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Abstract
The challenge of reducing CO

2
 emissions imposes on the countries the inclusion of renewable energies in their electricity 

matrix. Brazil needs to improve the participation of Wind, Solar, and Biomass in its system once its electricity generation 
is highly concentrated on hydro sources. Further, renewable, Electricity generation power plants are frequently associated 
with good impacts on carbon emission mitigation and job generation. In this paper, we sought to answer if there is a differ-
ence in the efficiency of electricity generation technologies’ capacity to induce regional socio-economic and environmental 
development. We used a data envelopment analysis (DEA) approach to measure the relative efficiency scores of Brazilian 
mesoregions that hold power plants regarding environmental and socio-economic dimensions. Results show that the mes-
oregions which contain nuclear, wind, and photovoltaic power plants (or a combination of these technologies) perform better 
than mesoregions that comprise biomass, gas, and coal thermal facilities. In addition, the results show that renewable energy 
facilities perform better than non-renewable facilities in direct job generation and GDP aggregation. This study contributes 
to the existing literature from a methodological perspective as we compare different renewable energy technologies in three 
dimensions (social, economic, and environmental) at a regional level.

Keywords Data envelopment analysis · Renewable electricity sources · Regional social-economic development · 
Environmental efficiency · Brazil regional efficiency
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Introduction

A growing number of countries are announcing the reduc-
tion of carbon dioxide ( CO2 ) and greenhouse gas emissions 
(GHG) in late years. Nevertheless, according to IEA (2021a), 
the pledges by governments to achieve net zero emissions 
by 2050 are far from the minimum required actions neces-
sary to limit the global temperature rise 1.5 ◦ C. Electricity 
generation is today’s single largest source of energy CO2 
emissions, accounting for 36% of total energy-related emis-
sions. In 2020, around 74% of the 12.1 Gt of CO2 emissions 
from electricity generation worldwide were related to coal-
fired generation IEA (2021a). Fossil fuel-fired plants are 
the major source of anthropogenic CO2 emanation, but their 
usage still plays an important role in meeting the increasing 
energy demand (Qureshi et al. 2021). Recent studies account 
for a transition path in the usage of fossil fuels. The coal des-
ulfurization technology, for instance, avoids harmful sulfur 
pollution in the process of coal utilization. Cai et al. (2021) 
show promising results with a microwave desulfurization 
process. Besides coal, gas-fired power plants are responsible 
for 22% of CO2 emissions IEA (2021a). Transition paths 
for this energy source include carbon capture and storage 
(CCS) techniques (Qureshi et al. 2021). Some technologies 
that integrate carbon capture and CO2-to-methanol conver-
sion are achieving satisfying CO2 emissions reduction (Zhou 
et al. 2023).

In parallel with technical efforts to an energy transition 
scenario, IEA (2022) points out the urgency of increasing 
renewable energy capacity in upcoming years. The global 
energy crisis faced by Europe in 2022 is an example of the 
importance of renewable sources in security and produc-
tion issues (IEA 2022). In 2020, about 26.7% of the gener-
ated electricity in the world encompassed renewable sources 
such as hydro, solar, wind, and biomass. China, the United 
States, and Germany, for instance, produced 28.5%, 19.2%, 
and 44% of their electricity using such renewable sources, 

respectively (IEA 2021b). In this sense, the Brazilian elec-
tricity matrix is more sustainable than most countries: in 
2021, 85.5% of the generated electricity in the country came 
from renewable sources (ERO, Energy Research Office — 
Empresa de Pesquisa Energética EPE (2021)). Despite 
holding a sustainable electricity matrix, Brazil still needs to 
improve the participation of wind, solar, and biomass in its 
system once its electricity generation is highly concentrated 
on hydro sources (56.8%). The dependency on hydroelectric-
ity is leading the country to face supply problems due to the 
change of the rain regime in the last few years (NSO, Elec-
tricity System Operator — Operador Nacional do Sistema 
ONS (2022b)). Therefore, planning the system’s expansion 
to meet the increasing electricity demand with hydroelectric-
ity may cause reliability problems.

The role of renewable energy plants in socioeconomic 
development is a topic frequently studied by research-
ers (e.g., Frondel et al. (2010); Simas and Pacca (2014); 
Andini et al. (2019); Arvanitopoulos and Agnolucci (2020); 
Gonçalves et al. (2020); Rose et al. (2022); Chachuli et al. 
(2021); Ibrahim et al. (2021); San Cristóbal (2011)). The 
implementation of renewable energy facilities tends to be 
associated with a good impact on job generation Arvani-
topoulos and Agnolucci (2020); Frondel et al. (2010), and 
macroeconomic indicators Andini et al. (2019); Swain and 
Karimu (2020). Besides, some authors identify indirect 
effects of renewable electricity facilities, such as an increase 
in the energy system reliability, the development of a manu-
facturing cluster in the regions that receive those facilities 
Rose et al. (2022); Simas and Pacca (2014), and even an 
improvement in the population’s health Miśkiewicz (2020). 
Regarding the Brazilian case, Gonçalves et al. Gonçalves 
et al. (2020) found positive significant impacts of wind 
power electricity facilities on the labor market, similar to 
the conclusions of Simas and Pacca conclusions Simas and 
Pacca (2014).

