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Abstract
Purpose of Review This review summarizes the broad roles that communication formats and technologies have played in 
enabling multi-robot systems. We approach this field from two perspectives: of robotic applications that need communica-
tion capabilities in order to accomplish tasks, and of networking technologies that have enabled newer and more advanced 
multi-robot systems.
Recent Findings Through this review, we identify a dearth of work that holistically tackles the problem of co-design 
and co-optimization of robots and the networks they employ. We also highlight the role that data-driven and machine 
learning approaches play in evolving communication pipelines for multi-robot systems. In particular, we refer to recent 
work that diverges from hand-designed communication patterns, and also discuss the “sim-to-real” gap in this context.
Summary We present a critical view of the way robotic algorithms and their networking systems have evolved, and make 
the case for a more synergistic approach. Finally, we also identify four broad Open Problems for research and development, 
while offering a data-driven perspective for solving some of them.

Keywords Communication · Multi-robot systems · Robot networks

Introduction

The use of multiple, connected robots in the place of indi-
vidually uncommunicative robots provides evident gains 
by facilitating the inter-robot coordination that allows for 
work distribution, spatial coverage, and specialization. An 
increasing variety of applications leverage such networks 
of robots, including logistics  [1, 2], resource distribu-
tion [3, 4], transport systems [5–7], manufacturing [8], 
and agriculture [9, 10].

These applications depend on an orchestration of 
robots over time and space that allows them to jointly 

work towards common higher-order goals, to deconflict 
individual actions in shared environments, and to share 
information in distributed computing schemes. Commu-
nication and the mutual exchange of information (state 
and control) are key to facilitating such interactions.

Early work in the multi-robot domain drew from nature-
inspired paradigms  [11], and consequently focused on 
devising collective behaviors that depended purely on local 
interactions of robots in close proximity [12]. A variety of 
transmission media (e.g., infrared) are used for such near-field 
communication schemes [13, 14]. Other nature-inspired work 
built on implicit communication and self-organization through 
stigmergy, by which robots coordinate indirectly through traces 
left in the environment [15]. The benefits of such peer-to-peer 
decentralized communication paradigms are manyfold, in 
particular due to their inherent robustness and scalability [16]. 
Centralized radio-based communication architectures have 
become increasingly popular in various instances, especially 
when the task requires performance guarantees; representative 
applications include product pickup and delivery  [17], 
item retrieval in warehouses [3], and mobility-on-demand 
services [18]. Improvements in communication technologies, 
both hardware and software, have furthered more data-intensive 
applications, such as cloud robotics [19, 20].
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Explicit communication methods generally assume that 
robots can broadcast information within a local neighbor-
hood that comprises of tens to hundreds of individuals, or 
that a fixed network infrastructure is available. Yet, in reality, 
densely populated workspaces adversely affect communica-
tion capabilities because of practical contention over channel 
bandwidth and airtime [21]. Such networks are additionally 
burdened by clutter that can induce signal fading, leading 
to a drastic decrease in the expected communication range. 
This problem is compounded by the need for real-time trans-
mission requirements in highly dynamic robot networks. 
Indeed, topologies and capabilities demanded by robotic 
applications are practically hostile to radio performance 
(because these radio networks were not initially designed 
with robotics in mind). As a consequence, the vast majority 
of robot applications are designed to merely work around 
available network technologies, and optimize their perfor-
mance within the given constraints.

Our review is motivated by a lack of studies that pro-
vide a high-level overview of the interplay between com-
munication networks and their role in robotic applications. 
Figure 1 graphically demonstrates a typical architecture of 
a multi-robot control scheme, in which each robotic system 
is designed strongly around its perception and control strate-
gies. As mentioned prior, robot control algorithms generally 
do not actively employ the output of the communications 
network as part of the control loop, and as a result often 
overlook factors such as network contention. The result is 
a wide array of optimizations that work in favor of the net-
work, but often not for autonomy, or vice-versa. Hence, we 
argue that a better co-optimization scheme (illustrated on 
the left in Fig. 1) would consider all aspects of the archi-
tecture simultaneously. The illustration shows this scheme 

linked via an “oracle”, which are sources of error estima-
tions from incomplete information, that facilitates this, i.e., 
given a hypothetical oracle, we posit that one can co-design 
the various algorithm layers on the right.

