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Abstract
Purpose of review In this review, we briefly summarize the numerical methods commonly used for the nonlinear dynamic
analysis of soft robotic systems. The underlying mechanical principles as well as the geometrical treatment tailored for
soft robots are introduced with particular emphasis on one-dimensional models. Additionally, the review encompasses three-
dimensional frameworks, available simulation packages, and various types of interactionmodels, shedding light on the design,
actuation, motion control, and internal and external forces of soft robots.
Recent findings Reduced-order models can offer high efficiency in characterizing nonlinear deformations, allowing conve-
nient tailoring based on specific structural and material configurations. For pursuing high simulation accuracy and detailed
mechanics, the finite element method proves to be a valuable tool through numerous off-the-shelf platforms. Furthermore,
machine learning has emerged as a promising tool to effectively address the challenges within the mechanics community.
Summary Awide range of kinematic and dynamic numerical models is available for simulating the behaviors of soft robots,
offering exceptional adaptability to different geometries and structures based on existing modeling theories and numerical
solution algorithms. However, the trade-off between computational complexity and simulation accuracy remains a challenge
in achieving fast, accurate, and robust control of soft robots in complex environments.
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Introduction

Inspiration from the diverse creatures in nature has sparked
the emergence of numerous soft robots in recent years. These
robots, such as soft robotic octopuses, snakes, caterpillars,
birds and click beetles [1–5], exhibit remarkable flexibility
in locomotion, exceptional dexterity in manipulation, and
advanced adaptability to complicated environments. In con-
trast to conventional piece-wise rigid machines, soft robots
possess an infinite number of Degrees of Freedom (DOFs)
and inherent softness, which enables them to overcome the
limitations of confined space, offers enhanced dexterity, and
ensures safer interactions with humans.

Designing and fabricating a soft robot with particular
function requires meticulous consideration of numerous fac-
tors and issues. However, the current methods often involve
an iterative experimental trial and error processes, result-
ing in significant time costs, tedious assembly processes,
and substantial interference from the environment. In con-
trast, numerical simulation has served as an efficient tool to
guide the design, analysis, fabrication, and control of soft
robots [6].
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During the design phase, simulation performs as a valu-
able tool for visualizing the overall structure and analyzing
kinematics, including singularity, feasibility, and reachable
space range. This allows for adjustments, improvements, and
optimizations before the fabrication of real robots. Following
the fabrication of the robot, the numerical tool continues to be
utilized as a complementary verification since experiments
cannot cover all working conditions within a short period of
time, and, more importantly, subjecting the robot to extreme
environments may lead to damage or even complete failure.

Accurate simulation models that capture the dynamic
behavior of soft robots promote the realization of precise
and robust model-based controls [6]. They also enable the
application of deep learning based control methods, such as
deep reinforcement learning, by constructing virtual training
environments. Therefore, the precise and rapid modeling of
soft robotic dynamics holds great significance within the soft
robotics community.

Various mechanical theories and numerical solvers offer
the flexibility to develop customized kinematic and dynamic
models for soft robots. In the case of cable or tendon-
driven soft robots, geometric structures are often modeled
in a reduced-order fashion, such as the one-dimensional
(1D) slender rod model or the two-dimensional (2D) thin
shell framework, wherein the main components are retained
while trivial details are disregarded to enhance computa-
tional efficiency. However, for simulating complex structures
and exploring intricatemechanical details, three-dimensional
(3D) models need to be established and analyzed using
Finite Element Method (FEM) with readily available plat-
forms. The simulation process should also be incorporated
with the contact dynamics and external actuation. More-
over, Machine Learning (ML) techniques show promise as
modeling approaches that can complement or even replace
traditional mathematical models. Additionally, model-based
control has gained significant attention as an attractive topic,
given its robustness and high precision in controlling soft
robots.