Developing countries such as Brazil witnessed social and 
economic challenges worsened by the COVID-19 pandemic. 
According to the World Bank (Bank 2022), Brazil was the 
most affected country by the pandemic in Latin America, 
counting more than 22 million reported cases of COVID-
19 and more than 600 hundred deaths until January 2022. 
The Brazilian economy reduced by 3.9% in 2020, forcing 
5% of the active population to leave their jobs and raising 
the unemployment rate from 11.9% to 14.6%. It is impor-
tant to mention that the pandemic scenario mainly affected 
the poorest workers, who could not access infrastructure 
to maintain their jobs remotely (Bank 2022). Inequality 
in Brazil is a long-term problem that worsened during the 
pandemic months. As a comparison, the income of the 40% 
poorest families was reduced by 35%. In the same period, 
the income of the 60% richest families decreased by 22%. 
Poverty did not rise more in Brazil due to the Government 
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income transfer program (Bank 2022). The social inequal-
ity caused by the pandemic rose sharply in the North and 
Northeast Brazilian regions, which are historically the coun-
try’s poorest regions (Bank 2022). These regions, especially 
the Northeast, have a great potential to receive photovoltaic 
and wind power plants. As an example, two of the most 
prominent photovoltaic parks in Brazil are located in the 
states of Piauí and Bahia (ONS 2022a), both of them in the 
lowest quantile of the Human Development Index (HDI) in 
the country (IBGE 2010). The northeast region hosts about 
650 wind plants, more than 88% of this source’s installed 
capacity in Brazil.

Following the debate on the importance of renewable 
electricity sources as socio-economic drivers, this research 
investigates if there is a difference among energy sources 
for this purpose. If there is, which renewable energy source 
is more efficient as a socio-economic inducer? We use the 
nonparametric Data Envelopment Analysis (DEA) to meas-
ure the relative efficiency of the Brazilian mesoregions. Such 
an approach has been used to evaluate the efficiency of cit-
ies, countries, and regions in applying sustainability actions 
(see, e.g., the literature review of  Tsaples and Papathanasiou 
(2021)). DEA has also been used to measure the efficiency 
of renewable energy facilities (San Cristóbal 2011; Halkos 
and Tzeremes 2012; Zeng et al. 2019) and the technical effi-
ciency of countries or regions in using renewable energy 
(Chachuli et al. 2021; Woo et al. 2015; Chien and Hu 2007). 
Accordingly, this study contributes to the existing literature 
from a methodological perspective as we compare different 
renewable energy technologies in three dimensions (social, 
economic, and environmental) at a regional level. Most of 
the related studies analyze the socio-economic and environ-
mental impact regarding the existence of a certain technol-
ogy type. Further, relative efficiency is mostly applied at a 
macroeconomic level, comparing power plants.

The results of the DEA evaluation show that renewable 
electricity sources are more efficient in leading regions 
where they operate towards socio-economic and environ-
mental development. There is high variability in the effi-
ciency of Brazilian mesoregions where biomass facilities 
operate due to the high diversity of raw materials used. The 
mesoregions where wind and photovoltaic facilities are 
installed are consistently more efficient on socio-economic 
dimensions.

In this context, an important question arises: May renew-
able energy sources induce a region’s socio-economic devel-
opment and environmental benefits? If so, which sources 
are the most efficient in generating these multi-dimension 
results?If renewable energies can lead to social improve-
ments, policymakers could install them from a regional 
perspective, not necessarily in the interconnected dispatch 
system. This approach could also reduce transmission costs.

This paper is organized as follows: Section “Literature 
review” presents some literature related to the theme. In the 
following Section, we present the materials and methods 
used in this research, focusing on describing the scenario 
of renewable energy sources in Brazil, the Data Envelop-
ment Analysis (DEA) methodology, and data and details 
about the applied study. Section “Results and discussion” 
shows the research results and discussions, followed by the 
conclusions.

Literature review

Implementing renewable energy power plants is frequently 
associated with a positive impact on job creation. Frondel 
et al. (2010) mention, for instance, some positive reports 
from the German Environmental Ministry regarding this 
topic, which accounted for an increase of 55% of total 
“green” jobs between 2004 and 2007. In a more recent 
review,  Arvanitopoulos and Agnolucci (2020) mention the 
German case as an example of job creation through renew-
able energies.

Arvanitopoulos and Agnolucci (2020) argue that there is 
evidence that renewable energies positively impact direct, 
indirect, and induced jobs. These authors classify as direct 
the jobs created by the sector’s core activities and as indi-
rect those related to the energy sector’s supply chain. To 
them, induced jobs are classified as those generated by an 
increase in the aggregate demand stimulated by the renew-
able industry.

Rose et al. (2022) amplify the social benefits of installing 
renewable electricity facilities. Beyond the environmental 
and job creation benefits, they list indirect effects such as an 
increase in the energy system reliability and developing a 
manufacturing cluster in the regions that receive those facili-
ties. Regarding this last topic, Simas and Pacca (2014) high-
light that the studies that consider the theoretical number 
of necessary jobs to implement a renewable facility should 
consider imports and external market participation in the 
construction process. Even considering this, these authors 
found evidence of a positive impact on job generation In 
Brazilian cities that hold wind farms.

Still, regarding the impact on unemployment rates due 
to renewable energies, we should expect different effects 
depending on the project’s phase.  Rose et al. (2022) esti-
mate that the deployment of additional 7 GW offshore wind 
facilities in California between 2030 and 2040 is estimated 
to increase employment by 65,000 and 131,000 job-years 
during the construction phase. After 2040, these authors 
estimate an annual impact of 3979 to 4513 jobs to operate 
the plants. Simas and Pacca (2014) also separate the impact 
on construction and operational phases, both favorable to the 
municipalities that hold facilities.
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Miskiewicz Miśkiewicz (2020) extends the indirect 
social benefits of renewable energies. The author found evi-
dence that the reduction of CO2 and SO2 emissions lead to 
an improvement in the population’s health, reflected in a 
decrease in the death rate. Andini et al. (2019) relate the 
construction of renewable energy facilities in Portugal with 
a sustainable improvement in macroeconomic rates. Accord-
ing to these authors, a one-time 1.10% increase in the growth 
rate of investment in renewable energy capacity generates a 
temporary positive effect on real GDP growth by 0.24% in 
the same quarter, which tends to disappear over time, being 
only 0.01% after five years. However, the authors estimated 
a reduction of 2.68% in the unemployment rate even after 
five years. Further, Swain and Karimu (2020) found evi-
dence of a strong synergy between renewable energies and 
the United Nation’s sustainable development goals in the 
European Union (EU).