In this survey, we capture a variety of network architec-
tures and technologies, and a variety of multi-robot applica-
tions that employ them. A careful choice of communications 
architecture, medium and algorithm is key to ensuring that a 
given robot task can be completed. Therefore, we will also 
explore some of the newer approaches that consider bypass-
ing such hand-crafted selections, and attempt to model inter-
robot communications in a data-driven fashion.

Factors Influencing Robot Network Design

Choosing an adequate communications architecture, 
medium, and algorithm is key to ensuring desired robot 
performance. In the following, we distill the factors that 
influence the robot network design choices. We elaborate 
upon them in the following four categories: (i) application, 
(ii) robot, (iii) algorithm, and (iv) environment, and give an 
illustrative example for each.

The Application: The application defines what the 
shared information is for, and how the robots need to inter-
act to solve the problem at hand. Examples: Real-world 
applications such as in environmental monitoring and 
agriculture require groups of robots to act over large dis-
tances (often operating with robots separated by ∼1000x 
body lengths). Such sparsely distributed robot systems, 
hence, necessitate networking capabilities that can span 
larger spaces [22•]. Other applications, such as coopera-
tive driving [5], formation control [23], and flocking [24] 

Fig. 1  A flow diagram show-
ing how perception, control 
and communications typically 
interact in a multi-robot system. 
On the left is a proposed future 
approach to co-optimization, 
discussed in Section Challenges 
and Open Problems, which now 
admits communications and its 
confounding factors as integral 
to any co-optimization strategy 
designed for a multi-robot 
system
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require uninterrupted, situated, close-range communica-
tion for tight inter-robot coordination and control.

The Robot: The robot (and the physical hardware) 
define local constraints on the frequency and format of 
information to be transmitted and received. Examples: 
A quadrotor that uses state information for local stabil-
ity control requires an update frequency in the order of 
several hundred Hertz; while on-board IMUs can provide 
the necessary information for body stabilization, extrinsic 
pose estimates are still required for tasks, and must be 
received at relatively high rates (e.g., 100 Hz) [23, 25]. 
Lack of reliable updates naturally poses a significant risk 
to tasks that require tight coordination, such as outdoor 
flocking and formation control; while sparse outdoor 
flight has been demonstrated in a team of 30 drones [26], 
there is a dearth of results on dense and agile outdoor 
flight. Moreover, in GPS-denied environments, robots 
resort to on-board sensing, and consequently, require 
dependable inter-robot communication to achieve group 
behavior.

The Algorithm: The algorithm connects the applica-
tion to the robot, and essentially sets conditions on the 
nature of information that needs to be received (e.g., 
global or local), and when (e.g., asynchronously or syn-
chronously, and how often). Examples: In allocation prob-
lems, the optimization objective is often global, and to 
achieve optimality, we deploy centralized algorithms that 
collect all robot-to-task assignment costs (e.g., expected 
travel times) to determine the optimal assignment (e.g., 
by running the Hungarian algorithm) [27, 28]. Similarly, 
multi-robot path planning has an optimal solution (for 
both makespan and flowtime objectives), but only when 
the computational unit has access to full system informa-
tion [29]. In the absence of full observability, robots need 
to resort to locally available knowledge. In decoupled 
prioritized path planning, robots communicate to mutu-
ally deconflict their path plans in time-space  [30–32]. 
Each time a robot’s plan changes, its robot neighborhood 
changes, or a new conflict arises, the deconfliction process 
restarts.

The Environment: The environment defines under 
what conditions shared information is delivered. Exam-
ples: Are the robots operating indoors or outdoors, or 
both [33]? Does the workspace afford a fixed (and pos-
sibly centralized) communications infrastructure, or must 
we instead rely on ad hoc networking? Is the environment 
cluttered with obstacles that interfere with wireless sig-
nals? What medium can we use, e.g., are the robots oper-
ating in air, under water, or in space? What legal juris-
dictions regulate the communication infrastructure? And 
finally, is the communication channel safe, or can it be 
spoofed [34], or robots attacked [35, 36]?