Compared to theoretical modeling, numerical approaches
are widely embraced due to their advantages in terms of
computational cost, numerical robustness, and overall appli-
cability. Hence, this concise review primarily focuses on the
numerical simulation of soft robots. The review begins with
introducing various structural mechanics models, with par-
ticular attention given to reduced-order models (ROMs) in
“One-Dimensional Reduced-Order Models.” Subsequently,
a review of 3D models is provided in detail in “Three-
-Dimensional Models.” The review also explores the role
of ML techniques in soft robot simulation and delves into
the realm of model-based control, which is encompassed
in the “Machine Learning-Based Models.” The interaction
challenges are then addressed through discussions on fric-
tional contact, fluid-structure interaction, and interactions

with external fields or multi-physics phenomena in the
“Interaction Models.” Finally, the review concludes with a
summarizing “Conclusion.”

One-Dimensional Reduced-Order Models

The reduced-order models (ROMs) are a type of physical
model that reduces the computational complexity of a sys-
tem while maintaining acceptable prediction errors. This
reduction is achieved by simplifying the system’s structure,
boundary conditions, nonlinear mapping relations, and other
factors. It is important to note that ROMs should not be con-
fused with Model Order Reduction (MOR), which will be
discussed in the context of “Three-Dimensional Models.”

ROMs have gained widespread adoption due to their
ability to simulate key motions of simplified geometries.
Designers can conveniently develop their own ROMs using
existing mechanics theories. In the realm of soft robotics, the
1Dmechanicsmodel explores the highly nonlinear dynamics
of elastic bodies such as rods or beams. Typically, the model-
ing framework begins with discretizing the slender structure
into finite discrete segments. The equations of motion are
then established based on relevant balance laws, such as
energy conservation. Finally, the solution is obtained using
numerical treatment methods.

Planar BeamTheory

TheEuler-Bernoulli beam theory is a simple yet highly useful
theory that assumes the cross-section of the beam is infinitely
rigid within its own plane and remains plane and normal to
the deformed beam axis during deformation [10]. When a
distributed load q is applied to the beam with elastic modu-
lus E and second moment of beam’s cross-sectional area I ,
the relationship between the load and the induced deflection,
ω(x), can be expressed as d2

dx2
(E I d

2ω
dx2

) − q = 0 along with
a specified boundary condition [11].

The Euler-Bernoulli beam method is commonly used
to capture continuum bending deformations. In [12], a 3D
Euler-Bernoulli beam-based inverse dynamic model was
developed for a fluidic elastomeric actuator finger, which
served as the basis for deriving a modular dynamic model for
the Cable-Driven Soft Robot (CDSR) [13]. Figure1(a1) and
(b1) depict a classic soft robot that utilized linear beam the-
ory, Coulomb’s friction law, and simplified energy analysis to
establish the relationship between bending curvature, flexu-
ral rigidity, and air pressure [7]. By incorporating parametric
kinematic Pythagorean Hodograph curves and considering
external forces, static shape reconstruction and real-time con-
trol were achieved based on actuator inputs [12]. In control
problems, accounting for interactions with external forces is
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crucial. For example, a simplified solidmechanicsmodelwas
employed to capture the soft body deformation and investi-
gate the peeling-and-loading mechanism of an untethered
soft robot capable of climbing 3D surfaces, by controlling
externalmagnetic fields [14]. Although the discretizedmodel
with absolute or relative states used in this approach achieved
lower simulation accuracy compared to other general ROMs
approaches, it offered improved computational efficiency and
time savings [15]. When higher accuracy is desired for pre-
cise control, the Euler-Bernoulli beam model can be further
extended, as demonstrated by the combined Piecewise Con-
stant Curvature (PCC) model used in the simulation of a
flexible link [16].

Piecewise Constant Curvature Model

PCC models are extensively applied to simulate continuum
robots, based on the assumption that the major structure is
approximately represented by a series of connected tangent
arcs with constant curvatures. This simplification signifi-
cantly reduces the complexity of calculating the bending
angles, making kinematic modeling and real-time con-
trol more convenient to implement [17, 18]. PCC models
can be classified into different types based on various
perspectives. For instance, they have been categorized as
robot-independent mapping models and robot-specific map-
ping models in [19] and as kinematics-based models and
mechanics-based models in [20••].

