Skip to main content

Advertisement

Log in

The effect of streptozotocin induced diabetes on sperm function: a closer look at AGEs, RAGEs, MAPKs and activation of the apoptotic pathway

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

This study was designed to (1) investigate the possible mechanisms through which diabetes-induced advanced glycation end products (AGEs) and receptor for AGEs (RAGE) activation can affect male reproductive function; and (2) corroborate the interaction of previously established independent pathways. Male albino Wistar rats (14-weeks old) weighing 250–300 g received either a single intraperitoneal injection of streptozotocin (30 mg/kg or 60 mg/kg), represented as STZ30 or STZ60 respectively, or citrate buffer (control). Diabetes mellitus (DM) was confirmed if plasma glucose levels were ≥ 14 mmol/L after 1 week. Animals were sacrificed after 8 weeks of treatment by an overdose of sodium pentobarbital (160 mg/kg body weight). The testes and epididymides were harvested. The testes were used for biochemical and Western blot analysis, while sperm was retrieved from the epididymis and analysed with computer-aided sperm analysis. The blood glucose levels of STZ60 animals were above the cut-off point and hence these animals were regarded as diabetic. Diabetic animals presented with a non-significant increase in AGE and RAGE expression. Diabetic animals showed a significant increase in the expression of cleaved caspase 3 compared to control (p < 0.001), and these animals also presented with an increase in the expression of JNK (p < 0.05), PARP (p = 0.059) and p38 MAPK (p = 0.1). Diabetic animals also displayed decreased catalase activity accompanied by a non-significant increase in malondialdehyde levels. Additionally, there was a significant decrease in the percentage of progressively motile spermatozoa (p < 0.05) in diabetic animals. This study has shed some light on the interplay between DM, AGE, RAGE and mitogen-activated protein kinase signalling in the testes of diabetic rats, which can result in altered sperm function and contribute to male infertility. However, more studies are needed to better understand this complicated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation end product

BCA:

Bicinchoninic acid

CASA:

Computer aided sperm analysis

DM:

Diabetes mellitus

DNA:

Deoxyribonucleic acid

GnRH:

Gonadotropin-releasing hormone

ICAM-1:

Intercellular adhesion molecule-1

JNK:

C-Jun N-terminal kinase

MAPKs:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein-1

MDA:

Malondialdehyde

Nf-kB:

Nuclear factor kappa B

OS:

Oxidative stress

PARP:

Poly adenosine diphosphate-ribose polymerase

PUFA:

Polyunsaturated fatty acid

RAGE:

Receptor for advanced glycation end product

ROS:

Reactive oxygen species

SF:

Supplementary figure

STZ:

Streptozotocin

TBA:

Thiobarbituric acid

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. World Heallth Organization (2010) Diabetes fact sheet. NMH Fact Sheet February 2010

  2. World Health Organization (2014) Global report on diabetes, vol 58, pp 1–88. https://www.who.int/about/licensing/copyright_form/index.html. Accessed 19 Aug 2019

  3. Jacky B, Laura B, John AC, Nygren KG (2007) International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22:1506–1512

    Google Scholar 

  4. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Vanderpoel S (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Hum Reprod 24:2683–2687

    CAS  PubMed  Google Scholar 

  5. Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49:27–29

    CAS  PubMed  Google Scholar 

  6. Delfino M, Imbrogno N, Elia J, Capogreco F, Mazzilli F (2007) Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urol Nefrol 59:131–135

    CAS  PubMed  Google Scholar 

  7. Rehman K, Beshay E (2001) Diabetes and male sexual function. J Sex Reprod Med 1:29–33

    Google Scholar 

  8. Alves MG, Martins AD, Rato L, Moreira PI, Socorro S, Oliveira PF (2013) Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta Mol Basis Dis 1832:626–635. https://doi.org/10.1016/j.bbadis.2013.01.011

    Article  CAS  Google Scholar 

  9. Ballester J, Rigau T, Rodríguez-Gil JE, Muñoz MC, Domínguez J, Guinovart JJ (2004) Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl 25:706–719

    CAS  PubMed  Google Scholar 

  10. Maresch CC, Stute DC, Ludlow H, Hammes HP, de Kretser DM, Hedger MP, Linn T (2017) Hyperglycemia is associated with reduced testicular function and activin dysregulation in the Ins2Akita+/− mouse model of type 1 diabetes. Mol Cell Endocrinol 446:91–101. https://doi.org/10.1016/j.mce.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  11. Omolaoye TS, Skosana BT, du Plessis SS (2018) Diabetes mellitus-induction: effect of different streptozotocin doses on male reproductive parameters. Acta Histochem 120:103–109

    CAS  PubMed  Google Scholar 

  12. Jelodar G, Khaksar Z, Pourahmadi M (2010) Endocrine profile and testicular histomorphometry in neonatal rats of diabetic mothers. Vet Arh 80:421–430

    CAS  Google Scholar 

  13. Baccetti B, La Marca A, Piomboni P, Capitani S, Bruni E, Petraglia F, De Leo V (2002) Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality. Hum Reprod 17:2673–2677

