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Abstract
The Covid-19 pandemic requires a continuous evaluation of whether current poli-

cies and measures taken are sufficient to protect vulnerable populations. One

quantitative indicator of policy effectiveness and pandemic severity is the case

fatality ratio, which relies on the lagged number of infections relative to current

deaths. The appropriate length of the time lag to be used, however, is heavily

debated. In this article, I contribute to this debate by determining the temporal lag

between the number of infections and deaths using daily panel data from Germany’s

16 federal states. To account for the dynamic spatial spread of the virus, I rely on

different spatial econometric models that allow not only to consider the infections in

a given state but also spillover effects through infections in neighboring federal

states. My results suggest that a wave of infections within a given state is followed

by increasing death rates 12 days later. Yet, if the number of infections in other

states rises, the number of death cases within that given state subsequently

decreases. The results of this article contribute to the better understanding of the

dynamic spatio-temporal spread of the virus in Germany, which is indispensable for

the design of effective policy responses.
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1 Introduction

By the end of 2019, a novel coronavirus, the severe acute respiratory syndrome

coronavirus 2, in short Covid-19, was detected in the city of Wuhan in China (Guan

et al. 2020; Zhang et al. 2020). What seemed first to cause only a country wide

epidemic has fast developed into a worldwide pandemic, which is by now judged as

the greatest human challenge since the Second World War. By the time of October

2021, the pandemic has caused about 246 million infections and more than 4.9

million deaths worldwide.

As a policy response, several countries implemented severe lockdowns, including

school and store closings, curfews and travel bans to reduce human interaction and

thereby the spread of the virus. While aiming to save human life, such restrictions

also limit human freedoms. Hence, they require a continuous evaluation of whether

they are sufficient to protect vulnerable populations and whether more or less strict

measures can and should be considered. One quantitative indicator of policy

effectiveness and pandemic severity is the case fatality ratio (WHO 2020; Ioannidis

2021), which is based on the current number of deaths relative to the lagged number

of infections. The appropriate length of the time lag to be used, however, is heavily

debated (Baud et al. 2020; Kim and Goel 2020). An accurate measure is essential as

both, over- and underestimation can have severe consequences, such as not taking

the pandemic seriously or causing redundant panic (Kim and Goel 2020).

The literature reflects the uncertainty about the appropriate length. Chrusciel and

Szybka (2021), for example, investigate the time lag in several European countries

and find that the lag between reported cases and deaths averages around 7 days.

Vanella et al. (2020) also investigate the appropriate time lag for European countries

to calculate an unbiased case fatality ratio and conclude that a lag between five and

ten days should be used. Testa et al. (2020) determine the lag for US counties and

find a substantially longer lag. They conclude that deaths often occur two to eight

weeks after the onset of the first symptoms. Wilson et al. (2020) determine the case

fatality ratio for China and find that a 13-day lag best describes the pattern of the

data.

To add to this debate, I provide rigorous evidence for the length of the time lag

between a rise in infections and a subsequent rise in death cases using daily panel

data for Germany’s 16 federal states from May 2020 to December 2020. In

comparison to the studies outlined above, however, I rely on a spatial econometric

approach to consider the dynamic spatial spread of the virus. I thereby also add to

the literature that analyses the spatial dynamics of Covid-19 and quantifies the

spatio-temporal interactions and spillovers of the virus (e.g., Guliyev 2020; Krisztin

et al. 2020; Ehlert 2021). Specifically, I estimate different spatial econometric

models that allow not only to consider the infections in a given state but also those

in neighboring states, so-called spatial lags. Spatial econometric models are useful

to model interaction effects between geographical units (Elhorst 2021) and are

hence especially useful to model the global-spreading and infectious nature of the

coronavirus.
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I determine the lag between the wave of infections and the wave of Covid-19

death cases in Germany’s federal states and their geographical spread with four

spatial models: I use (1) a model with spatial lags in the independent variables (SLX

model), (2) a non-dynamic and (3) a dynamic model that include spatial lags in

both, the dependent and independent variable, together with space and time fixed-

effects (Spatial Durbin Models with fixed-effects), and (4) a dynamic Spatial Durbin

Model with common factors to capture potential strong cross-sectional dependence

(i.e., cross-sectional averages instead of time fixed-effects). All of these spatial

models allow to derive the direct (same-state) and indirect (other states) effects of

infections on death cases. Specifically, the direct effect shows the marginal effect on

the number of death cases driven by a change in the number of infections in the own

state, while the indirect effect is the marginal effect on the number of death cases

driven by an increase in infections in all other states, while both effects taken

together form the total effect (Golgher and Voss 2016).