In PCC models, three key parameters are used to char-
acterize the arc of the robot: curvature κ , the angle of the

plane containing the arc φ, and arc length l, as shown in
Fig. 2(a). In the context of soft robots, which have infi-
nite dimensionality, the homogeneous transformation matrix
T (κ, φ, l), can be determined for any point along the arc
from the arc base. This parameterization combinedwith PCC
assumption, allows for more convenient establishment of the
kinematic models. Moreover, many modeling methods and
control strategies developed for rigid robots can be trans-
ferred to soft robots, as demonstrated by the example of the
six-segment soft robot shown in Fig. 1(a1) and (b1) [8]. The
classical Denavit-Hartenberg parameter method is a widely
used approach in constructing kinematic models [21].

The PCC model is effective in modeling structures
that consists of bending actuators. However, its accuracy
diminishes when applied to closed kinematic chains or pre-
dicting the position of the tip in tendon-driven continuum
robot. Extensive efforts have been dedicated to develop-
ing extended PCC models to improve modeling accuracy.
These efforts include adopting independent curvature instead
of constant curvature [22], incorporating energy minimiza-
tion techniques [23], and introducing tension propagation
models [24].

In the case of a CDSR, it has been validated that multiple
cable actuation tended to introduce undesirable axial com-
pression and coupling. To mitigate this, a variable stiffness
formulation corresponding to the axial compression can be
utilized to reduce tip positioning errors [25]. The drawbacks
of the PCC model, such as singularities, non-linear function,
non-direct reversibility, and discontinuities, are considered
byproducts of the commonly employed direction/angle of
bending parameterization. These problems can be addressed

(a1)

(b1) 

(a2)

{S0}: Base frame.

{Si}: Reference frame 
of ith segment.

(a3)

T i : Homogeneousi-1

transformation

mapping from
{Si-1} to {Si}.

Geometric Bending curvature

discretization of ith node

(b2)  (b3) Sim Exp

after
inflation

before
inflation

Fig. 1 Three types of soft robots modeled with 1D ROMs. a1 The
bending geometries of a pneu-net chamber before and after inflation of
a soft quadruped robot in (b1) [7]. c, H : the width and height of the air
chamber. x , t : the arclength and thickness of its neutral bending plane.
R,ψ : the bending radius and the angle of arclength c,ψ = c/R. a2 The
constant curvature-based kinematics model of a four-segment soft robot

in (b2) [8]. a3 The geometric discretization and bending curvature of a
soft rolling robot in (b3) simulated with discrete elastic rod model [9].
(xc, yc): position of the central point. lc, ls , Rc: length of the curved
and straight part, radius of the curved actuator. x j , Pj : the j th con-
tact point and the contact force. xi−1, xi , xi+1: node point. Ri ,�l, φi :
radius, turning angle and edge length of node i
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by constructing a new state representation [26].Alternatively,
linearisation of the relationship between cable length and
individual segment angle can also solve the issue [27].

Cosserat Rods

Kirchhoff’s rod theory is applicable to slender solid bodies
that satisfy the condition of 1D geometry, where the length
(L) is significantly larger than the radius (r ), i.e., L � r ).
This theory models the bending and torsion of such slender
structures. In the early 20th century, the Cosserat brothers
reformulatedKirchhoff’s rod theoryby introducingdirectors,
leading to the development of Cosserat rod theory [28, 29].
TheCosserat rod theory is a generalization of Kirchhoff rods,
as it additionally considers stretching and shearing, encom-
passing all possible deformation modes of an elastic rod
system. As shown in Fig. 2(b), a Cosserat rod is described by
its centerline r(s, t) and a local reference frame {d1, d2, d3},
where s ∈ [0, L] represents the arc lengthof the rod, t denotes
time, and di represent the directors. The strain vectors can
be obtained by calculating the rate of change of a body-fixed
frame with respect to the arc length, s. The balance of forces
andmoments can be established by describing their evolution
over time. Linear constitutive equations for bending and tor-
sion are used to relate the geometric deformations, material
properties, and the corresponding forces. Building upon the
Cosserat rod theory, numerous mechanics models have been
developed to further understand and analyze the behavior of
slender structures.

