Skip to main content

Advertisement

Log in

The toxic effects of spent crankcase oil exposures; systematic review and meta-analysis

  • Review Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

The study sought to execute a systematic review and meta-analysis to describe the toxicological implications associated with exposures of humans and laboratory animals to Spent Crankcase Oil (SCO). Databases like PubMed, Scopus, Science Direct, Google Scholar, Web of Science, and PlosOne were searched systematically for all data that assessed the effects of SCO on humans and animals. For each parameter involved in the meta-analysis (those with extractable data), mean, standard deviation, the sample size was extracted for both exposure groups and control. This was then used to compute the standardized mean difference (SMD). Statistical analysis and forest plots were done with RevMan 5.3 software. Twenty-eight (28) studies fulfilled the pre-specified criteria for eligibility. Fourteen (14) of the studies were used for the meta-analysis, which included a total of 1243 subjects from different human epidemiological occupational exposure studies and animal experimental studies. The meta-analysis revealed that SCO exposure caused a significant reduction in the body weight of animals (n = 5, SMD; − 1.2; 95% CI; (− 1.78, − 0.67), p = 0.0001, I2 = 22%), and in the red blood cell count (n = 5, SMD; − 1.28; 95% CI; (− 2.18, − 0.38, p = 0.02); I2 = 78%) and haemoglobin (n = 4, SMD; − 1.12, 95% CI; (− 2.71, 0.46); p = 0.16; I2 = 89%) in animal models. While there was a significant elevation of the aspartate amino transferase (AST) (n = 6, SMD; 0.76; 95%CI; (0.41, 1.11), p = 0.0001, I2 = 89%), alkaline phosphatase (ALP) (n = 5, SMD; 1.92; 95% CI; (0.02, 3.83), p = 0.05, I2 = 92%), and creatinine (n = 4, SMD = 1.56; 95% CI; (0.05, 3.07), p = 0.04, I2 = 90%) concentrations in comparison to the control. On the other hand, there was a non-significant effect on the alanine amino transferase (ALT) (n = 5, SMD; 1.13; 95% CI; (− 0.37, 2.62); p = 0.14; I2 = 92%), urea (n = 4, SMD; 1.23; 95% CI; (− 1.18, 3.65), p = 0.32, I2 = 94%), packed cell volume (PCV) (n = 5, SMD; 0.10; 95% CI; (− 0.36, 0.56), p = 0.67; I2 = 47%); and the haemoglobin (n = 6; SMD; − 0.74; 95% CI; (− 1.73, 0.26), p = 0.15; I2 = 89%) concentrations. Oxidative stress, heavy metals bioaccumulation, immunotoxic, genotoxic, and carcinogenic effects were also in the list of findings. The toxicological implications associated with SCO exposure points to the need for immediate establishment of policies that regulate the disposal of spent crankcase oil in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Bap:

Benzo(a)pyrene

CAT:

Catalase

DNA:

Deoxyribonucleic acid

GSH:

Glutathione

HSCs:

Haematopoietic stem cells

Hb:

Haemoglobin

MDA:

Malondialdehyde

MCV:

Mean corpuscular volume

MCH:

Mean corpuscular haemoglobin

MCHC:

Mean corpuscular haemoglobin concentration

PAHs:

Polycyclic aromatic hydrocarbons

PLT:

Platelets

ROS:

Reactive oxygen species

RBC:

Red blood cells

SOD:

Superoxide dismutase

SCO:

Spent crankcase oil

WSF:

Water soluble fractions

WBC:

White blood cells

References

  1. Sridhar MKC, Jegede A, Oluborode UZ (2017) Waste management policy and implementation in Nigeria. Natl J Adv Res 3:23–35 ISSN:2455-216X

    Google Scholar 

  2. ATSDR (1997) Toxicological Profile for Used Mineral-Based Crankcase Oil. Agency for Toxic Substances and Disease Registry. Atlanta, Georgia. https://www.atsdr.cdc.gov/toxprofiles/tp102.html