Communication Schemes

In this section we discuss multi-robot communication from 
the perspective of the underlying communications tech-
nologies, focusing upon the challenges, limitations and 
optimizations that are relevant in multi-robot system net-
works. Figure 2 shows a timeline with key wireless com-
munication mechanisms, and some representative multi-
robot applications that they enabled for the first time.

Challenges

Synchronicity. Specifying robotic data flows is often 
the first consideration in discussing the challenges of a 
wireless data protocol. For example, it is often implicitly 
assumed that multi-robot control algorithms are executed 
synchronously by every participant [47]. This introduces 
a hard timing constraint on the maximum allowable delay 
in message delivery between those participants. This is, 
however, a feature that commonly deployed communica-
tions protocols are not designed to meet, with “best-effort” 
message delivery being the standard paradigm [48].

Dynamic Topologies. Hard timing constraints are often 
exacerbated by highly connected communications topologies 
that are dynamic, where a robot must communicate its status 
with many different (or sometimes every) participating robot(s). 
This can lead to a high degree of contention for radio resources 
since many messages may need to be sent at every control 
loop. While there are schemes that aim to minimize redundant 
data transmissions (see Section  Communication-Aware 
Algorithms), it remains true that, as multi-robot networks 
increase in scale, communications technologies must be 
selected and designed specifically to manage the dynamics of 
the application [49], something that is generally overlooked in 
robotic networks today.

Message Frequency. Bandwidth is often employed 
as a metric to specify the demands on a communications 
link [50]. However, this is often an insufficient charac-
terization by itself, since the underlying technology may 
have significant overheads per message, and robot teams 
often depend on low-latency messaging as well. This is 
particularly true for ad hoc networks where there is no 
central entity enforcing message scheduling, to the extent 
that many communications protocols will not approach 
their rated bandwidths in highly connected ad hoc topolo-
gies, where overheads such as contention dominate radio 
resource consumption [21].

Connectivity. Since a greater connectivity range 
implies reachability and information exchange with more 
robots, it has an obvious impact on the overall messaging 
rate any specific robot must handle. The spatial density of 
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robots must be considered while discussing range, and two 
key factors of interest emerge as a consequence. Firstly, as 
ranges increase, radio-based links are more prone to fad-
ing and interference [51] even when transmission power is 
commensurately increased. Secondly, robot control algo-
rithms often assume a fixed range [52], which may result 
in greater inter-connectivity, and sometimes increased 
messaging rates in dense scenarios.

Dynamic Routing. The case where the required range 
of communication exceeds the underlying capabilities of 
the radio hardware onboard must also be considered, as 
this implies a mesh-type network where a message must 
traverse multiple robots (network nodes). This first requires 
planning the robots’ paths (discussed in Section Communi-
cation-Aware Planning), before accounting for the computa-
tional and protocol overheads of robots processing messages 
other than their own. Then, the problem is that of message 
routing decisions and dynamic topologies. The routing 
decision problem is generally central to ad hoc mesh net-
works; this is only made more challenging by the potential 
for rapid shifts in communications topology, especially in 
highly mobile, or large-scale robotic scenarios [53]. Hard 
timing guarantees, in the range required by robotic control, 
are not currently available at non-trivial scales (especially 
with multi-hop routing over dynamic topologies), though 
some attempts have been made in this direction [54].

Operational Environment. Robotic networks will invar-
iably be required to operate in environments with external 
noise and interference, which cause unpredictable impacts 
on link quality. This informs the selection of communica-
tions protocols, since some protocols operate in a licensed 
spectrum with reduced external interference, or are other-
wise less prone to external noise due to atmospheric attenu-
ation (60GHz). Doppler shift requires similar consideration, 
because many communications technologies fail at high rela-
tive velocities. Generally speaking, protocols that depend 
upon fine-grained frequency division multiplexing are more 
prone to Doppler related errors [55], and such schemes are 
often used in high bandwidth techniques.

Communications Scheme Selection

Despite considerable research interest, there are no current 
wireless data standards explicitly designed for exchanging 
information between autonomous robots [56]. Currently 
deployed robot-to-robot networks (such as  [26]) depend 
upon more generic wireless data networking standards which 
are not typically optimized for the challenges discussed 
above. In the absence of a specific standard, we will discuss 
the strengths and weaknesses of existing technologies for the 
multi-robot control application.