Compared to the PCCmethod that approximates constant-
curvature arcs, Cosserat rod theory is considered a geometri-
cally exact modeling approach.With the Cosserat rodmodel,
real-time forward dynamics simulations can be achieved
by discretizing the time derivatives of partial differential
equations and solving the resulting ordinary differential
equation boundary value problem along arc length at each
timestep. Computational efficiency is attained by exploring

the stability of the implicit methods at large timesteps [30].
In the kinematic modeling of tendon-actuated continuum
robots, a comparison between beammechanics and Cosserat
rod methods revealed that the former approach consumed
significantly less computation time while the latter provided
slightly higher accuracy [31]. The computational complex-
ity can be reduced by simplifying the models through certain
assumptions, such as employing structure-induced assump-
tions to generate a compact and computationally efficient
formulation [32], designing novel numerical solver [33], or
modifying the shooting method [34].

When applying Cosserat rod models to cooperative or
parallel soft robots, factors such as the coupling effect,
compensation of interaction forces andmoments, large defor-
mations of manipulated objects, and terminal constraints
should be considered [35, 36]. Conventional Cosseratmodels
may lead to exponentially increased computation complexity
in workspace estimation. In such cases, optimization involv-
ing solving the inverse model and mapping the workspace
boundary has been effective in improving efficiency [37].
Establishing an exact model requires consideration of both
internal forces and external constraints from loads or the envi-
ronment [38].

To improve prediction accuracy, Cosserat rod models can
be extended by combining them with other methods, such as
the minimum potential energy principle [39], or the Newton-
Euler law [40]. Based on Cosserat rods, a kinetostatic model
can be constructed for parallel continuum robots [41]. A
combination of screw theory, Lie groups and Lie algebras,
Cosserat rod models, and the finite element method has
been employed to accurately and computationally efficiently
model nonlinear arms [42]. Additionally, an open-source
environment called Elastica has been developed based on
Cosserat rods to model the 3D dynamics of soft slender rods,
accounting for bending, twisting, shearing, and stretching.
This environment significantly reduces computation time
and enables dynamic modeling of multiple active or passive

Fig. 2 Geometric representation
of a PCC model and b
Cosserate rod model. {ei , ni , oi }
and {ei+1, ni+1, oi+1}: two local
frames at the two ends of the
segment. li ,�i , Ri , κi : length of
the segment, orientation of the
plane containing the arc, radius
and curvature of the segment.
{e1, e2, e3} and {d1, d2, d3}: The
basic vectors of the world frame
{W } and moving local frame (or
reference frame) {M}. L:
arclength of the centerline
r(s, t). r : radius of the Cosserat
rod
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Cosserat rods interacting with each other and their environ-
ments [43].

In recent years, a novel modeling method called Discrete
Elastic Rods (DER) has emerged based on the Kirchhoff the-
ory of elastic rods. DER has been proven to be effective
in simulating slender rods [44–46], e.g., knots [47], flagella
[48], tendril [49], and gridshells [50]. In DER, the material
frame is represented by its angular deviation from the natural
Bishop frame, which constitutes the kinematic description.
The normalized discrete curvature between two consecutive
edges is defined as κi = 2 tan(φi/2), where φi represents
the turning angle, as shown in Fig. 1(a3). By treating the
centerline and constraints quasi-statically, combined with
parallel transport and timestep updates, the discrete equations
of motion can be established, incorporating the total elastic
energy E(�) which consists of discrete stretching, bending,
and twisting energies: E(�) = Estretching(�)+Ebending(�)+
Etwisting(�).DERhas beenvalidated as a highly efficient sim-
ulation tool in the discrete differential geometry community.

An example of DER application can be seen in Fig. 1(a3)
and (b3), where a star-shaped rolling robot composed of
ShapeMemoryAlloy (SMA) limbswasmodeled usingDER.
The elastic energy resulting from the strains was represented
by a linear sum of stretching and bending energy [9]. DER
has also demonstrated excellent performance in establish-
ing state-space models for a polychaete worm-inspired soft
body [51] and an untethered sea star-inspired soft robot [52].
Thanks to its high computation efficiency andmodeling accu-
racy, DER has been implemented to guide the design of an
untethered frog-inspired soft robot to achieve faster locomo-
tion speed [6]. A trajectory library capturing the dynamics
of the frog robot based on DER simulation is generated and
utilized to achieve real-time online path planning [6].