  3. Vazquez-Duhalt R (1989) The purpose of this review is to gain an insight into the production and fate of used crankcase oil; the effects of dispersion and spillage of used motor oil on the soil and aquatic environment; and the environmental importance of waste oil combustion. Sci Total Environ 79:1–23. https://doi.org/10.1016/0048-9697(89)90049-1

    Article  CAS  PubMed  Google Scholar 

  4. Ingram AJ, Scammells DV, May K (1994) An investigation of the main mutagenic components of a carcinogenic oil by fractionation and testing in the modified Ames assay. J Appl Toxicol 14:173–179. https://doi.org/10.1002/jat.2550140305

    Article  CAS  PubMed  Google Scholar 

  5. Van Donkelaar P (1990) Environmental effects of crankcase-and mixed-lubrication. Sci Total Environ 92:165–179

    Article  Google Scholar 

  6. Government of Canada. (1994) Priority Substances List Assessment Report on Waste Crankcase oils (WCOs). Ottawa, Ontario. p 39

  7. Ekeh FN, Ekechukwu NE, Atama CI, Atta IC (2010) Haematology profile of albino rats given feed and water contaminated with varied concentrations of used engine oil. Animal Res Int 7:1229–1235. https://doi.org/10.1016/0048-9697(90)90328-R

    Article  Google Scholar 

  8. Ezeonu CS, Onwurah INE, Oje OA (2012) Comprehensive perspectives in bioremediation of crude oil contaminated environments. Ed by Dr Laura Romero-Zerón Introd to Enhanc Oil Recover Process bioremediation oil-contaminated sites InTech. Croatia. pp 143–184 ISBN: 978-953-51-0629-6

  9. Brinkman DW, Gottlieb M, Koelbel K (1982) Used motor oil passes environmental problem. Oil Gas J 80(32):163–165

  10. Lale OO, Ezekwe IC, Lale NES (2014) Effect of spent lubricating oil pollution on some Chemical parameters and the growth of Cowpeas (Vigna unguiculata Walpers). Res Environ 4:173–179. https://doi.org/10.5923/j.re.20140403.06

    Article  Google Scholar 

  11. Ssempebwa JC, Carpenter DO, Yilmaz B et al (2004) Waste crankcase oil: an environmental contaminant with potential to modulate estrogenic responses. J Toxicol Environ Health Part A 67:1081–1094. https://doi.org/10.1080/15287390490452308

    Article  CAS  Google Scholar 

  12. Hoffman DJ, Eastin WC, Gay ML (1982) Embryotoxic and biochemical effects of waste crankcase oil on birds’ eggs. Toxicol Appl Pharmacol 63:230–241. https://doi.org/10.1016/0041-008X(82)90045-X

    Article  CAS  PubMed  Google Scholar 

  13. Blakley BR, Brockman RP (1976) Lead toxicosis in cattle in Saskatchewan. Can Vet J 17:16 PMID:1260635

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oswktter GD, Buck WMB, Lloyd WE (1973) Epidemiology of lead poisoning in cattle–a five-year study in Iowa. Clin Toxicol 6:367–376. https://doi.org/10.3109/15563657308990537

    Article  Google Scholar 

  15. Sas B (1989) Secondary copper deficiency in cattle caused by molybdenum contamination of fodder: a case history. Vet Hum Toxicol 31:29–33 PMID: 2711604

    CAS  PubMed  Google Scholar 

  16. Patrick-Iwuanyanwu K, Ogwe GO, Onwuka FC (2010) The hepatotoxic effects of the water-soluble fraction of spent lubricating oil in Wistar albino rats. Internet J Toxicol 7(2):1–17

  17. Hooijmans CR, Rovers MM, De Vries RBM et al (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takeshima N, Sozu T, Tajika A et al (2014) Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med Res Methodol 14:30. https://doi.org/10.1186/1471-2288-14-30

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hassan R, Ismail NJ, Ismail AR et al (2014) A lab scale study on the effects of waste lubricating oil to red Tilapia Oreochromis sp. Juveniles Borneo J Resour Sci Technol 4:1–8