Fig. 2  An abridged timeline showing some key wireless communica-
tion mechanisms for robots. The shaded area represents the magni-
tude of theoretical capabilities (bandwidth or inverse latency), which 

have been increasing super-linearly since 2010. Boxes show commu-
nications standards or technologies, and their specific properties that 
are useful in the multi-robot control space
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Ad hoc networks map well to the communications pat-
terns required of decentralized robotic control, and the 
most relevant for this survey are Mobile Ad Hoc Networks 
(MANETs) which deal with the problem of facilitating 
communication between mobile nodes without coordina-
tion from infrastructure  [57]. More specific forms of inter-
est are Vehicular Ad Hoc Networks (VANETs)  [58] and 
Flying Ad Hoc Networks (FANETS) [59], where the for-
mer generally deal with automotive use cases and the latter 
drones and UAVs, and these are more exposed to dynamic 
conditions that are expected from robotic ad hoc networks. 
Local area networking technologies are well suited for ad 
hoc networking.

In contrast with ad hoc operation, infrastructure networks 
map more closely to a centralized robotic control, where 
communications patterns are more similar to traditional 
bandwidth-focused networking applications. Despite this, 
hard latency requirements and rapid robot movement require 
specific mechanisms at the protocol level, which are not 
common for either cellular or local area standards.

Local Area Networks

The IEEE 802.11 protocol suite, commonly known as “wi-
fi,” is frequently used due to abundant hardware availability, 
IP networking interoperability, high data rates and license-
free operation. It is also capable of both infrastructure and 
ad hoc operations, which simplifies deployment from labora-
tory environments into the real world. The failures of 802.11 
become apparent during such deployment processes [60, 61], 
because larger ranges, robot counts and velocity-induced 
Doppler shift cause lower message delivery rates than are 
seen in static 802.11 deployments. 802.11p, and its succes-
sor 802.11bd, have both introduced specific modifications to 
the physical layer  [43] to more robustly handle both range 
and Doppler-induced problems for VANET use cases, which 
potentially transfer to robotic control as well.

IEEE 802.15.4 has been commonly used as the basis 
for a number of different higher-layer protocols, includ-
ing ZigBee. It has been deployed in the context of wire-
less sensor networks and multi-robot systems [42] due to 
hardware availability, license-free operation, low power 
usage, and flexible communications models that permit 
both IP-based and more simplified serial-like messaging. 
The major drawbacks are relatively low range and data rates. 
LoRaWAN [44] is an attractive alternative that maintains the 
positive aspects of 802.15.4 for the robotic use cases, but 
with a focus upon long range transmission (up to 16km) and 
a physical layer that is resilient to Doppler errors; however, 
its communications model is infrastructure based.

Both 802.11’s and 802.15’s underlying dependence 
upon the CSMA/CA collision avoidance scheme allows 
for the minimization of contention related losses without 

an authoritative central scheduler [62]; however, they have 
unbounded maximum latency on message delivery, and 
reduced message delivery rates with higher numbers of 
robots on the network. LoRaWAN uses a pure ALOHA 
protocol mechanism [63], and therefore scales even more 
poorly than the IEEE schemes. These characteristics make 
these protocols unsuitable for deployment on robots without 
modifications; fortunately, there are techniques proposed in 
the literature to help make these technologies more scal-
able [64, 65].

All of the protocols mentioned within this section share 
similar routing problems when it comes to highly dynamic 
topologies, in that they depend upon a network-layer routing 
mechanism to direct traffic without reliably converged infor-
mation about the current disposition of other nodes. This 
issue is well covered by [66•], which categorizes and sur-
veys many of the different approaches towards this routing 
problem. [67] includes the routing issue amongst a general 
survey of the issues in UAV networking.

Cellular Networks

Cellular networks avoid many of the problems encountered 
by local networking standards by making use of a nearly uni-
versal infrastructure-based communications model, licensed 
radio spectrum access, as well as economics of scale, all of 
which make extremely complex base station hardware and 
protocols commonplace. The centralized message scheduler 
and sophisticated radio resource management [68, 69] are 
significantly more scalable than typical ad hoc networks. 
These characteristics appear to be a good fit for robot con-
trol, however, the financial cost of network access, cou-
pled with limited flexibility in logical network configura-
tion have limited robotic deployments outside controlled 
environments.

