperglycemic hormones, and cause hyperglyce-
mia but CQ may decrease serum glucose levels as an adverse 
effect, so CQ can control COVID-19 induced hyperglyce-
mia. However, there was a significant increase in ALT and 
AST levels in the CQ treated group, like COVID-19 patients, 
so the potential of causing necrosis of the hepatocytes, skel-
etal muscle, erythrocytes, myocardial cells or in CQ treated 
COVID-19 patients may increase. Also, elevated serum cre-
atinine in CQ treated group especially in COVID-19 patients 
could increase renal functional impairment. With the multi-
ple DDIs that are currently known, use of CQ and HCQ with 
other drug therapy requires consideration for patient safety. 
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While further clinical trials are required to provide concrete 
evidence on the use of these agents in COVID-19.
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