    Google Scholar 

  20. Ayoola SO, Akaeze CO (2012a) Genotoxic Evaluation and Toxicity of Spent Engine Oil on Clarias gariepinus. Res J Environ Toxicol 6(4):133-141. https://doi.org/10.3923/rjet.2012.133.141

  21. Babalola SO, Ajani OS, Oni AA (2016) Semen characteristics and testicular biometry of Swiss albino mice treated with water soluble fractions of spent engine oil. Int J Biol Chem Sci 10:211. https://doi.org/10.4314/ijbcs.v10i1.16

    Article  CAS  Google Scholar 

  22. Babalola SO, Oni AA (2018) Hepatotoxic and renal effects of the water soluble fractions of spent engine oil in Swiss albino mice. Int J Biol Chem Sci 12:650. https://doi.org/10.4314/ijbcs.v12i2.3

    Article  CAS  Google Scholar 

  23. Olalekan Wasiu A, Ojo OA, Ogundipe OO (2015) Some adverse effects of used engine oil (Common waste pollutant) on reproduction of male sprague dawley rats. Maced J Med Sci 3:46–51. https://doi.org/10.3889/oamjms.2015.035

    Article  Google Scholar 

  24. Mckee RH, Plutnick RT (1989) Carcinogenic potential of gasoline and diesel engine oils. Toxicol Sci 13:545–553. https://doi.org/10.1093/toxsci/13.3.545

    Article  CAS  Google Scholar 

  25. Ochiogu IS, Ihedioha JI, Anya KO, Nwoye JCS (2009) The reproductive performance of albino rats given drinking water contaminated with varied low percentages of used engine lubricating oil. In: Proceedings of the 34th. Annual conference of the Nigerian society for animal production (NSAP). pp 167–171

  26. Grimmer G, Dettbarn G, Brune H et al (1982) Quantification of the carcinogenic effect of polycyclic aromatic hydrocarbons in used engine oil by topical application onto the skin of mice. Int Arch Occup Environ Health 50:95–100. https://doi.org/10.1007/BF00432496

    Article  CAS  PubMed  Google Scholar 

  27. Ihedioha JI, Iwuogo MU, Ihedioha TE (2009) Haematological and clinical chemistry findings associated with sub-acute contamination of drinking water with varied low percentages of used engine oil. Comp Clin Path 18:169–176. https://doi.org/10.1007/s00580-008-0778-3

    Article  Google Scholar 

  28. Lefcort H, Hancock KA, Maur KM, Rostal DC (1997) The effects of used motor oil, silt, and the water mold Saprolegnia parasitica on the growth and survival of mole salamanders (genus Ambystoma). Arch Environ Contam Toxicol 32:383–388. https://doi.org/10.1007/s002449900200

    Article  CAS  PubMed  Google Scholar 

  29. Mohamed SH, EL-Leithy EMM, Ghandour RA, Galal MK (2019) Molecular, biochemical and histopathological studies on the ameliorative effect of vitamin C on the renal and muscle tissues of Nile tilapia fish (Oreochromis niloticus) affected by the usage of engine oil. Aquac Res 50:3357–3368. https://doi.org/10.1111/are.14294

    Article  CAS  Google Scholar 

  30. Ahmed YH, Bashir DW, Abdel-moneam DA et al (2019) Histopathological, biochemical and molecular studies on the toxic effect of used engine oil on the health status of Oreochromis niloticus. Acta Histochem 121:563–574. https://doi.org/10.1016/j.acthis.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  31. Khanna S, Dogra RKS (2003) Immunotoxicological effects of dermal application of scum of waste crankcase oil in mice. Indian J Exp Biol 41:592–597 PMID:15266905

    PubMed  Google Scholar 

  32. Ogali RE, Osuji LC, Ayodele O (2007) Acute toxicity of the water-soluble fraction of spent lubricating oil on the african catfish Clarias gariepinus. Chem Biodivers 4:2755–2765. https://doi.org/10.1002/cbdv.200790224