All four spatial econometric models have the advantage that the spillover effects

are fully flexible, i.e., they can take any value, which makes them more suitable for

economic research focusing on spillover effects in comparison to a Spatial

Autoregressive Model (SAR) or Spatial Autoregressive Combined Model (SAC)

(Elhorst 2021). Moreover, the two dynamic models allow to differentiate between

short-run (SR) and long-run (LR) effects, i.e., is possible to assess whether the effect

of an increase in infections on the number of death cases fades out over time, if, for

example, effective policies are implemented to protect the most vulnerable.

The remainder of this article proceeds as follows. In Sect. 2, I present the data

used for the analysis. In Sect. 3, I outline the empirical strategy and briefly discuss

the differences in the spatial econometric models. I present the results in Sect. 4 and

conclude in Sect. 5.

2 Data

2.1 Daily infections and daily death cases

The main variables used in this article are the number of daily new infections and

the number of daily reported death cases due to Covid-19 in Germany at the federal

state level. There are in total 16 federal states and the German Robert Koch Institut
(RKI) provides and updates the respective numbers on a daily basis since the very

beginning of the pandemic.1 Yet, as the number of cases in the first and second wave

are not directly comparable (due to different testing strategies and measures taken),

I make use of the data from the period between May 1, 2020 and December 31,

2020, hence dropping observations from the first wave’s peak as well as those that

were recorded after the vaccination campaign started. The latter is done to get an

estimate of the time lag between infections and deaths without the vaccine being

available, hence, an unbiased measure of when the rise of deaths should be expected

after a rise of infections.

1 https://experience.arcgis.com/experience/478220a4c454480e823b17327b2bf1d4/page/Bundesl%C3%

A4nder/.
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2.2 Population and geospatial data

To make the numbers of infections and deaths comparable across the different

states, I calculate them per 100,000 inhabitants in the respective state. The

corresponding population numbers are derived from the Bundesamt für Kartogra-
phie und Geodäsie2 which provides geospatial shape files for Germany, including

population numbers for each state. The same source is used to derive the

geographical coordinates for each state, which are essential to construct the spatial

weight matrix used in spatial models (see Sect. 3).

2.3 Intensive care cases

To be able to derive an unbiased estimate of the time lag between infections and

death cases, I control for the number of daily new intensive care (IC) cases per

federal state, i.e., the number of patients that have contracted the corona disease and

are under intensive care. This variable is also calculated per 100,000 inhabitants.

The number of daily new IC cases might be positively related to both variables of

interest, the number of infections and deaths. Hence, including the variable in the

regression avoids an upward omitted variable bias. Information on the number of

patients in IC is provided by the RKI and the German Interdisciplinary Group for

Intensive and Emergency Care (DIVI).3 The data are available on a daily level and

per federal state.

2.4 Temperature data

The medical literature reports that respiratory diseases and infections follow

seasonal cycles and are susceptible to temperature (e.g., Shaman et al. 2010;

Martinez 2018). Similar patterns have recently been confirmed for the coronavirus.

Ma et al. (2020), in their analysis on temperature and humidity effects on Covid-19

deaths in China, find that higher temperatures lead to increases in death cases. Wu

et al. (2020) contrarily identify a negative relationship between temperature and

new cases and deaths in a study on 166 countries. To control for the potential

confounding factor of temperature, I include the daily mean temperature on the state

level in my analysis. Data on daily meteorological conditions is received from the

German Weather Service (DWD). The DWD provides daily time series data for 538

weather stations across Germany, including the coordinates of each station. I merge

each station to the corresponding federal state, using their respective coordinates,

and average the mean temperature across all stations.

Figure 1 shows the spatial distribution of the number of infections per 100,000

inhabitants per state cumulated over the observation window from May 1, 2020 to

December 31, 2020. The figure shows a clear variation in the number of cumulative

Covid-19 cases across all federal states, with states in the south and south-west

2 See https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/vg250_01-01.pdf for a

description of the data set.
3 https://www.intensivregister.de/#/index.
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being the most severely affected. From a first glimpse, cross-sectional dependence

seems to be present as there is some clustering of states with similar infection rates.