The standard approach to estimating the economic 
impacts of energy development is the input–output mod-
eling, which consists of regression-based econometric tech-
niques concerned with identifying the statistical significance 
of a set of independent variables on a dependent variable 
(see, e. g., Simas and Pacca (2014); Rose et al. (2022); 
Faturay et al. (2020); Gonçalves et al. (2020); Miśkiewicz 
(2020); Andini et al. (2019); Arvanitopoulos and Agnolucci 
(2020)). Such an approach is well known in the literature and 
provides insightful results to guide policymakers. However, 
the modeling of an input–output problem may be trouble-
some. The analyst needs to assume an underlying production 
function that correctly relates the input and output variables, 
which may be challenging. In addition, just one response 
variable may be tested at a time.

In contrast, some authors use non-parametric approaches 
to measure the efficiency of renewable energy sources 
regarding some aspects. Tsaples and Papathanasiou (2021) 
provide a literature review on the use of Data Envelopment 
Analysis (DEA) to evaluate the efficiency of cities, coun-
tries, and regions in applying sustainability actions. DEA is 
also used to measure the efficiency of renewable facilities 
in a macroeconomic level. Menegaki (2013), for instance, 
applies DEA to assess the efficiency of 31 European coun-
tries regarding economic growth, measured through GDP 
and employment rate as output variables. The renewable 
energy sources were included as input variables in the model 
in terms of their percentage participation in each country’s 
energy matrix.

Most of the non-parametric research applied to renew-
able energies is concerned with evaluating the efficiency 
of the compared units in a microeconomic dimension, such 
as a power plant level. San Cristóbal (2011) measures the 
efficiency of generic power plants using different renew-
able technologies and generation capacities. They use a 
multicriteria (DEA), more restricted than the original DEA 

formulation. By doing that, the author found just one full-
efficient power plant that should meet all requirements the 
author considers important from a managerial perspective. 
Halkos and Tzeremes (2012) use a Bootstrap DEA to meas-
ure the efficiency of firms that operate in the Greek renew-
able energy market, a similar approach.

In contrast, Zeng et al. (2019) and Kolagar et al. (2020) 
evaluate macroeconomic dimensions regarding renewable 
energies. Nevertheless, they still evaluate the efficiency 
of comparable power plants level. Zeng et al. (2019) use 
a Data Envelopment Analysis to measure the efficiency of 
power plants in four dimensions: energy, economic, social, 
and environmental benefits. These authors comprise such 
dimensions in specific indexes by a fuzzy approach before 
processing the DEA analysis. Kolagar et al. (2020) use DEA 
and Fuzzy best-worst method (FBWM) in order to prioritize 
renewable energy sources in Iran.

As mentioned, this study contributes to the existing lit-
erature from a methodological perspective as we compare 
different renewable energy technologies in three dimensions 
(social, economic, and environmental) at a regional level.

Materials and Methods

The Brazilian regional and energy context

Brazil is the fifth largest country in the world by land area. 
In its 8.5 million km2 , there are 5,586 municipalities spread 
in 26 states and the Federal District, where live 215.5 mil-
lion people (IBGE 2022). The World Bank accounted for a 
Gross Domestic Product (GDP) per capita in 2021 of 16,056 
(measured in Purchasing Power Parities, PPP). As a mat-
ter of comparison, Argentina’s GDP per capita was 23,627, 
China’s was 19,338, and USA’s was 69,287 in the same year 
(World Bank 2022b). As mentioned, the regional income 
distribution is very unequal in Brazil.

In this paper, we analyze the regional matter in terms of 
Brazilian mesoregions. Such regional division is defined by 
the Brazilian Institute of Geography and Statistics (BIGS, 
Instituto Brasileiro de Geografia e Estatística — IBGE), 
which groups municipalities by social-economic similari-
ties (IBGE 2019). The Brazilian municipalities are divided 
into 137 mesoregions. Each one of them is unequal in 
terms of size and municipality quantity. The mesoregion 
“Sul/Sudoeste de Minas”, in the State of Minas Gerais, 
for instance, has 146 municipalities, while the mesoregion 
“Norte do Amapá” has only five. Some mesoregions are 
large, with extensions as large as countries such as Portugal, 
Greece, and Austria. Despite extension disparities, Brazilian 
mesoregions are grouped by socioeconomic similarity. Then, 
this is a good aggregation unity for this study’s purpose.
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Energy generation is unequally spread in Brazil. All elec-
tricity plants in the country are interconnected in a central-
ized system. The Electricity System Operator (ESO - Opera-
dor Nacional do Sistema, ONS) decides which power plants 
should dispatch energy in a system that connects consumers 
and producers through transmission lines (Interconnected 
National System, INS — Sistema Interligado Nacional, 
SIN). According to ESO (ONS 2022c), the hydro, ther-
mal, and wind plants prevail in this interconnected system. 
Table 1 shows the electricity generation installed capacity 
by source.