For decentralized robot control, peer to peer traffic is routed 
through the infrastructure, inducing a minimum latency over-
head [70] that could exceed timing constraints. 4G in particular 
has an access latency on the order of 50ms [60]. Additionally, 
cellular standards are naturally dependent upon the presence 
of infrastructure, which cannot always be assumed. Further-
more, the radiation pattern of cellular networks is typically 
setup assuming ground based users, and so aerial robots could 
experience degraded performance due to leaving the vertical 
coverage of cell antennas [71].

4G LTE supports direct Device-to-Device (D2D) modes 
that permit devices to communicate with each other in a 
local region by reserving some subset of radio resources 
in their local area from the network operator. LTE-V2V is 
a variant of this specifically for automotive use cases  [72]. 
This avoids the overhead of using the infrastructure as a 
relay but also has a cost in minimum association time and is 
dependent upon the network operator ceding resources on 
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demand. Some proposals extend D2D cellular radio tech-
niques into the unlicensed spectrum, or specifically, licensed 
sub-bands [73], however, this also has not been widely used 
in real-world systems due to the recency of the specification 
and a dearth of capable hardware.

5G introduced the Ultra-Reliable Low Latency Commu-
nications (URLLC) service to address the issues with low-
latency medium access  [45] in a centralized or decentralized 
manner, with a variety of proposed physical layer  [74] and 
mac layer  [75] techniques. Despite the promise of these 
approaches, as well as 3GPP release 15 (including URLLC) 
being released in late 2017, roll out of these technologies 
into real-world networks has been limited, and considerable 
research is ongoing as to the best implementation methods 
for 5G’s technical goals [76].

Hybrid Schemes

Due to advancements in radio hardware, the most recent 
802.11 revision, 802.11ax, has specified a physical radio 
resource allocation scheme that is far more similar to cel-
lular standards, with multiple fine-grained frequency divi-
sions being available within a single logical channel. Many 
proposals have been made to have future cellular standards 
directly inter-operate with cellular networks to leverage 
the best capabilities of both  [77]. For robot networks, this 
may prove to be highly valuable, permitting human con-
trol overrides over cellular infrastructure and low-latency 
robot-to-robot communications with a unified logical net-
work addressing system for easier lab-to-world deployment, 
and efficient operation in control schemes that have evolving 
requirements throughout a single deployment. Though excit-
ing, these proposals are still in their nascent phase and many 
issues remain to be addressed.

Though the state-of-the-art use of OFDMA in both 5G 
and 802.11ax significantly alleviates the contention prob-
lem due to the larger number of transmission slots made 
available, extremely dense ad hoc robot networks may still 
run into the limit of CSMA/CA. Non-orthogonal media 
access (NOMA) is a very promising technology that has 
the possibility to further extend the effective simultaneous 
radio resources available  [78], and therefore reducing the 
contention problem. In cellular systems, the network opera-
tor still has authoritative control over their radio resources, 
and so, grant-based schemes induce significant overhead 
despite the reduced contention; though grant-free access 
has attracted significant attention  [79]. Even in grant-free 
schemes, NOMA still requires coordination to ensure that 
node configurations do not overlap, and hence, message loss 
due to contention remains an open problem in decentralized 
networks without a coordinating infrastructure.

Communication‑Aware Algorithms

Regardless of which underlying communication scheme or 
protocol is employed, unlimited and unconstrained com-
munication cannot be assumed for any interactive scenario. 
A significant amount of literature in multi-robot applica-
tions, however, has generally focused on designing control 
schemes that do not explicitly model this dependency. This 
is reflected in the vast majority of literature in robot flock-
ing [80–83]. We argue that the problem becomes more pro-
nounced in cases where the robots need to deconflict and 
replan their motions in tight and constrained spaces [81, 
82]. While some consideration for communication asyn-
chronicity is made in some of the more recent works [82], 
the challenge is generally far from being solved.

One straight-forward approach to handle this is to sim-
ply reduce the amount of data (frequency, packet-size 
etc.) that needs to be communicated between agents. In 
an exploration problem, this is often done through vari-
ous novelty metrics that determine whether a new data-
point needs to be communicated [84]. Trawny et al. [85] 
have proposed localization estimators that perform well 
by quantizing the transmitted information to very small 
packets, thereby tackling severe link constraints.