To confirm the presence of cross-sectional dependence statistically, I use

Pesarans’s CD-test for panel data (Pesaran 2004, 2015), which is based on the

pairwise correlation coefficients of the different geographical units. I also estimate

the standardized cross-sectional exponent a (Bailey et al. 2016) to determine the

degree of cross-sectional dependence. The results are shown in Table 1 and confirm

the cross-sectional dependence for the number of infections. Cross-sectional

dependence is also confirmed for deaths, the number of IC patients and temperature.

The correlation is in each case significant at the 1% level and very strong as the

exponent a of nearly one indicates. This suggest that a model with common factors

instead of time fixed-effects might be better suited to capture the strong cross-

sectional dependence (Ciccarelli and Elhorst 2018; Elhorst et al. 2021). Proxying for

common factors can be empirically implemented by either cross-sectional averages

(pioneered by Pesaran 2006) or principle components (e.g., Bai 2009; Shi and Lee

Fig. 1 Cumulative Covid-19 infections in Germany. Notes: The map shows the cumulative number of
Covid-19 infections per 100,000 inhabitants between May 1, 2020 and December 31, 2020 for the 16
federal states in Germany
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2017; Bai and Li 2021); the former approach following Pesaran (2006) is applied in

this study.

3 Empirical strategy

To identify the time lag between the number of cases and the number of deaths, I

rely on a spatial econometric approach, which allows me to model direct effects

within the geographical unit of interest, while accounting for possible interaction

effects with neighboring spatial units. Elhorst (2021) differentiates between three

types of interactions: (1) exogenous interactions effects (i.e., the independent

variable in one spatial unit can affect the dependent variable in other spatial units),

(2) endogenous interaction effects (i.e., the dependent variable in one spatial unit

can affect the dependent variable in other spatial units), and (3) interaction effects

among the error terms (i.e., the error term in one unit can affect the error term in

other units). In the modeling approach outlined below, I consider endogenous and

exogenous interaction effects.

I use the number of daily deaths per 100,000 inhabitants within each state as

dependent variable and regress it on the same-day number of new infections per

100,000 inhabitants in the same state as well as on the number of new infections per

100,000 inhabitants up to 14 days lagged in time in the same state. As explained

above, I do control for the number of new patients with the Corona-disease per

100,000 being treated in IC as well as for mean temperature. Both variables also

enter the regression with in total 14 time lags. Moreover, I include state fixed-effects

to control for all non-time-varying effects that are specific to each state (such as

being located at the sea or at the border to a different country) and which might

impact the number of daily death cases and infections. Also, day fixed-effects are

included to control for time effects affecting all states similarly. This will, for

example, control for the effect of the whole country being in lockdown as well as for

week-day specific patterns, such as fewer tests during the weekend.

So far, this model corresponds to a ‘standard’ distributed lag model with fixed-

effects. To account for the spatial dependence, I further add the spatial components

to the model. The full model reads

Table 1 Pesaran’s CD test for

cross-sectional dependence and

Bailey et al.’s cross-sectional

exponent a

Variable CD-test P value Corr a (s.e.)

Deaths 127.57 0.000 0.744 0.921 (0.06)

Infections 145.18 0.000 0.847 0.917 (1.81)

Intensive care patients 47.94 0.000 0.280 0.919 (0.08)

Mean temperature 165.12 0.000 0.963 0.916 (0.09)

The null-hypothesis of Peseran’s test is weak cross-sectional

dependence. Corr. is the average pairwise correlation coefficient.

Deaths, infections and new intensive care patients are measured per

100,000 inhabitants
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Deathsit ¼ sDeathsit�1 þ q
XN

j¼1

wijDeathsjt þ g
XN

j¼1

wijDeathsjt�1

þ
X14

k¼0

bkInfectionsit�k þ
X14

k¼0

h1k
XN

j¼1

wijInfectionsjt�k

þ
X14

k¼0

dkTemperatureit�k þ
X14

k¼0

h2k
XN

j¼1

wijTemperaturejt�k

þ
X14

k¼0

ckIntensiveit�k þ
X14

k¼0

h3k
XN

j¼1

wijIntensivejt�k

þ ai þ rt þ uit;

ð1Þ

where wij are the elements of the matrix W, which is a 16 9 16 row-normalized

binary contiguity matrix, with its elements being equal to one when state i and state

j are neighboring states and zero otherwise, and all diagonal elements wij with i ¼ j
equal to zero.4 ai and rt are the federal state and time fixed-effects, respectively, i.e.,

a binary dummy variable is included for each state i and each day t (minus one to

avoid the dummy variable trap). Deathsit, Infectionsit and Intensiveit are the

respective numbers of death cases, infections and intensive care patients per

100,000 inhabitants at day t in state i. Temperatureit is the mean temperature at day

t in state i. The subscript j always denotes all states excluding state i. uit is the error
term. k is an index running from 0 to 14 and indicates the respective time lag.