The Brazilian wind farms are concentrated in the north-
east, south, and southeast, especially on the coast, where the 
wind speed is higher. Photovoltaic plants are highly con-
centrated in the country’s northeast, while hydro plants are 
concentrated in the southeast (in quantity) and north (regard-
ing installed capacity) (Gonçalves et al. 2020). On the other 
hand, the Brazilian population is highly concentrated in 
the southeast and southern regions. In the interconnected 
system, ESO defines the energy dispatch order consider-
ing a roll of criteria, which encompasses hydro reservoir 
capacity, electricity generation from intermittent sources 
(photovoltaic and wind), and regulatory issues, among oth-
ers. The decision about the system’s expansion, as well as 
which source of electricity should be prioritized, is shared 
among the Energy Research Office (ERO), ESO, and the 
Ministry of Energy. Each power plant interconnected in the 
system is previously projected in medium- and long-term 
plans designed by these agents.

From a historical perspective, we see that hydro potential 
has been explored in Brazil since the 1880s. However, just 
in the 1960s, the installed capacity increased consistently 
due to the creation of State Energy companies. The country 
hosts some of the largest hydro plants in the world, such as 
Itaipu (the second greatest, with 14 GW of capacity) and Belo 
Monte (the fourth greatest, with 11.2 GW of capacity). There 

are more than 150 hydro plants in Brazil and about 30 small 
hydro plants (ONS 2022a). Thermal plants are historically the 
complement to hydro plants in Brazil. The country’s poten-
tial for alternative renewable energy (photovoltaic, biomass, 
and wind) has been explored on a commercial scale since 
the 2000s. In 2003, the Brazilian Government launched the 
Program for Incentives to Alternative Energy Sources (PRO-
INFA), established in Law 10,438/2002. This program intends 
to increase the participation of alternative renewable energy 
sources in the electricity matrix, including incentives for small 
hydro plants and wind and biomass mills. Photovoltaic elec-
tricity is not included in PROINFA, but it has increased in 
late years. Brazil has approximately 130 photovoltaic facilities, 
and 750 wind farms (ONS 2022a). Furthermore, the system’s 
expansion is being planned in terms of alternative renewable 
energy. For the upcoming 5 years, ESO projects to double the 
photovoltaic installed capacity and increase wind and ther-
mal gas by one-third of their current installed capacity (ONS 
2023).

Data envelopment analysis

Benchmarking models are techniques that compare different 
units in order to define relative efficiency measures among 
them. Such methods are centered on estimating the production 
frontier of a particular market, i.e., the set of inputs and outputs 
that produce the maximum possible quantity given a set of 
inputs. The production frontier estimation may use parametric 
and non-parametric techniques (Bogetoft 2013). Data Envel-
opment Analysis (DEA) is under the second group and uses 
linear programming to estimate the efficiency scores of com-
parable Decision-Making Units (DMUs). Charnes et al. (1978) 
define the DEA problem as follows: let the production set T 
be composed of sets y = [y1, ..., ys] having s output variables 
and x = [x1, ..., xm] having m input variables of n comparables 
DMUs, DMUi, i = 1, ..., n . A linear programming problem is 
used to calculate the Farrell efficiency of the analyzed DMU0 . 
Equation 1 shows the output-oriented distance function regard-
ing production set T. The output-oriented formulation is analo-
gous to the original input-oriented model defined by Charnes, 
Cooper and Rhodes (Charnes et al. 1978). In this equation, 
the objective function equation denotes the Farrell Efficiency 
of DMU0 , �0 =

∑m

i=1
vixi0 . The equation parameters ur and vi 

are the optimal weights associated with the outputs and inputs, 
respectively.

Table 1  Electricity generation installed capacity in Brazil (2023)

Source: Electricity System Operator (ESO) ONS (2023)

Electricity generation source Installed capacity in 
2023 (MWh)

Share (%)

Hydro 109,348 58.4
Wind 25,246 13.7
Thermal (gas) 16,786 9.1
Biomass 15,409 8.4
Solar photovoltaic 8,079 4.4
Thermal (oil and diesel) 4,134 2.2
Thermal (coal) 3,017 1.6
Nuclear 1,990 1.1
Other 155 0.1
Total 184,200 100
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The linear problem 1 assumes a production set with con-
stant return to scale (CRS). Under this premise, all units in 
the production set are compared. Further, the model calcu-
lates the efficiency measure assuming that all outputs are 
expanded at the same factor since they represent the radial 
distance from the frontier (Bogetoft and Otto 2010). Banker 
et al. (1984) introduced a less restrictive formulation, under 
the premise of a variable returns to scale (VRS) produc-
tion set. In this last case, we still assume radial contraction 
of inputs, but we restrict the comparable units in the set 
by adding a constraint to the problem (see, e. g., Cook and 
Zhu (2008)). An output-oriented model with non-decreasing 
returns to scale (NDRS) is shown in Eq. 2. Variable � allows 
restricted comparison among DMUs, granting the NDRS 
assumption.

In this paper, we use an output-oriented DEA model. This 
premise means that the decision-makers should observe 
the output variables as the manageable variables in order 
to improve efficiency scores (Thanassoulis 2001; Bogetoft 
2013;  Bogetoft and Otto 2010; Cook and Zhu 2008). Like-
wise, this study assumes a Non-Decreasing Returns to Scale 
(NDRS) production set (also called Increasing Returns to 
Scale production set). This premise supposes that the pro-
portional increase in outputs is larger than the underlying 
proportional increase in inputs (Hirschey 2009;  Bogetoft 

(1)

min

m
∑

i=1

vixi0

s. t.:

m
∑

i=1

vixij −

s
∑

r=1

uryrj ≤ 0, j = 1, ..., n

s
∑

r=1

uryr0 = 1

ur, vi ≥ 0

(2)

min

m
∑

i=1

vixi0 + �

s. t.:

m
∑

i=1

vixij −

s
∑

r=1

uryrj + � ≤ 0, j = 1, ..., n

s
∑

r=1

uryr0 = 1

ur, vi ≥ 0

� ≤ 0

and Otto 2010). Facilities with high fixed costs that may be 
spread with the rise in the production scale are frequently 
classified with NDRS production sets. The Brazilian energy 
regulator, for instance, assumes an NDRS production set for 
transmission electricity companies (Da Silva et al. 2019). 
Further, we evaluate the efficiency in terms of Shepard Dis-
tance Function, which is essentially the inverse of the Farrell 
ones, �0 = 1∕�0 (Bogetoft and Otto 2010).