On the other hand, there is also a sustained research 
interest in modeling the communication channels between 
the agents, and factoring that as a constraint into the 
motion planning problem. This is done primarily to ensure 
robustness of a control scheme against imperfect and noisy 
communications. Alternatively, planning schemes have 
also considered communication as a sub-task (almost as if 
“scheduling” communications at intervals). Finally, there 
are several approaches that consider a joint optimization 
scheme, where path planning and communication planning 
are carried out in tandem. We divide this body of work 
into these three broad styles.

Communication‑Aware Planning

As mentioned earlier, planning robot motions or trajecto-
ries that consider some model of the underlying commu-
nication links is an active area of research. Mularidharan 
and Mostofi provide a comprehensive overview of such 
methods [86]. For instance, several authors have consid-
ered the task of coverage & formation control by a team of 
robots. Evidently, these domains require explicit factoring 
of communication constraints into the planning problem 
[84, 87]. One way this is approached is by analyzing the 
stability of a formation under various communication link 
latencies [88]. This can then be then integrated into the 
control problem for a more reliable system [88, 89] that 
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is “aware” of such latencies. Formation control laws are 
also explored that allow agents to maintain some degree 
of coordination while respecting limited communication 
ranges of their neighbors [90, 91]. This approach is also 
sometimes utilized in the context of cooperative target 
localization [92], or under constraints of 3G/4G mobile 
networks [93].

Path planning has also been developed such that connec-
tivity with a subset of base-stations [94], or with some agents 
[95, 96] is maintained. Similar methods that plan for multiple 
robots (with connectivity constraints) involve using ACO-
based (ant colony) planning [97] or genetic algorithms [98].

Plan‑Aware Communications

In heavily constrained spaces, it is often desirable to design 
a network architecture that considers the planned path, and 
seeks opportunities to communicate therein. Underwa-
ter robots, for instance, have very limited communication 
capacities [99, 100], and this is an active field of interest; 
Zolich et al. [101] provide a comprehensive survey on the 
various challenges and solutions. Hollinger et al. have con-
sidered scheduling algorithms for underwater robotic sensor 
networks and show how path planning algorithms depend 
on these [102, 103]. Since bandwidth and interference con-
straints are much more severe in these environments, such 
scheduling algorithms often model the value of communi-
cating at a particular timestep [103, 104]. This also plays a 
role in determining whether communicating has a positive 
impact on the state of the robot system [105, 106], and is 
also studied as an online decision problem [107], and an 
optimization problem that considers when/what to commu-
nicate [108]. Recent developments in subterranean robots 
operating under severe communication constraints have also 
explored the strategy of developing/maintaining communi-
cation “backbones” for explorer robots to continue on fron-
tiers [109, 110], and of explicitly splitting communication 
pathways by plan and priority [111].

Joint Planning

Several of the works listed in the previous subsections 
may also be seen as jointly optimizing for communication 
quality as well as path qualities. However, there are other 
approaches that attempt to explicitly model this optimization 
problem. For instance, Kantaros and Zavlanos [112] propose 
a scheme that alternates between the two optimization prob-
lems sequentially. The nature of this scheme often makes 
it difficult to prove hard guarantees regarding optimality; 
however, a more hybrid approach in which the two control-
lers interact can offer more guarantees on network integrity 
available data rates [113]. A joint optimization scheme, on 
the other hand, can formulate this problem well; for instance, 

using an LQ (linear-quadratic) form can additionally offer 
robustness guarantees as well [114]. Yet another means of 
joint optimization is to consider the system as a cyber-phys-
ical system (CPS), where the “cyber” controller handles the 
communications domain, and the “physical” controller han-
dles the kinematics of the robot [115]. Such models allow 
designers to factor various other elements of a CPS system, 
such as dynamically adapting one of the subsystems (com-
munication capacity) while still maintaining the coupling 
with the other [116, 117].