    CAS  PubMed  Google Scholar 

  14. Jiang X, Zhang C, Xin Y, Huang Z, Tan Y, Huang Y, Wang Y, Feng W, Li X, Li W, Qu Y, Cai L (2013) Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model. Toxicol Lett 219:65–76. https://doi.org/10.1016/j.toxlet.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  15. Roessner C, Paasch U, Kratzsch J, Glander HJ, Grunewald S (2012) Sperm apoptosis signalling in diabetic men. Reprod Biomed 25:292–299

    Google Scholar 

  16. Du Plessis SS, Agarwal A, Halabi J, Tvrda E (2015) Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet 32:509–520

    PubMed  PubMed Central  Google Scholar 

  17. Mangoli E, Talebi AR, Anvari M, Pourentezari M (2013) Effects of experimentally-induced diabetes on sperm parameters and chromatin quality in mice. Iran J Reprod Med 11:53–60

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Song M, Yu S, Gao P, Yu Y, Wang H, Huang L (2010) Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol Cell Biochem 335:137–146

    CAS  PubMed  Google Scholar 

  19. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM (2005) Advanced glycation end products and RAGE: a common thread in ageing, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16–28

    Google Scholar 

  20. Li DX, Deng TZ, Lv J, Ke J (2014) Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts. Braz J Med Biol Res 47:1036–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoefen RJ, Berk BC (2002) The role of MAP kinases in endothelial activation. Vascul Pharmacol 38:271–273

    CAS  PubMed  Google Scholar 

  22. Mallidis C, Agbaje IM, Rogers DA, Glenn JV, Pringle R, Atkinson AB, Steger K, Stitt AW, McClure N (2009) Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl 32:295–305

    CAS  PubMed  Google Scholar 

  23. Committee for the Update of the Guide for the Care and Use of Laboratory Animals, National Research Council (2010) Guide for the care and use of laboratory animals, 8th edn. National Research Council, Washington

    Google Scholar 

  24. Oyeyipo IP, Maartens PJ, du Plessis SS (2015) Diet-induced obesity alters kinematics of rat spermatozoa. Asian Pac J Reprod 4:235–239. https://doi.org/10.1016/j.apjr.2015.06.008

    Article  Google Scholar 

  25. Bradford MM, Bradford MM (1976) A rapid and sensitive microgram quantities of protein utilizing the priciple of protein dye biding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  26. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A (2001) Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33:769–778

    CAS  PubMed  Google Scholar 

  27. Sexton WJ, Jarow JP (1997) Effect of diabetes mellitus upon male reproductive function. Urology 49:508–513

    CAS  PubMed  Google Scholar 

  28. Fedele D (2005) Therapy insight: sexual and bladder dysfunction associated with diabetes mellitus. Nat Clin Pract Urol 2:282

    PubMed  Google Scholar 

  29. Navarro-Casado L, Juncos-Tobarra MA, Cháfer-Rudilla M, Íñiguez De Onzoño L, Blázquez-Cabrera JA, Miralles-García JM (2010) Effect of experimental diabetes and STZ on male fertility capacity. Study in rats. J Androl 31:584–592

    CAS  PubMed  Google Scholar 

  30. Singh S, Malini T, Rengarajan S, Balasubramanian K (2009) Impact of experimental diabetes and insulin replacement on epididymal secretory products and sperm maturation in albino rats. J Cell Biochem 108:1094–1101

    CAS  PubMed  Google Scholar 

  31. Vikram A, Tripathi DN, Ramarao P, Jena GB (2008) Intervention of d-glucose ameliorates the toxicity of streptozotocin in accessory sex organs of rat. Toxicol Appl Pharmacol 226:84–93

    CAS  PubMed  Google Scholar 

  32. Bhattacharya SM, Ghosh M, Nandi N (2014) Diabetes mellitus and abnormalities in semen analysis. J Obstet Gynaecol Res 40:167–171

    CAS  PubMed  Google Scholar 

  33. Adaramoye OA, Lawal SO (2014) Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on the antioxidant, hormonal and spermatogenic indices of diabetic male rats. Andrologia 46:878–886

    CAS  PubMed  Google Scholar 

  34. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ricci G, Catizone A, Esposito R, Pisanti FA, Vietri MT, Galdieri M (2009) Diabetic rat testes: morphological and functional alterations. Andrologia 41:361–368

    CAS  PubMed  Google Scholar 

  36. Khaki A, Fathiazad F, Nouri M, Khaki AA, Maleki NA, Khamnei HJ, Ahmadi P (2010) Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phyther Res 24:1285–1291

    CAS  Google Scholar 

  37. Martín-Gallán P, Carrascosa A, Gussinyé M, Domínguez C (2003) Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34:1563–1574

    PubMed  Google Scholar 

  38. Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932–939

    CAS  PubMed  Google Scholar 

  39. Mayorga-Torres BJM, Camargo M, Cadavid P, du Plessis SS, Cardona-Maya WD (2017) Are oxidative stress markers associated with unexplained male infertility? Andrologia 49:e12659