Model specification

In this study, we measure the efficiency scores of Brazilian 
regions where electricity generation facilities are installed. 
Efficiency refers to a three-dimension scenario regarding 
environmental and socio-economic indicators. This section 
details the model specification used to access such efficiency 
scores and the data used. The general problem formulation is 
depicted in Fig. 1.

Compared Units

The compared DMUs are the Brazilian mesoregions where 
electricity generation facilities are installed. We considered the 
electricity power plants in operation in Brazil in August 2021, 
according to ESO data (2022a). We took the facilities’ annual 
energy generation capacity from the same dataset, measured in 
MWh. The precise location of each facility was extracted from 
the Brazilian Energy Regulator Agency information (ANEEL 
2021). Operational data was calculated by power plant and 
then aggregated by municipality and mesoregion. The macroe-
conomic data was aggregated by municipality and mesoregion.

The analysis considers the power plants of renewable 
energy sources (photovoltaic, wind, and biomass), as well 
as small hydro plants (SHP). Thermic plants which use coal, 
gas, and nuclear power were also compared. The hydro plants 
were not included in the analysis because their installation and 
operation require specific studies, not extended to other facili-
ties. Thermic plants that operate with diesel and oil were also 
discharged in the analysis since they represent a small portion 
of the electricity matrix and will be inactivated in the upcom-
ing years (EPE 2021). The descriptive statistics of considered 
electricity plants are shown in Table 2.

As mentioned in section 1, we are interested in evaluating 
the regional effects of the energy facilities. So, we used the 
Brazilian mesoregions as units to compare. As mentioned, 
this regional division groups municipality by social-economic 
similarities. The analysis did not consider mesoregions without 

Fig. 1  DEA model framework
DEA-NDRS 

• output-oriented
• 72 Brazilian

mesoregions compared

Inputs
• Levelized Cost of Energy 

(LCOE)
• Socio-Economic 

Vulnerability Index (SEVI)

Outputs
• Social: number of direct 

employees
• Economic: GDP
• Environmental: avoided CO2
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any of the mentioned energy facilities. We aggregated data in 
mesoregions where there is more than one energy facility. A 
total of 71 mesoregions were compared in the DEA analy-
sis. The list of mesoregions and their electricity generation 
installed capacity is provided in Table 3 of Appendix A.

Input variables

In a production set analysis, a common approach is to meas-
ure the efficiency considering the capital expenditure in the 
system, as we may observe in classical economic theory 
handbooks (see, e.g., Blanchard (Blanchard 2018)). In these 
terms, a facility’s Capital Expenditure (CAPEX) and the 
Operational Costs to operate it (OPEX) could be good prox-
ies of the capital available in the facility region. Therefore, 
we used the Levelized Cost of Energy (LCOE) as the input 
variable. Andres et al. (De Andres et al. 2017) ddefine the 
LCOE calculation as the sum of total CAPEX, OPEX, and 
decommissioning costs, discounted to present-day value, 
divided by the electricity supplied to the grid throughout 
the operational life of the technology.

We choose to use the LCOE values calculated by ERO 
(2021), which uses the LCOE approach proposed by the 
American National Renewable Energy Laboratory (NREL 
(1995)), generically shown in Eq. 3. In addition, ERO (2021) 
estimates the LCOE values for different energy sources 
using sector no-public data, making these estimates the most 
complete available information.

In this generic equation, FCR refers to the Fixed Charge 
Rate, TCC  corresponds to the Total Capital Costs or CAPEX 
(in monetary units), and FOC is the Fixed annual Operating 

(3)LCOE =
FCR × TCC + FOC

AEP
+ VOC

Cost (also in monetary units). AEP refers to the Annual Elec-
tricity production (in kWh), and VOC is the Variable Operat-
ing Cost (in monetary units per kWh). ERO (2021) uses a 
10-year dataset (from 2010 to 2021) for OPEX, CAPEX, and 
VOC corrected by the Brazilian inflation index to the basis 
date of December 2021. Such data were registered by com-
panies that run (and won) electricity procurement auctions. 
We used in this study the LCOE values calculated consider-
ing the discount rate of a Weighted Average Cost of Capital 
(WACC) of 10% per year. Finally, it is worth mentioning 
that the ERO (2021) estimates for the LCOE are in Brazilian 
Reais per MWh (R$/MWh). The considered LCOE values 
by technology are shown in Table 2.

For DEA modeling, the LCOE (in R$/MWh) of each 
power plant was multiplied by each facility’s installed capac-
ity, in MWh. We also applied a capacity factor in the esti-
mated energy production, according to ERO numbers (EPE 
2021). This factor considers the proportion of operation 
time of a power plant. We summed up the resulting LCOE 
in Brazilian Reais (R$) in each mesoregion, consolidating 
one input variable. Equation 4 summarizes the calculation 
of the aggregated LCOE variable to each mesoregion i: the 
sum of the installed capacity of each j electricity facility 
of technology k, multiplied by the technology LCOE and 
Capacity Factor (CF).