Leveraging Machine Learning 
for Communication

Designing bespoke, hand-crafted communication proto-
cols and behaviors is tedious and difficult. Firstly, numer-
ous works point to the hardness of synthesizing decentral-
ized policies (that have to operate in a partially observable 
regime), even when a centralized template is known [118, 
119], and they leave the question of how (what, when, and 
to whom) to communicate unanswered. Secondly, the vast 
majority of existing robot communication strategies are 
based on idealistic operational assumptions, and besides a 
few specialized approaches to dealing with message loss, 
delay, or corruption, e.g.,  [34, 35, 120], it is not at all clear 
how to approach such problems in a manner that is trans-
ferable across applications. Leveraging machine learning 
methods is a promising new avenue to tackle some of these 
challenges.

Learning Communication Mechanisms

Message routing decisions in robotic mesh networks are 
complicated by highly dynamic topologies. While many 
routing mechanisms exist in ad hoc networks, these gen-
erally depend upon relatively slowly changing network 
conditions to function effectively. Many manually speci-
fied heuristic methods exist [66•]; however, these may lead 
to sub-optimal decisions as they may be constructed upon 
incorrect assumptions about the target network environment. 
Learning methods provide an attractive alternative, and have 
been explored in some depth in routing generally  [121]. An 
interesting example in the context of FANETs can be found 
in Zheng et al.  [122], who propose RLSRP which applies an 
online reinforcement learning method to the routing decision 
problem and shows improved performance across several 
metrics, including delivery latency.

Channel modeling and resource allocation are also key 
networking problems that are challenging for first principles 
methods to solve that can be improved with learning  [123]. 
Unsupervised learning has been applied to channel mod-
eling, which allows for the optimization of transmission 
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power by accurately estimating the quality of links to other 
network participants  [124].

Learning Communication Behaviors

Learning-based methods have proven effective at designing 
robot control policies for an increasing number of tasks [125, 
126]. Recent work utilizes a data-driven approach to solve 
multi-robot problems, for example for multi-robot motion 
planning in the continuous domain [127] or path finding in 
the discrete domain [128].

Yet, research on learning how to synthesize robot-to-robot 
communication policies is nascent. From the point of view 
of an individual robot, its local decision-making system is 
incomplete, since other agents’ unobservable states affect 
future values. While the manner in which information is 
shared is crucial to the system’s performance, the problem 
is not well addressed by hand-crafted (bespoke) approaches. 
Learning-based methods, instead, promise to find solutions 
that balance optimality and real-world efficiency, by bridg-
ing the gap between the qualities of full-information cen-
tralized approaches and partial-information decentralized 
approaches [129].

Key to the decentralization of centralized (optimal) poli-
cies is the property of permutation equivariance. Permuta-
tion equivariance ensures that at the robot network level, the 
set of actions automatically rearranges itself as the agents 
swap order. One of the earliest works that satisfy this prop-
erty is [130]. This was concurrently developed by a line of 
work that builds on Graph Neural Networks (GNNs), which 
are permutation equivariant by design [131–133]. GNNs 
have since then shown promising results in learning explicit 
communication strategies that enable complex multi-agent 
coordination [134–137].

When deploying GNNs in the context of multi-robot 
systems, individual robots are modeled as nodes, the com-
munication links between them as edges, and the internal 
state of each robot as graph signals. By sending messages 
over the communication links, each robot in the graph indi-
rectly receives access to the global state. A key attribute 
of GNNs is that they compress data as it flows through 
the communication graph. In effect, this compresses the 
global state, affording agents access to relevant encodings 
of global data. Since encodings are performed locally (with 
parameters that can be shared across the entire graph), the 
policies are intrinsically decentralized. In cases where the 
downstream task is tightly coupled with the communication 
requirements, it is beneficial to optimize the communication 
strategy jointly with perception and action policies. This was 
done in [138], for multi-robot flocking, and in [137], for 
multi-agent path planning. These frameworks implement 
a cascade of a convolutional neural network (CNN) and a 
GNN, which they jointly train so that image features and 

communication messages are learned in conjunction to bet-
ter address the specific task. Recent work also shows how 
GNNs can be augmented by attention modules to produce 
message-aware communication strategies that allow robots 
to discern between important and less important message 
elements [139].