Three-Dimensional Models

Despite their convenience, ROMsoften rely on simplification
assumptions and may fail to accurately capture the detailed
mechanical behaviors of soft robots. They can suffer from
limited accuracy and a lack of precise distribution of inter-
nal strain and stress. In the case of 2D structures, such as
plates or shells, which deform in 3D space but have a much
smaller thickness compared to their planar dimensions, we
will not delve into them further as most of these robot struc-
tures can be effectively simulated using higher computational
efficiency through reduced-order 1D models, such as the
shell-like legs of a soft rolling robot described in [9]. It is
worth noting that these 2Dmodels differ from existing planar
or 2D mechanical models, which essentially assume motion
within a single plane [8, 53, 54]. In this section, our focus
will primarily be on discussing the 3Dmodeling frameworks
and related issues.

3D Framework

While 1D ROMs are commonly used to simulate most 3D
soft robots, their prediction accuracy tends to decrease, and
the complete mechanical behaviors cannot be fully captured
due to simplifications made in geometry, structure, bound-
ary constraints, and other aspects. In scenarios where precise
control ormanipulation is required, the utilizationof 3Dmod-
eling frameworks becomes necessary to effectively address
variousmechanics problems, especially those involving com-
plex structures. In the development ofROMs, 3D frameworks
serve as valuable reference tools to validate proposed mod-
els. Moreover, 3D frameworks find widespread application
in assisting and optimizing the design of sensors, actuators,
and control observers, as depicted in Fig. 3(a) and (b), since
they can offer visual representations of the distribution of
internal strain and stress, interactions with the surrounding
environment, and the impact of materials, geometries, and
other factors [55–57].

Currently, 3D models are commonly established using
FEM, which involves dividing a large system into smaller
finite elements through space discretization. The typical
workflow of FEM includes steps such as geometrical struc-
turemodeling, configuration and constraint definition, mesh-
ing, analysis settings, solving, and post-processing. By
employing FEM-based static models, the precise visualiza-
tion and estimation of the exterior workspace boundary can
be achieved, facilitating optimization-based control [62]. For
instance, unlike the 1D ROM approach used in [63], the soft
bellow actuators in [56] were modeled using FEM to explore
their mechanical characteristics along different latitudes,
enabling the realization of precise control based on pressure
and action curves. Inmany cases, the presence of factors such
as robot gravity, loadings on actuators or motors, and contact
forces with internal components or external environments
introduces significant errors when using kinematic mod-
els with ROMs. FEM models have been found effective in
addressing these challenges [64]. Furthermore, for accurate
simulation of tensegrity topologies, both bending degrees
of freedom and regional elongation need to be taken into
account in order to capture bending and contraction motion
patterns. Tensegrity structures can be decomposed into mul-
tiple components (including struts, springs, and cables) and
nodes, where the generalized coordinates of each element are
chosen as the sum set of the position vectors of two nodes,
forming a positional formulation within FEM [65].

Model Order Reduction

The computational complexity associated with high-
dimensional models is a significant drawback that limits the
widespread applicationofFEM,particularly in real-time con-
trol scenarios. To address this challenge, one feasible solution
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Fig. 3 3D models for simulation of soft robots. a A parallel soft robot
and its simulation model based on real-time FEM [55]. b FEM-based
simulation for the optimal design of a pneumatic bellow actuator used
in soft-robotic glove [56]. c Simulation of a tentacle robot using ROM

techniques [58]. d Simulation of a flexiblemanipulator robot withMOR
technique applied to tackle the self-collisions [59]. e Simulation of soft
body-obstacle interactions with Abaqus [60]. f Simulation of a bionic
spine motions with Ansys [61]

is to replace highly nonlinear mappings, complex evalua-
tion methods, or time-consuming computation matrices with
approximate counterparts. For instance, the real-time FEM
developed in [55, 66] adopts the linear elasticity hypothesis,
enabling local pre-computations that accelerate online exe-
cution. Another popular approach is the use of Model Order
Reduction (MOR) techniques,which aim to establish amodel
with a minimal number of DOF while minimizing the loss
in accuracy (Fig. 3(c)) [58, 67]. In most MOR methods, a
learning phase is employed, during which snapshots of the
full-order model for different parameters are computed.