    Article  CAS  PubMed  Google Scholar 

  33. Arise RO, Tella AC, Akintola AA et al (2012) Toxicity evaluation of crankcase oil in rats. Excli J 11:219–225. https://doi.org/10.17877/DE290R-5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Upshall C, Payne JF, Hellou J (1993) Induction of mfo enzymes and production of bile metabolites in rainbow trout (Oncorhynchus mykiss) exposed to waste crankcase oil. Environ Toxicol Chem 12:2105–2112. https://doi.org/10.1002/etc.5620121118

    Article  CAS  Google Scholar 

  35. Eastin WC, Hoffman DJ, O’Leary CT (1983) Lead accumulation and depression of δ-aminolevulinic acid dehydratase (ALAD) in young birds fed automotive waste oil. Arch Environ Contam Toxicol 12:31–35. https://doi.org/10.1007/BF01054998

    Article  CAS  PubMed  Google Scholar 

  36. Byrne CJ, Calder JA (1977) Effect of the water-soluble fractions of crude, refined and waste oils on the embryonic and larval stages of the quahog clam Mercenaria sp. Mar Biol 40:225–231. https://doi.org/10.1007/BF00390878

    Article  CAS  Google Scholar 

  37. Schoket B, Hewer A, Grover PL, Phillips DH (1989) 32P-postlabelling analysis of DNA adducts in the skin of mice treated with petrol and diesel engine lubricating oils and exhaust condensates. Carcinogenesis 10:1485–1490. https://doi.org/10.1093/carcin/10.8.1485

    Article  CAS  PubMed  Google Scholar 

  38. Akintunde WO, Olugbenga OA, Olufemi OO (2015) Some adverse effects of used engine oil (common waste pollutant) on reproduction of male Sprague Dawley Rats. Open Access Maced J Med Sci 3:46. https://doi.org/10.3889/oamjms.2015.035

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baldwin RW, Cunningham GJ, Pratt D (1964) Carcinogenic action of motor engine oil additives. Br J Cancer 18:503. https://doi.org/10.1038/bjc.1964.56

    Article  CAS  PubMed Central  Google Scholar 

  40. Clonfero E, Nardini B, Marchioro M et al (1996) Mutagenicity and contents of polycyclic aromatic hydrocarbons in used and recycled motor oils. Mutat Res Genet Toxicol 368:283–291. https://doi.org/10.1016/S0165-1218(96)90070-1

    Article  CAS  Google Scholar 

  41. Granella M, Clonfero E (1993) Urinary excretion of 1-pyrenol in automotive repair workers. Int Arch Occup Environ Health 65:241–245. https://doi.org/10.1007/BF00381197

    Article  CAS  PubMed  Google Scholar 

  42. Hewstone RK (1994) Health, safety and environmental aspects of used crankcase lubricating oils. Sci Total Environ 156:255–268. https://doi.org/10.1016/0048-9697(94)90192-9

    Article  CAS  PubMed  Google Scholar 

  43. Obini U, Okafor C, Afiukwa J (2013) Determination of levels of polycyclic aromatic hydrocarbons in soil contaminated with spent motor Engine oil in Abakaliki Auto-Mechanic Village. J Appl Sci Environ Manag. https://doi.org/10.4314/jasem.v17i2.1

    Article  Google Scholar 

  44. Kawamura K, Ng LL, Kaplan IR (1985) Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils. Environ Sci Technol 19:1082–1086. https://doi.org/10.1021/es00141a010

    Article  CAS  PubMed  Google Scholar 

  45. Clausen J, Rastogi S (1977) Heavy metal pollution among autoworkers. I. Lead. Occup Environ Med 34:208–215. https://doi.org/10.1136/oem.34.3.208

    Article  CAS  Google Scholar 

  46. Lu ST, Kaplan IR (2008) Characterization of motor lubricating oils and their oil-water partition. Environ Forensics 9:295–309. https://doi.org/10.1080/15275920802119441