Approaches from within the multi-agent reinforcement 
learning (MARL) community tackle the learning of continu-
ous communication protocols by formulating the problem as 
a Decentralized Partially Observable Markov Decision Pro-
cess (Dec-POMDP) [140–142]. The work in [143•] learns a 
targeted multi-agent communication strategy by exploiting a 
signature-based soft attention mechanism (whereby message 
relevance is learned). Similarly, the work in [144] has each 
robot learn to reason about other robots’ states and to more 
efficiently communicate trajectory information (i.e., when 
and to whom), and applies the solution to the problem of col-
lision avoidance. While efficient cooperative communication 
strategies are desirable, the work in [145] shows how sepa-
rate robot teams can learn to communicate with adversarial 
strategies that contribute to manipulative (non-cooperative) 
behaviors. Clearly, underlying training paradigms need to be 
carefully designed to avoid such outcomes.

Challenges and Open Problems

We finally present some avenues of research and engineer-
ing that are worth exploring in order to address our critiques 
discussed so far. We categorize them into four broad Open 
Problems.

1. Co-design. An emergent theme throughout this survey 
is the lack of approaches that co-design the robot and its 
communication capabilities. A variant of this concept [146, 
147] considers a basic parallel reconfiguration of a network 
as well as the robot’s controller that can be beneficial when 
the robot moves across network stations. However, a true co-
design scheme will jointly evolve all layers of the network-
ing stack to favor the robotic task at hand. Design of a meta-
system that is able to compute the limitations of robotic 
requirements as well as network capabilities and dynami-
cally throttle both may be essential to safe deployment of 
robots into the real world. Any robotic control algorithm 
that uses explicit communications is vulnerable to failure 
if the network unexpectedly under-delivers, and performs 
sub-optimally if the network over-delivers — managing this 
resource allocation problem in a real-world multi-robot set-
ting is a subject we will tackle in our future work.

2. Data-driven optimization. Machine learning, and 
specifically, reinforcement learning, can drive the develop-
ment of multi-robot communications into new and interest-
ing paradigms. Existing approaches that already learn what/
when to send (and whom to send to) [130, 139, 144] still 
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often depend on hand-designed architectures and specific 
task groups. With sufficiently large datasets, novel machine 
learning architectures also have the potential to learn to opti-
mize multiple aspects of multi-robot systems at once (e.g., 
perception, action and communication [138]).

3. Sim-to-real for robot networks. The problems 
in sim-to-real transfer of robot coordination strategies 
are generally exacerbated by the “reality gap” found in 
communications  [129]. Practical communication links 
suffer from message dropouts, asynchronous and out-of-
order reception, and decentralized mesh topologies that may 
not offer reliability guarantees. Since multi-robot policies 
are typically trained in a synchronous fashion, these factors 
are hard to capture and simulate [148]. Furthermore, very 
few studies have captured any of these network effects 
in a large-scale setting [21]. Consequently, we find that 
embedding the reality gap of robot networking into data-
driven approaches to multi-robot planning is an open 
research domain.

4. New technologies/schemes. As discussed in Sec-
tion Communications Scheme Selection, there is a need for 
wireless data standards that specifically target the commu-
nication requirements of connected robots. The IEEE 1920 
working group is a significant step in this direction, which 
was formed to propose a protocol that is intended for autono-
mous robotic networks [56]. Such a protocol is likely to be 
founded on 802.11bd since it is already a significant leap 
forward [43] from the legacy 802.11p standard used in V2V 
standards today.

Additionally, future 5G updates and 6G cellular com-
munications promise dramatic improvements that hold the 
potential to bring cloud- and edge-computing at the forefront 
of many data-intensive multi-robot collaborations. Finally, 
we also note that geographic routing in FANETs may be 
an enabling technology for practically dealing with highly 
dynamic routing topologies. This will, however, require 
holistic developments in robot control algorithms that work 
in tandem to avoid an additional information distribution 
problem.

Conclusion

Through this manuscript, we have presented a survey of 
communication technologies and their role in enabling 
multi-robot applications. We have broadly covered the 
various technologies that have played key roles in net-
worked robotics, and have also discussed how state-of-
the-art robot applications typically deal with network 
constraints. Our approach to this has been mostly critical, 
and thus, has identified several deficiencies in the way 
robotics and networks have evolved. Towards the end, we 
also cover machine learning approaches and their role 

in developing data-driven communication strategies. We 
conclude the article with a list of challenges and open 
problems that the community currently faces, and also 
provide an outlook for how learning-based approaches 
can tackle several of them.
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