Inequality in Brazil is a relevant issue. A mesoregion 
efficiency in operating a number of power plants may be 
affected by factors regarding labor qualification, violence, 
etc. Thus, we included a “non-monetary cost”, which is 
related with the social vulnerability in the region. We used 

(4)LCOEi =

n
∑

j=1

[

Capacityjk × LCOEk × CFk

]

Table 2  Summary statistics of electricity plants by technology

Source: ESO (2022a) for power plant descriptive statistics, IPPC, Bruckner et  al. (2014) for CO
2
 emissions and EPE (2021) for LCOE and 

Capacity Factor

Electricity plants Descriptive Statistics CO
2
 Emissions LCOE Energy Production

Technology Quant. Installed Capacity (MWh) gCO
2
 eq/ kWh R$/MWh 

(WACC 10%)
Capacity Factor

Min Med Max Std Dev Min Med Max Mean

Wind (onshore) 753 3.0 28.4 105.0 10.6 7 11 56 143.8 0.3
Solar (onshore) 131 2.0 3 30.0 95.3 11.5 18 48 180 170.5 0.3
Small hydro plants (PCH) 33 10.0 26.1 31.4 7.4 1 24 2200 225.3 0.3
Nuclear 2 640.0 995.0 1,350,0 502.0 3.7 12 110 498.7 0.8
Biomass 66 4.0 50.0 409.3 56.9 130 230 420 279.1 0.3
Biomass (residuals) 15 43.5 181.2 466.2 114.0 130 230 420 279.1 0.3
Biomass (industrial residuals) 11 30.0 226.0 490.0 119.6 130 230 420 279.1 0.3
Coal 8 232.0 355.1 720.3 148.5 740 820 910 401.4 0.8
Gas (simple cicle) 38 25.0 225.7 1,593.2 296.9 410 490 650 564.5 0.3



 Brazilian Journal of Chemical Engineering

1 3

the Socio-Economic Vulnerability Index (SEVI, Indicador 
de Nível Socioeconômico, INSE) (MEC 2023). The Brazil-
ian Ministry of Education calculates annually this index, 
by applying an extensive questionnaire to last-year primary 
education students. The index is summarized by city as an 
average scale from less to more socioeconomic vulnerable. 
Therefore, we aggregated the inverse of such an index in the 
mesoregions regarding the average weighted by the popu-
lation size. In our new modeling, the socioeconomic vul-
nerability may be considered an “extra cost” to an efficient 
performance of an enterprise in generating socio-economic 
development: the higher the observed population vulnerabil-
ity, the higher the challenge in developing growth.

Output variables

The DEA output variables were selected to represent the 
three dimensions of the efficiency measure we want to 
analyze: social, economic, and environmental. The social 
impact is measured by the number of direct employees the 
electricity sector generates in the mesoregion. We used 
data from the Brazilian Ministry of Labor (MTE 2022): 
the official General Register of Employed and Unemployed 
shows the number of employed people by city, considering 
the employer’s economic activity. We selected the eco-
nomic activities related to electricity generation, elec-
tricity transmission, and electricity distribution. In this 
analysis, we did not include indirect jobs into account.

The economic dimension is analyzed through each mes-
oregion’s total Gross Domestic Product (GDP). We used 
data from BIGS (IBGE 2019) regarding the year 2019. The 
third dimension analyzed in the efficiency scores is the 
environmental, measured through carbon emissions. We 
considered the carbon emissions in a life cycle approach 
to each electricity generation technology, i.e., the expected 
emissions from the construction process until operation 
and facility decommissioning. This approach is preferable 
to analyze the carbon emissions regarding the plant opera-
tion. This is because the emissions during the implementa-
tion process of renewable sources facilities may be signifi-
cant. We used data from the third Annex of the report from 
the Intergovernmental Panel on Climate Change (IPCC) 
(Bruckner et al. 2014).

The DEA modeling implies that the output variables are 
desirable, and their increase will make the DMUs more effi-
cient. Clearly, this is not the case with the CO2 emissions 
that we want to reduce to improve environmental efficiency. 
Therefore, we adapted the CO2 emissions variable to reflect 
this intention: the avoided equivalent CO2 emissions variable 
comprises the difference from the technology’s emission to 
the worst case (the emissions from the coal plants).

Results and discussion

We estimated the efficiency frontier assuming an output-
oriented distance function (Eq. 2) using the R package 
Benchmarking (Bogetoft and Otto 2022). The underly-
ing premise is that the decision-maker must increase the 
model outputs in order to improve its efficiency score. 
This assumption holds in this case, considering the model 
inputs nature (Fig. 1): the decision-maker cannot manage 
the vulnerability index, and LCOE is considered constant 
for every technology. Thus, social, economic, and envi-
ronmental benefits are the manageable variables. As we 
used a Shephard output distance function, full-efficient 
mesoregions reached a score of 1.0, and non-efficient mes-
oregions performed above 1.0, up to 0.0.

The mesoregions DEA scores reached a mean of 0.6801. 
The 71 efficiency scores ranged from 0.1287 to 1.000, and 
20 of them were full-efficient ( �i = 1.00 ). Mesoregions that 
hold nuclear, wind, and photovoltaic facilities are consist-
ently more efficient on the three-dimensional analysis than 
mesoregions where thermal power plants are installed. The 
mean efficiency score of mesoregions that hold wind facili-
ties is 0.9969, while the mean efficiency of mesoregions 
where there are photovoltaic power plants is 0.8051. Regions 
that hold both technology types have an average efficiency of 
0.8792. Figure 2 shows the boxplots of the efficiency scores 
of mesoregions grouped by electricity technology. Some 
mesoregions hold more than one type of electricity genera-
tion technology. In those cases, the mesoregions are grouped 
by the combination of generation sources.

Mesoregions where biomass power plants are located 
reached very unequal efficiency scores: the average 
efficiency is 0.6543, ranging between 0.3759 and 1.00. 
Regions that hold biomass power plants and thermal gas 
facilities are, on average, 0.5927 efficient, while areas with 
biomass and wind facilities perform on average 0.5226. 
The high amplitude in these efficiency scores suggests a 
low pattern in the socio-economic benefits due to biomass 
power plants. Biomass facilities may operate with various 
raw materials and very distinct installed capacities, which 
could explain the high efficiency dispersion.