Among a variety of MOR methods, proper orthogonal
decomposition is widely adopted. As a data-driven method,
proper orthogonal decomposition utilizes two orthogonal
projectors to decompose the large-scale vector into a reduced
order state and a neglected state [68]. To preserve the stability
and mechanical structure properties, the proper orthogonal
decomposition projectors could be modified [69]. How-
ever, when intermittent contacts are present, where contact
areas or locations vary, data-driven MOR approaches like
proper orthogonal decomposition are not applicable due to
the unavailability of intermediate mechanical variables. In
such cases, BalancedModel Reduction has been effective by
allowing switching among the defined reduced-order mod-
els [70]. In the treatment of self-collisions, MOR could be

utilized to reduce the contact force space by projecting the
force onto a reduced positive space, as shown in Fig. 3(d)
[59]. A data-driven hybrid MOR strategy was proposed
which applied proper symplectic decomposition and proper
orthogonal decomposition to derive the smooth force and
nonsmooth force respectively, resulting in a 65.89% [71].
Furthermore, a real-time dynamic model of a cable-driven
continuum robot was established based on the principle
of virtual power, considering cable constraints and friction
effects [72].

Off-the-Shelf Platform

Although there are numerous off-the-shelf simulation tools
available, most of them lack support for the specific actuation
methods used in soft robots, such as cable-driven, tendon-
driven, and pneumatic actuators, making them unsuitable for
modeling soft robots. However, several conventional FEM
platforms are well-suited for soft robot simulation and are
widely utilized, including Abaqus, Ansys, and COMSOL.
For instance, Abaqus is extensively adopted for establish-
ing FEM models and analyzing the spatial distribution and
variation of mechanical quantities (Fig. 3(e)) [60, 73, 74].
Ansys is powerful in simulating soft structures as well
as interactions with surrounding environments (Fig. 3(f))
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[61, 75]. COMSOL offers a broad range of material prop-
erties for users to select from and is particularly effective in
handling multi-physical fields [76–78]. SOFA (Simulation
OpenFrameworkArchitecture), a popular open-source simu-
lator, has also beenwidely used by researchers for developing
soft robots and simulation software [58, 79, 80]. In addition,
several other simulators are available for soft robots, e.g.,
Bullet Physics Library [81], ChainQueen [82], Gym [83],
SOMO [84], and ANCF [85]. Refer to [86•] for more details
about off-the-shelf simulators.

Machine Learning-BasedModels

Conventionally, the modeling of soft robots involves analyt-
ical or numerical techniques, which require solving a series
of ODEs or PDEs, resulting in time-consuming and cumber-
some derivations. In contrast, ML-based models, including
artificial neural networks, offer a data-driven or surrogate
approach to address complex and intractable issues. For
simpler mapping relationships, shallow artificial neural net-
works like multi-layer perceptron networks, feedforward
neural networks, and radial basis function networks can
be directly employed to estimate unknown or difficult-to-

measure intermediate variables. These variables may include
unknown functions arising from model order reduction,
robot configuration, or Jacobian matrices for forward and
inverse kinematics [87–89]. For capturing complex func-
tions or intricate mechanical relationships using ML, deep
learning methods are often preferred, with Long Short-
Term Memory being a typical representative [89, 90]. Deep
learning-based controllers have found numerous applica-
tions, among which Deep Reinforcement Learning stands
out as a successful control model. Deep reinforcement learn-
ing has been applied to teach underwater soft robots how to
swim or to help robots master manipulation skills [79, 91].
The combination ofRLand theCosserat rod-based simulator,
Elastica, has been validated through a series of applica-
tions [43]. The above modeling methods are summarized in
Table 1.