    Article  CAS  Google Scholar 

  47. Sibomana I, Good NA, Hellman PT et al (2019) Acute dermal toxicity study of new, used and laboratory aged aircraft engine oils. Toxicol Reports 6:1246–1252. https://doi.org/10.1016/j.toxrep.2019.11.010

    Article  CAS  Google Scholar 

  48. Omorowa F, Agu K, Okolie N et al (2015) Influence of spent-engine oil on hematology, renal and liver status of auto-mechanics of Benin-City, Nigeria. J Appl Sci Environ Manag 19:383. https://doi.org/10.4314/jasem.v19i3.6

    Article  CAS  Google Scholar 

  49. Cvengroš J, Liptaj T, Prónayová N (2017) Study of polyaromatic hydrocarbons in current used motor oils. Int J Petrochemical Sci Eng. https://doi.org/10.15406/ipcse.2017.02.00060

    Article  Google Scholar 

  50. Pruell RJ, Quinn JG (1988) Accumulation of polycyclic aromatic hydrocarbons in crankcase oil. Environ Pollut 49:89–97. https://doi.org/10.1016/0269-7491(88)90242-4

    Article  CAS  PubMed  Google Scholar 

  51. Rauckyte T, Hargreaves DJ, Pawlak Z (2006) Determination of heavy metals and volatile aromatic compounds in used engine oils and sludges. Fuel 85:481–485. https://doi.org/10.1016/j.fuel.2005.08.004

    Article  CAS  Google Scholar 

  52. Payne JF, Martins I, Rahimtula A (1978) Crankcase oils: are they a major mutagenic burden in the aquatic environment? Science 200:329–330. https://doi.org/10.1126/science.635591

    Article  CAS  Google Scholar 

  53. Vemot EH, Drew RT, Kane ML (1990) Acute toxicologic evaluation of used motor oil. J Am Coll Toxicol 1:147. https://doi.org/10.1177/109158189000100270

    Article  Google Scholar 

  54. Orisakwe OE, Akumka DD, Njan AA et al (2005) Hepatotoxic and haematological effects of Nigerian Bonny light crude oil in male albino rats. Toxicol Environ Chem 87:215–221. https://doi.org/10.1080/102772240400026823

    Article  CAS  Google Scholar 

  55. Omoregie E, Ufodike BC (2000) Effects of water soluble fractions of crude oil on growth of the Nile tilapia, Oreochromis niloticus (L.). Bull Environ Contam Toxicol 64:601–605. https://doi.org/10.1007/s001280000045

    Article  CAS  PubMed  Google Scholar 

  56. Moles A, Rice SD (1983) Effects of crude oil and naphthalene on growth, caloric content, and fat content of pink salmon juveniles in seawater. Trans Am Fish Soc 112:205–211. https://doi.org/10.1577/1548-8659(1983)112-205:EOCOAN-2.0.CO;2

    Article  CAS  Google Scholar 

  57. Smith RL, Cameron JA (1979) Effect of water soluble fraction of Prudhoe Bay crude oil on embryonic development of Pacific herring. Trans Am Fish Soc 108:70–75. https://doi.org/10.1577/1548-8659(1979)108-70:EOWSFO-2.0.CO;2

    Article  Google Scholar 

  58. Brocksen RW, Bailey HT (1973) Respiratory response of juvenile chinook salmon and striped bass exposed to benzene, a water-soluble component of crude oil. In: International oil spill conference. pp 783–791. https://doi.org/10.7901/2169-3358-1973-1-783

  59. Ofunne GC, Maduako AU, Ojinnaka CM (1990) High temperature oxidation stability of automotive crankcase oils and their base oils. Tribol Int 23:407–412

    Article  CAS  Google Scholar 

  60. Udofia U (2010) Acute toxicity of Qua Iboe light crude oil on a fresh water fish, Oreochromis niloticus. Glob J Pure Appl Sci 16(3):295-302. https://doi.org/10.4314/gjpas.v16i3.62854