Mesoregions with the worst efficiency scores are those 
where gas power plants are installed ( � = 0.2312 , on aver-
age). The combination of gas facilities and renewable elec-
tricity sources diminishes this effect. High CO2 emissions 
explain these scores. Even socio-economic benefits can-
not overcome the comparatively low performance of this 
electricity source in this indicator. It is interesting noticing 
that the only region that holds just coal facilities reach 
0.4350 efficiency score, close to the sample mean. That is 
the mesoregions with gas power plants worst perform in 
the ranking than those with coal thermal.
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The factors which influence the efficiency scores may 
be evaluated in terms of the correlation coefficient of the 
index and the model variables: the higher the correlation, the 
greater the variable influence in the efficiency assessment. 
Figure 3 shows the correlation matrix of DEA scores and the 

model variables. In this figure, darker blue colors represent 
Pearson correlation coefficients closer to 1.00 (strong posi-
tive correlation), while darker red colors represent correla-
tion coefficients closer to −1.00, indicating a strong negative 
correlation. In the first line of the matrix, we may see the 
correlation coefficient between the efficiency scores and the 
variables Avoided CO2 emissions (+0.34), Direct employ-
ees (+0.21), GDP (+0.19), Vulnerability index (+0.04), and 
LCOE ( −0.05). The positive correlation between scores and 
the output variables implies that all of them were considered 
in the DEA efficiency assessment. Regarding this criterion, 
the environmental dimension is the most important, and 
direct employment is the second most crucial variable in 
differentiating mesoregions’ efficiency.

It is interesting to notice that some variables are highly 
correlated, such as Direct Employees and GDP (0.86). 
However, differently of regression-based analysis, for DEA 
modeling, the correlation among variables is not a signifi-
cant problem. The compared units will access the efficiency 
frontier due to one variable or the other without multicol-
linearity issues.

Finally, Fig. 4 shows the efficiency scores of each mes-
oregion and the location of power plants. Darker green 
colors represent efficiency scores closer to 1.0 and light 
green colors represent efficiency scores closer to zero. Mes-
oregions in white color were not included in the analysis, 
because they do not comprise any considered generation 
power plant. This figure helps to understand the dispersion 
of efficiency scores according to the generation technology, 

Fig. 2  Efficiency scores by 
technology type. Technology 
code: Photovoltaic (PH), Wind 
(WIND), Biomass (BIO), 
Small Hydro plants (HYDRO), 
Nuclear (NUCLEAR), Thermal 
Gas (GAS), Thermal coal 
(COAL)
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described before. Also, Fig. 3 raises a hypothesis regard-
ing the correlation between the efficiency scores and the 
concentration of power plants in a mesoregion. Except for 
mesoregion Madeira-Guaporé, located in the North region 
in the state of Rondônia, which is full efficient and holds just 
one biomass power plant, most full efficient mesoregions 
comprise more than one electricity generation facility. DEA 
analysis considered the absolute number of power plants’ 
total installed capacity, but a synergy considering close 
facilities may influence the efficiency scores.

Results corroborate the findings of ŗegarding the posi-
tive influence of wind power plants in Brazil. Moreover, we 
extend their conclusion when we compare wind facilities’ 
socioeconomic and environmental impact to other electric-
ity generation technologies and show that wind and solar 
are more efficient in these aspects than other sources. Fur-
ther, one interesting discussion that the results raise refers 
to the efficiency scores of coal and gas power plants. Carbon 
emissions from coal facilities are higher than the carbon 
emissions of gas thermal power plants. But, even then, the 
efficiency scores of mesoregions with just gas facilities are 
worse than the efficiency score of the mesoregion that holds 
just a coal power plant. The mesoregion Sul Catarinense 
holds one coal facility and reaches a 0.4350 efficiency score, 
20 percentage points above the average score of mesoregions 
that hold just gas power plants. We may infer that this mes-
oregion is comparatively more efficient than peers in other 
output (GDP and direct employment).

Authors that used parametric models also found a posi-
tive relation between renewable electricity facilities and job 
generation (Arvanitopoulos and Agnolucci 2020; Frondel 
et al. 2010; Rose et al. 2022). The results confirm those con-
clusions and add a comparative component in the analysis 
regarding different electricity sources once DEA provides 
relative efficiency scores.

An interesting discussion topic refers to the thermal bio-
mass scores. Results show a dispersed and unequal efficiency 
from biomass facilities, probably due to the high variable 
raw materials and installed capacities. Authors as Yaqoob 
et al. (2022); Teoh et al. (2022) sow that different technolo-
gies in biofuels affect the carbon emissions. Although the 
micro evaluation of the quality and adequacy of biofuels 
is not the center of this analysis, such a topic is relevant to 
policymakers and must be observed.

Concluding remarks

Renewable electricity generation power plants are fre-
quently associated with good impacts on carbon emission 
mitigation and job generation. In this sense, we sought to 
answer if there is a difference in the efficiency of electricity 
generation technologies’ capacity to induce regional socio-
economic and environmental development. To do that, we 
measured the relative efficiency scores of Brazilian mes-
oregions that hold power plants regarding environmental 

Fig. 4  Efficiency scores by 
mesoregion and electricity 
generation facilities
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and socio-economic dimensions. Besides, a non-parametric 
efficiency frontier method was applied to generate efficiency 
scores. Results show that the efficiency scores are highly 
dispersed and may be grouped according to the electricity 
source present in the evaluated mesoregion. The mesore-
gions that contain nuclear, wind, and photovoltaic power 
plants (or a combination of these technologies) perform bet-
ter than mesoregions that comprise biomass, gas, and coal 
thermal facilities. In addition, the results show that renew-
able energy facilities perform better than non-renewable 
facilities in direct job generation and GDP aggregation. 
Regarding non-renewable energy, mesoregions with coal 
power plants are more efficient than gas thermal plants in 
the direct jobs dimension.