InteractionModels

Couplings involved in the soft robot, and the interactions
with surrounding environments, such as frictional contact,
fluid-structure interaction, and multi-physics fields, are of
significance in establishing a precise mechanical model.

Table 1 Summary of the modeling methods and their characteristics

Modeling method Theory/assumptions Applicable type of
soft robot

Pros Cons

1D ROM Planar Beam Theory Euler-Bernoulli
beam method, rigid
cross-section of
the beam remains
normal to axis

CDSR, continuum
robot, etc

Simplification of lin-
ear theory of elas-
ticity. High computa-
tional efficiency

Transverse shear
strain is not consid-
ered. Inapplicable
to thick-beam struc-
tures

PCC model Major structure is
approximated by
connected tangent
arcs with constant
curvatures

CDSR, bending actu-
ators, tendon-driven
continuum robot etc

Reduced computa-
tional complexity.
Advantageous in
simulating curve-like
structures

Ideal PCC assump-
tion is difficult to sat-
isfy. Numerical insta-
bility

Cosserat Rods Kirchhoff’s rod the-
ory. Length is signifi-
cantly larger than the
radius

Slender-rod struc-
ture, cooperative
or parallel robot,
SMA-driven soft
actuator

Easy imple-
mentation, High
computational effi-
ciency

Only valid for slender
structures

3D model FEM Large system is
divided into finite
elements. Proce-
dures: modeling,
meshing, settings,
solving etc

Arbitrary robot struc-
ture

Broad applicability.
High accuracy. Gen-
eral and local details
available

Tedious computation
process. Expensive
time cost

ML-based model ANN, RBF, LSTM, RL etc Intermediate vari-
ables or parameters
are approximated
with data-driven
regression models

Arbitrary robot struc-
ture

Able to capture
mappings or pre-
dict parameters that
are difficult to han-
dle with traditional
mechanics

Requirement of
large-size dataset.
Affected by the
network architec-
ture, parameters and
training data
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Frictional Contact

To simplify the calculation of friction models, the static and
kinetic coefficients of friction were often assumed to be
equal [40]. At times, the friction forces are assumed to be
equal to the maximum static friction force, which is propor-
tional to the normal force [24].When considering the contact
and sliding between driving cables and guiding channels of
CDSR, both continuous saturatedviscous frictionmodels and
Coulomb frictionmodels can be employed. The former offers
higher accuracy, while the latter is simpler to implement
(Fig. 4(a1) and (b1)) [22, 93]. Anisotropic characteristics of
snakes on heterogeneous terrains were explored using the
Coulomb friction model to capture the frictional effects [94].

For ground-traveling soft robots, friction plays a vital role
in facilitatingmotions such as crawling, burrowing, and loco-
motion of earthworm-like soft robots.When soft robotsmove
on steep inclines or vertical walls, precise modeling of the
friction force becomes particularly crucial, and the stick-slip
effect deserves special attention [95, 96]. Additionally, esti-
mating the contact status, location, and force in varying or
complex contact situations has been the focus of intensive
research [16, 40, 97]. Incremental potential contact method
and maximum dissipation principle, originally developed
in the computer graphics community [98] have also been
employed for modeling the frictional contact dynamics of
soft robots due to their computational efficiency [99].

Fluid-Structure Interaction

In the design of underwater soft robots or soft bodies
confined in fluid-filled spaces, it is essential to consider
fluid-structure interaction. Typically, the fluid is assumed
to be stagnant or flowing in the low Reynolds number
regime. In [100], a robotic fish was modeled as a 2D
swimming elastic beam, with contractive strains imposed
on two sides periodically. To simulate the locomotion of
a magnetic soft millirobot in a fluid-filled environment,
the computational fluid dynamics (CFD) model was estab-
lished to mesh the midplane of the robot with shell ele-
ments [101]. Fluid flow generated by robot motion can be
modeled using Stokes equations and computed by bound-
ary element method [102]. In scenarios where soft robots
move in incompressible and irrotational flow, the potential-
flow theory and unsteady vortex-shedding method can be
employed [103].