I estimate five different specifications of the outlined model by constraining

several of the parameters. In Model (1), I set s ¼ g ¼ q ¼ h1k ¼ h2k ¼ h3k ¼ 0,

resulting in a standard distributed lag model with spatial and time fixed-effects.

With these restrictions, no spatial spillover effects can occur.

In Model (2), I set s ¼ g ¼ q ¼ 0, such that the model is the SLX model (spatial

lag in independent variables). This model allows only to derive long-run and only

local spillover effects, i.e., spatial effects cannot change in size over time and only

neighboring states can affect each other—which is, however, an implausible

assumption given the global spread of the virus.

In Model (3), therefore, I allow q to be different from 0 and thereby for global

spillover effects. I only set s ¼ g ¼ 0, leading to the static Spatial Durbin Model

with fixed-effects. Finding the parameter q to be significantly different from zero

implies global spillover effects, since also non-neighboring states can (through other

states) affect each other. The static model, however, does not allow to differentiate

between short-run and long-run effects, i.e., it does not allow to investigate whether

the effects become smaller or larger over time.

Allowing all parameters to differ from zero results in Model (4), the dynamic

Spatial Durbin Model with spatial and time fixed effects. As outlined above, adding

the dynamic element allows also to differentiate between short-run and long-run

4 W can also be defined as inverse distance matrix, where the elements wij are the inverse of the distance

between state i and state j. I also estimated all models using an inverse distance matrix, but this

specification performed statistically worse in every model.
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effects, i.e., to assess whether the effect size and significance changes over time or

remains constant. In Model (5), I drop the time fixed-effects and instead account for

common factors by including the cross-sectional averages (following Pesaran 2006)

for Deathsit;Deathsit�1, Infectionsit, Intensiveit and Temperatureit: This approach

should be more suitable to account for the strong cross-sectional dependence that

was indicated by the high cross-sectional exponent a.
The parameters of the model in Eq. (1) are estimated via Ordinary Least Squares

(OLS) if no endogenous interaction effects are included (i.e., in Model (1) and (2)),

and by quasi maximum likelihood (QML) if endogenous interaction effects are

considered (Model (3)-(5)), since estimating spatial models with endogenous

interaction effects via OLS will result in inefficient estimates (LeSage and Pace

2009). The bias correction approach of Yu et al. (2008) is applied in the two

dynamic models to yield centered confidence intervals (see also Lee and Yu 2010).

One drawback of the bias-corrected QML estimator is that it will be inconsistent

under heteroskedasticity (Bai and Li 2021). While the standard errors for all models

are adjusted for possible heteroskedasticity by applying the robust standard error

approach proposed by Driscoll and Kraay (1998) (see also Hoechle 2007; Belotti

et al. 2017), this will not eliminate the possibility that the QML estimator is not

centered around the true value. A quasi-maximum likelihood estimator for dynamic

spatial panel data models with common factors that is consistent in the presence of

heteroskedasticity has been proposed by Bai and Li (2021), who also show that the

bias can reach large magnitudes, especially if the sample size is small. I therefore

also present the results of their proposed QML estimator and contrast it with the

results from the non-heteroskedasticity robust estimator.5

The parameters g; q; h1k; h2k and h3k jointly determine the spatial interaction

effects. The main parameters of interest to determine the time lag are the parameters

bk and h1k. However, the point estimates cannot directly be interpreted as the direct

effects and the spillover effects (except in the SLX model), but have to be calculated

separately. Specifically, as soon as endogenous interaction effects enter the

regression, the direct effect is calculated as the mean diagonal element of the

models’ N 9 N matrix of partial derivatives ((1-s)I - (q ? g)W)-1 [bk I ? Whk],
where I is the identity matrix. The indirect effect is the mean row sum of the non-

diagonal elements of the same matrix (LeSage and Pace 2009; Debarsy et al. 2012;

Elhorst 2014, 2021). To differentiate between the short- and long-run effects, the

respective parameters s and g have to be set equal to zero.6 The corresponding

standard errors are computed via Monte Carlo simulations (LeSage and Pace 2009).