The necessity of expanding the electricity generation 
capacity in Brazil needs to be coherent with the coun-
try’s goals for carbon emissions. The expansion of renew-
able energy sources is a safe path in that sense, which also 

contributes to the socio-economic regional development. It 
is worth mentioning that the expansion of thermal gas capac-
ity planned for the next five years (ONS 2023) in Brazil 
clashes with sustainable goals and planning. Our findings 
show that such facilities are not efficient in any of the three 
analyzed dimensions.

Our study is not exempt from limitations. For future 
research, we consider a review of the model output vari-
ables and a second-stage procedure that relates the efficiency 
scores with contextual variables. This last application may 
improve the identification of causations of efficiency.

Appendix A: Brazilian mesoregions

List of Brazilian mesoregions considered in the analysis.
See Table 3.

Table 3  Summary statistics of Brazilian mesoregions

Mesoregion name Region Electricity generation Installed Capacity (MWh) GDP

Wind Gas Photovoltaic Biomass Coal Nuclear SHP Total

Norte Fluminense Southest 2,362 757 3,119 81,923
Metropolitana RJ Southest 1,868 851 2,719 1,000,327
Sudeste Piauiense Northeast 2,234 396 2,630 7,001
Centro Norte Baiano Northeast 2,618 2,618 36,746
Norte Cearense Northeast 1,018 218 2,321 22,868
Agreste Potiguar Northeast 2,117 2,117 5,793
Centro Sul Baiano Northeast 1,618 415 2,043 32,554
Sul Fluminense Southeast 1,990 1,990 45,845
V. S. Francisc. Bahia Northeast 1,498 391 1,989 15,944
Oeste Potiguar Northeast 1,412 323 175 1,910 17,848
Central Potiguar Northeast 1,878 1,878 8,382
Sudeste Riograndense South 952 695 1,647 30,827
Leste Sergipano Northeast 1,593 1,593 32,047
Centro Maranhense Northeast 1,247 181 1,428 12,231
Centro Amazonense North 1,411 1,411 98,956
Leste do MS Midwest 235 979 60 1,275 58,381
Leste Potiguar Northeast 1,113 1,113 38,752
Sul Goiano Midwest 930 91 1,021 52,526
Metropolitana de SP Southeast 791 190 981 2,081,362
Metropolitana de POA South 599 369 968 226,455
Jaguaribe Northeast 735 134 869 8,714
Sul Catarinense South 857 857 35,471
Sudoeste Riograndense South 162 375 265 802 23,784
Norte Maranhense Northeast 426 360 786 45,245
Bauru Southeast 150 626 776 55,896
Sudoeste Piauiense Northeast 58 705 763 9,566
Noroeste Cearense Northeast 762 762 17,747
Sudoeste de MS Midwest 651 651 35,532
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Table 3  (continued)

Mesoregion name Region Electricity generation Installed Capacity (MWh) GDP

Wind Gas Photovoltaic Biomass Coal Nuclear SHP Total

Aracatuba Southeast 204 431 634 22,790
Agreste Pernambucano Northeast 539 539 32,648
Metropolitana Recife Northeast 325 208 533 1,12,622
Centro-Sul MT Midwest 335 194 529 62,616
Metropolitana Curitiba South 315 181 496 230,230
Presidente Prudente Southeast 81 390 471 23,537
Centro Oriental PR South 465 465 33,561
Norte de Minas Southeast 442 442 27,700
Extremo Oeste Baiano Northeast 66 340 30 436 21,564
Metropolitana Fortaleza Northeast 216 81 111 408 93,417
Borborema Northeast 378 378 3,459
Sertao Pernambucano Northeast 138 163 301 12,027
Sao Jose do Rio Preto Southeast 145 152 297 56,120
Norte Mato-grossense Midwest 265 265 52,625
Metropolitana Salvador Northeast 30 214 17 260 130,930
Oeste Maranhense Northeast 255 255 19,996
Litoral Norte ES Southeast 204 33 237 18,653
Metropolitana de BH Southeast 151 84 235 263,924
Noroeste de Minas Southeast 213 213 10,956
Sertão Paraibano Northeast 94 108 202 10,917
Sul Baiano Northeast 71 127 197 35,378
S. Franc. Pernambucano Northeast 179 10 189 3,466
Norte de Roraima North 97 84 181 33,409
Centro Norte de MS Midwest 177 177 38,406
Assis Southeast 174 174 12,832
Sudeste Mato-grossense Midwest 73 86 159 25,060
Triangulo Mineiro Southeast 152 152 92,991
Madeira-Guapore North 145 145 39,956
Oeste Catarinense South 129 129 53,151
Nordeste Rio-grandense South 103 103 54,035
Serrana South 93 93 14,813
Zona da Mata Southeast 87 87 51,694
Ribeirao Preto Southeast 70 70 10,2657
Campinas Southeast 70 70 250,419
Centro Goiano Midwest 68 68 26,204
Vale do Paraiba Paulista Southeast 60 60 118,200
Noroeste Rio-grandense South 55 55 86,780
Centro Ocidental RS South 8 31 39 18,159
Noroeste Goiano Midwest 30 30 5,891
Nordeste Mato-grossense Midwest 29 29 12,042
Sul Cearense Northeast 23 23 5,603
Araraquara Southeast 5 5 34,078
Norte Catarinense South 4 4 72,564

Source: ESO (2022a) and BIGS (IBGE 2019)
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