    Google Scholar 

  40. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    CAS  PubMed  Google Scholar 

  41. Du Plessis SS, McAllister DA, Luu A, Savia J, Agarwal A, Lampiao F (2010) Effects of H2O2 exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia 42:206–210

    PubMed  Google Scholar 

  42. Mahfouz RZ, du Plessis SS, Aziz N, Sharma R, Sabanegh E, Agarwal A (2010) Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril 93:814–821. https://doi.org/10.1016/j.fertnstert.2008.10.068

    Article  CAS  PubMed  Google Scholar 

  43. Nicholl ID, Bucala R (1998) Advanced glycation endproducts and cigarette smoking. Cell Mol Biol (Noisy-le-grand) 44:1025–1033

    CAS  Google Scholar 

  44. Valencia JV, Weldon SC, Quinn D, Kiers GH, DeGroot J, TeKoppele JM, Hughes TE (2004) Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 324:68–78

    CAS  PubMed  Google Scholar 

  45. Chen S, Yin L, Xu Z, An FM, Liu AR, Wang Y, Yao WB, Gao XD (2016) Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis. Neurosci Lett 612:193–198. https://doi.org/10.1016/j.neulet.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  46. Mallidis C, Agbaje I, Rogers D, Glenn J, McCullough S, Atkinson AB, Steger K, Stitt A, McClure N (2007) Distribution of the receptor for advanced glycation end products in the human male reproductive tract: prevalence in men with diabetes mellitus. Hum Reprod 22:2169–2177

    CAS  PubMed  Google Scholar 

  47. Yang J, Zhu T, Liu X, Zhang L, Yang Y, Zhang J, Guo M (2015) Heat shock protein 70 protects rat peritoneal mesothelial cells from advanced glycation end-products-induced epithelial-to-mesenchymal transition through mitogen-activated protein kinases/extracellular signal-regulated kinases and transforming growth fact. Mol Med Rep 11:4473–4481

    CAS  PubMed  Google Scholar 

  48. Wu Q, Li S, Li X, Sui Y, Yang Y, Dong L, Xie B, Sun Z (2015) Inhibition of advanced glycation endproduct formation by lotus seedpod oligomeric procyanidins through RAGE-MAPK signaling and NF-κB activation in high-fat-diet rats. J Agric Food Chem 63:6989–6998

    CAS  PubMed  Google Scholar 

  49. Taguchi A, Blood DC, Del-Toro G, Canet A, Lee DC, Qu W, Tanjl N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360

    CAS  PubMed  Google Scholar 

  50. Ichijo H, Nishida E, Irie K, Dijke PT, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    CAS  PubMed  Google Scholar 

  51. Adhikary L, Chow F, Nikolic-Paterson DJ, Stambe C, Dowling J, Atkins RC, Tesch GH (2004) Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 47:1210–1222

    CAS  PubMed  Google Scholar 

  52. Farley N, Pedraza-Alva G, Serrano-Gomez D, Nagaleekar V, Aronshtam A, Krahl T, Thornton T, Rincón M (2006) p38 Mitogen-activated protein kinase mediates the Fas-induced mitochondrial death pathway in CD8+ T cells. Mol Cell Biol 26:2118–2129

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Taylor CA, Zheng Q, Liu Z, Thompson JE (2013) Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol Cancer 12:1–11

    Google Scholar 

  54. Park SJ, Kim IS (2005) The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells. Br J Pharmacol 146:506–513

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nys K, Van Laethem A, Michiels C, Rubio N, Piette JG, Garmyn M, Agostinis P (2010) A p38MAPK/HIF-1 pathway initiated by UVB irradiation is required to induce noxa and apoptosis of human keratinocytes. J Invest Dermatol 130:2269–2276. https://doi.org/10.1038/jid.2010.93

    Article  CAS  PubMed  Google Scholar 

  56. Metzler-Guillemain C, Grillo J-M, Mitchell MJ, Karsenty G, Saias-Magnan J, Streichemberger E, Perrin J, Malzac P (2012) Case report of apoptosis in testis of four AZFc-deleted patients: increased DNA fragmentation during meiosis, but decreased apoptotic markers in post-meiotic germ cells. Hum Reprod 27:1939–1945

    PubMed  Google Scholar 

  57. Manente L, Pecoraro S, Picillo E, Gargiulo U, Gargiulo P, De Luca A, Politano L (2015) Molecular evidence of apoptotic pathway activation in semen samples with high DNA fragmentation. Vivo (Brooklyn) 29:289–294

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Michelle Smit-van Schalkwyk and Dr. Shantal Windvogel for the generous donation of tissue samples and Harry Crossley Foundation for the research grant provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan S. Du Plessis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omolaoye, T.S., Du Plessis, S.S. The effect of streptozotocin induced diabetes on sperm function: a closer look at AGEs, RAGEs, MAPKs and activation of the apoptotic pathway. Toxicol Res. 37, 35–46 (2021). https://doi.org/10.1007/s43188-020-00040-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-020-00040-7

Keywords

Navigation