  61. Awoyinka OA, Atulomah E, Atulomah NOS (2011) Comparative effects of crude oil on juveniles Clarias gariepinus and Clarias anguillaris. Int J Fish Aquac 3:239–243. https://doi.org/10.5897/IJFA11.052

    Article  CAS  Google Scholar 

  62. Kayode SJ, Chidimma UI, Alwell EE et al (2014) Response of some antioxidant parameters in post juveniles of Clarias gariepinus after exposure to Nigerian crude oil (Forcados, Bonny Light and Qua-Iboe). Pak J Biol Sci 17:1225–1230. https://doi.org/10.3923/pjbs.2014.1255.1230

    Article  CAS  PubMed  Google Scholar 

  63. Ng SP, Conklin DJ, Bhatnagar A et al (2009) Prenatal exposure to cigarette smoke induces diet-and sex-dependent dyslipidemia and weight gain in adult murine offspring. Environ Health Perspect 117:1042–1048. https://doi.org/10.1289/ehp.0800193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnston DE (1999) Special considerations in interpreting liver function tests. Am Fam Physician 59:2223. PMID:10221307

    CAS  PubMed  Google Scholar 

  65. Drotman RB, Lawhorn GT (1978) Serum enzymes as indicators of chemically induced liver damage. Drug Chem Toxicol 1:163–171. https://doi.org/10.3109/01480547809034433

    Article  CAS  PubMed  Google Scholar 

  66. Subramoniam A, Pushpangadan P et al (1999) Development of phytomedicines for liver disease. Indian J Pharmacol 31:166 ISSN:0253-7613

    Google Scholar 

  67. Muriel P, Garciapiña T, Perez-Alvarez V, Mourelle M (1992) Silymarin protects against paracetamol-induced lipid peroxidation and liver damage. J Appl Toxicol 12:439–442. https://doi.org/10.1002/jat.2550120613

    Article  CAS  PubMed  Google Scholar 

  68. Alimba CG, Bakare AA, Aina OO (2012) Liver and kidney dysfunction in wistar rats exposed to municipal landfill leachate. Resour Environ 2:150–163. https://doi.org/10.5923/j.re.2012.0204.04

    Article  Google Scholar 

  69. Zaki MS, Mostafa SO, Fawzi OM et al (2009) Clinicopathological, biochemical and microbiological change on grey mullet exposed to cadmium chloride. Am J Agric Environ Sci 5:20–23 ISSN:1818-6769

    CAS  Google Scholar 

  70. Bender ML, Frantzen M, Vieweg I et al (2016) Effects of chronic dietary petroleum exposure on reproductive development in polar cod (Boreogadus saida). Aquat Toxicol 180:196–208. https://doi.org/10.1016/j.aquatox.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  71. Aravindakshan J, Paquet V, Gregory M et al (2004) Consequences of xenoestrogen exposure on male reproductive function in spottail shiners (Notropis hudsonius). Toxicol Sci 78:156–165. https://doi.org/10.1093/toxsci/kfh042.Epub

    Article  CAS  PubMed  Google Scholar 

  72. Naiho AO, Aloamaka EO, Nwochi CN (2014) Effect of zidovudine on the liver function of adult albino wistar rats. Int J Basic Appl Innov Res 3:95–99 ISSN:2315-5388

    Google Scholar 

  73. Desurmont M (1983) Carcinogenic effect of metals. La Sem des Hop organe fonde par l’Association d’enseignement Med des Hop Paris 59:2097–2099 PMID 6312579

    CAS  Google Scholar 

  74. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539. https://doi.org/10.2174/1568026013394831

    Article  CAS  PubMed  Google Scholar 

  75. Goyer RA, Clarkson TW (1996) Toxic effects of metals. Casarett Doull’s Toxicol basic Sci poisons 5:696–698

    Google Scholar 

  76. Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201–213 PMID:10983887

    CAS  PubMed  Google Scholar 

  77. Valko M, Cj R, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  78. Akanji MA, Olagoke OA, Oloyede OB (1993) Effect of chronic consumption of metabisulphite on the integrity of the rat kidney cellular system. Toxicology 81:173–179. https://doi.org/10.1016/0300-483X(93)90010-P