To capture the dynamic locomotion of bacteria-inspired
soft robots, theDERmodelwas combinedwith bothLighthill
Slender Body theory and Regularized Stokeslet Segments
formulation for single/multiple flagellar propulsion [52,
104]. Furthermore, the Fluid-Structure Interaction interface
can be applied to FEM models, enabling the incorporation
of multiple material and flow properties [76]. In addition to
conventional simulators, newly emerged simulators, such as
a differentiable soft-body simulator DiffPD, can be utilized

Fig. 4 Three interaction
examples of soft robots. a1 The
schematic of multi-section
planar continuum robot in (b1)
[22]. a2 The simulated motion
of a Starfish robot in (b2) using
DiffPD [92]. a3 Simulated
potential distribution under open
circuit condition from FEM for
a slug-inspired magnetic soft
millirobot in (b3) 4

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)
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for simulating an underwater starfish robot [92] (Fig. 4(a2)
and (b2)).

Multi-Physical External Fields

The incorporation of multi-physical external fields opens up
possibilities for designing soft robotswith novelmechanisms
and control methods. One area that has received significant
attention recently is magnetically actuated soft robots, which
offer flexible remote control and promising applications in
biomedicine [102, 105]. Simulating static magnetic fields is
relatively straightforward, often achieved by using constant
magnetic flux.Distributedmagnetic torques can be computed
and combined to generate opposing and tangential surface
forces [106]. The Lorentz force and torque acting on the
body magnet can also be integrated to simulate magnetic
interactions [107].

For complex structural robots or intricate interactions,
FEM tools are commonly employed. COMSOL Multi-
physics software, for instance, has been widely used to
simulate various physical environments. For example, it
has been used to analyze the potential distribution under
open-circuit conditions for a slug-inspired magnetic soft
millirobot [105] (Fig. 4(a3) and (b3)). Additionally, a 3D
Helmholtz coil model was developed to generate a uniform
magnetic field[108], and a magnetoelastic rod model was
utilized for dynamic analysis of cilia carpet robots [109].
Heat-actuated robots have emerged based on an electrical-
thermal-mechanical mechanism. Analyzing radiative heat
transfer and modeling the heater actuator have been investi-
gated in this context [77, 110]. These advancements enable
the design and control of soft robots with heat-responsive
behaviors.

Conclusion

In conclusion, the development of kinematic and dynamic
models for soft robots has gained significant attention in
recent years. These models offer cost-effective simulation
environments for optimizing robot designs and expediting
the overall development process while validating their per-
formance.Among variousmodeling approaches, ROMshave
emerged as a preferred choice in the mechanics community,
which can be easily tailored to suit specific soft robot con-
figurations and boundary constraints. They offer advantages
in terms of running speed and flexibility in adjusting model
parameters. Most of these models are established for rela-
tively simple geometries or structures that can be simplified
into 1D or 2D models. For complex structures, FEM is a bet-
ter option, with numerous off-the-shelf platforms available.
To construct accurate models, careful consideration should

be given to internal and external forces, including contact
forces, friction, and other interaction forces.

While cable- or tendon-driven robots currently dominate
the field of soft robots, various actuators based on novelmate-
rials or actuation mechanisms are emerging. Bio-inspiration
remains a prevalent source for robot design. ML-based
methods, particularly deep learning, offer the possibility to
estimate unknown intermediate variables and approximate
complex mapping relationships. Combining deep learning
with conventional mechanics theories leads to more precise
models. The integration of deep learning and model-based
control holds promise for intelligent and robust control of
soft robots. In a long run, the computational efficiency and
modeling accuracy are always pursued and it dominates the
development of robot simulators. In order to improve the
computation speed and realize real-time simulation, how to
establish a light-weightmodelwithout performance degrada-
tion is a promising trend, which is expected to motivate the
surge of various model order reduction techniques. Mean-
while, a great deal of attentions will be paid to the extension
of typical modeling theories and the fusion of different sim-
ulators, thus increasing the model accuracy. Along with
the prosperity of deep learning in many fields recently, the
demands for kinematic and dynamic modeling of soft robots
vastly increase, which will alleviate the rigorous requirement
of data amount, provide precise virtual training environment
and guide their optimization as physical engines.
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