A complete and detailed overview for the formulas of the marginal effects (for

short- and long-run direct and indirect effects) as well as for the respective t-values

or standard errors can be found in Elhorst (2014, pp. 25 and 105) and in Belotti et al.

(2017, p. 146).

5 I would like to thank Kunpeng Li who generously shared his MATLAB code for the heteroskedasticity-

robust QMLE with me.
6 In the static Spatial Durbin Model, the parameters s and g are zero by construction, but the resulting

marginal effects are interpreted as long-run marginal effects.
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4 Results

Table 2 presents the regression coefficients for each of the models outlined above,

while Table 3 presents the corresponding (short-run and long-run) marginal direct

effects and spillover effects.

Column (1) in Table 2 displays the results for the standard linear distributed lag

model with fixed-effects, in which the point estimates of the parameters can be

interpreted directly. It shows, as expected, that the number of daily infections is a

strong determinant of the number of deaths cases. An interesting pattern can be

observed: the number of the same day infections positively relates to the same day

number of deaths cases, while the first lag is negative. This suggests that some form

of mortality displacement is present, i.e., a temporary increase in death cases is

followed by days with decreased death cases. While this phenomenon has especially

been observed during heat waves (see for example Deschênes and Moretti 2009;

Karlsson and Ziebarth 2018), studies also investigate this phenomenon in the

context of Covid-19 (Michelozzi et al. 2020; Cerqua et al. 2021). Afterwards, the

effects become again significantly positive at lag eight, followed once by negative

effects at nine and ten days lagged, and then turning once again positive and

significant at lag 11–14. Hence, this first basic model suggests that the number of

Covid-19 death cases consistently rises after an increase in number of infections

after about 11 days. The coefficients for the daily mean temperature are

insignificant, while the coefficients for the intensive care variable are first partly

negative and become positive after about one week (coefficients for temperature
and intensive care cases are shown in Table 4 in the Appendix). This model,

however, does not yet account for spatial interdependence, reflected also in the

value of the CD-test for the residuals. It shows that the test statistic does not lie

within the interval [- 1.96; 1.96], which is needed to conclude that there is no

further cross-sectional dependence in the residuals. At this point it is to mention that

the CD-test significantly loses in power as soon as time fixed-effects or common

factors are included in a model. Nevertheless, it is used in empirical studies to

decide on model fit (see for example Halleck Vega and Elhorst 2016; Ciccarelli and

Elhorst 2018), but should always be interpreted carefully and only be considered

jointly with other test statistics, namely R-squared, the log-likelihood, and the cross-

sectional exponent a. The latter supports the rejection of the model as it is not

significantly different from 1.

Moving to the SLX model in Column (2) already improves the model fit as the

increased values of R-squared and the log-likelihood indicate. It also allows to make

a first statement about local spillovers. They show that the number of infections in

neighboring states j also significantly relates to the death cases in state i, yet the
coefficients are primarily significantly negative, and only turn positive after a lag of

eleven days. Specifically, the spillover effects suggest that an increase in infections

in neighboring states leads first to a decrease in own-state death cases with a three to

ten-day lag and afterwards to an increase in own-state death cases with an eleven to

13-day lag. In terms of the size, an increase in infections of 1000 per 100,000

inhabitants within a given federal state would lead to about five to six more deaths
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Table 2 Estimation results of the lag between Covid-19 infections and deaths using different model

specifications

(1) (2) (3) (4) (5)

Fixed

Effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

Deaths t - 1 (s) 0.178*** - 0.069*

(0.044) (0.041)

WDeaths t (q) - 0.179*** 0.173*** 0.076***

(0.023) (0.021) (0.024)

WDeaths t - 1 (g) 0.010 0.047

(0.026) (0.034)

Infections t 0.017*** 0.016*** 0.016*** 0.016*** 0.013***

(0.003) (0.002) (0.002) (0.002) (0.002)

Infections t - 1 - 0.002** - 0.002** - 0.002** - 0.005*** - 0.003***

(0.001) (0.001) (0.001) (0.001) (0.001)

Infections t - 2 0.000 0.001 0.001* 0.001*** - 0.000

(0.001) (0.000) (0.000) (0.000) (0.000)

Infections t - 3 0.000 0.000 0.000 0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.000)

Infections t - 4 0.001 0.000 0.000 0.000 - 0.000

(0.001) (0.001) (0.001) (0.000) (0.000)

Infections t - 5 0.001 0.001 0.001 0.001 - 0.001*

(0.001) (0.001) (0.001) (0.001) (0.001)