    Article  CAS  PubMed  Google Scholar 

  79. Achuba FI (2018) Modulation of crude oil induced alteration of oxidative stress indices in rat by red palm oil. J Appl Sci Environ Manag 22:929–932. https://doi.org/10.4314/jasem.v22i6.15

    Article  CAS  Google Scholar 

  80. Incardona JP (2017) Molecular mechanisms of crude oil developmental toxicity in fish. Arch Environ Contam Toxicol 73:19–32. https://doi.org/10.1007/s00244-017-0381-1

    Article  CAS  PubMed  Google Scholar 

  81. Jankowski M, Dyszkiewicz-Konwińska M, Magas M, et al (2018) Haematopoiesis: living in the shadow of stem cell differentiation. J Biol Regul Homeost Agents 32(1):1-6. PMID:29504358

  82. Gulati K, Ray A (2009) Immunotoxicity. Handbook of toxicology of chemical warfare agents. Elsevier, Amsterdam, pp 595–609

    Chapter  Google Scholar 

  83. Ali F, El-Shehawi AM, Seehy MA (2008) Micronucleus test in fish genome: a sensitive monitor for aquatic pollution. African J Biotechnol 7(5): 606-612. ISSN: 1684-5315

  84. Ramesh A, Archibong AE, Niaz MS (2010) Ovarian susceptibility to benzo [a] pyrene: tissue burden of metabolites and DNA adducts in F-344 rats. J Toxicol Environ Heal Part A 73:1611–1625. https://doi.org/10.1080/15287394-2010.514225

    Article  CAS  Google Scholar 

  85. Rengarajan T, Rajendran P, Nandakumar N et al (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5:182–189. https://doi.org/10.1016/s2221-1691(15)30003-4

    Article  CAS  Google Scholar 

  86. Kamal A, Malik RN (2012) Hematological evidence of occupational exposure to chemicals and other factors among auto-repair workers in Rawalpindi, Pakistan. Osong public Heal Res Perspect 3:229–238. https://doi.org/10.1016/j.phrp.2012.10.003

    Article  Google Scholar 

  87. Karahalil B, Burgaz S, Ficsek G, Karakaya AE (1998) Biological monitoring of young workers exposed to polycyclic aromatic hydrocarbons in engine repair workshops. Mutat Res Toxicol Environ Mutagen 412:261–269. https://doi.org/10.1016/s1383-5718(97)00197-6

    Article  CAS  Google Scholar 

  88. Makpo JK (2018) Effects of water-soluble fractions of used crankcase oil on some physiological parameters of the Nile Tilapia (Oreochromis Niloticus). University of Jos, Jos. http://hdl.handle.net/123456789/2733

    Google Scholar 

  89. Luo T, Shen M, Zhou J et al (2019) Chronic exposure to low doses of Pb induces hepatotoxicity at the physiological, biochemical, and transcriptomic levels of mice. Environ Toxicol 34:521–529. https://doi.org/10.1002/tox.22706

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work did not receive sponsorship from any organization.

Author information

Authors and Affiliations

Authors

Contributions

BG led the development of the search strategy, conducted the search, and participated in the data extraction, writing of the introduction, methods and discussion. AF participated in data extraction, led the writing of the discussion session, as well as the statistical analysis. PIK participated in data extraction, data synthesis and writing of the discussion session. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Grace Eserophe Bekibele.

Ethics declarations

Conflict of interest

The authors declare that there was no conflict of interest in the execution of this research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 229 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekibele, G.E., Anacletus, F.C. & Patrick-Iwuanyanwu, K.C. The toxic effects of spent crankcase oil exposures; systematic review and meta-analysis. Toxicol Res. 38, 113–135 (2022). https://doi.org/10.1007/s43188-021-00093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-021-00093-2

Keywords

Navigation