Infections t - 6 - 0.000 0.000 0.000 0.000 - 0.003***

(0.001) (0.001) (0.001) (0.001) (0.001)

Infections t - 7 0.000 0.000 0.000 0.000 - 0.001**

(0.000) (0.000) (0.000) (0.000) (0.001)

Infections t - 8 0.002*** 0.001*** 0.001*** 0.001** 0.002***

(0.000) (0.000) (0.000) (0.000) (0.000)

Infections t - 9 -

0.005***

-

0.005***

- 0.005*** - 0.005*** - 0.002***

(0.002) (0.002) (0.001) (0.002) (0.000)

Infections t - 10 -

0.003***

-

0.002***

- 0.002*** - 0.002** - 0.001*

(0.001) (0.001) (0.001) (0.001) (0.000)

Infections t - 11 0.001** 0.002** 0.002*** 0.002*** - 0.000

(0.001) (0.001) (0.001) (0.001) (0.000)

Infections t - 12 0.006*** 0.006*** 0.006*** 0.006*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.000)

Infections t - 13 0.005** 0.005*** 0.005*** 0.004** 0.003***

(0.002) (0.002) (0.002) (0.002) (0.001)

Infections t - 14 0.005*** 0.005*** 0.005*** 0.004*** 0.004***

(0.002) (0.002) (0.002) (0.001) (0.001)
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Table 2 continued

(1) (2) (3) (4) (5)

Fixed

Effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

WInfections t -

0.002***

0.000 0.001** 0.000

(0.001) (0.000) (0.000) (0.001)

WInfections t - 1 0.000 - 0.000 - 0.000 0.000

(0.000) (0.000) (0.001) (0.000)

WInfections t - 2 0.002** 0.002*** 0.002*** 0.003***

(0.001) (0.001) (0.001) (0.001)

WInfections t - 3 -

0.002***

- 0.002*** - 0.002*** 0.001**

(0.000) (0.000) (0.000) (0.000)

WInfections t - 4 -

0.005***

- 0.004*** - 0.004*** - 0.000

(0.001) (0.001) (0.001) (0.000)

WInfections t - 5 -

0.001***

- 0.002*** - 0.001* 0.001

(0.000) (0.000) (0.000) (0.001)

WInfections t - 6 0.000 - 0.000 0.000 0.002***

(0.000) (0.001) (0.000) (0.001)

WInfections t - 7 - 0.000 0.000 - 0.000 0.001

(0.001) (0.001) (0.001) (0.001)

WInfections t - 8 -

0.003***

- 0.002*** - 0.002*** - 0.002***

(0.001) (0.001) (0.001) (0.000)

WInfections t - 9 - 0.001 - 0.001 - 0.001 - 0.000

(0.001) (0.001) (0.001) (0.000)

WInfections t - 10 - 0.001 - 0.000 - 0.000 - 0.000

(0.001) (0.001) (0.001) (0.000)

WInfections t - 11 0.002*** 0.003*** 0.003*** 0.001***

(0.000) (0.000) (0.000) (0.000)

WInfections t - 12 0.001*** 0.002*** 0.001*** - 0.001**

(0.000) (0.000) (0.000) (0.000)

WInfections t - 13 0.001 0.001** 0.001 - 0.002**

(0.001) (0.001) (0.001) (0.001)

WInfections t - 14 - 0.001** - 0.000 - 0.000 - 0.002***

(0.000) (0.000) (0.000) (0.000)

R2 (overall, incl. FE) 0.807 0.814 0.814 0.824 0.849

Log Likelihood 2409.24 2489.42 2522.59 2567.47 3285.29

Residual CD-Test - 9.858 - 9.86 10.71 11.06 - 0.94
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after 12–13 days, while an increase in infections of 1000 per 100,000 inhabitants in

neighboring federal states would lead to one to two more deaths after eleven to

13 days. As before, the direct and indirect effects for temperature are insignificant

and those for the intensive care patients support the positive effect after about one

week (shown in Table 5 in the Appendix). The residual CD-test statistic jointly with

the cross-sectional exponent a being indifferent from 1, however, do again not allow

to conclude that this model captures fully the cross-sectional dependence.

Column (3) displays the results for the non-dynamic SDM with fixed effects,

which includes now also an endogenous interaction effect. The coefficient q is

significantly negative and several of the h1k coefficients also remain negative.

Calculating the indirect long-run effects (Table 3) shows that the majority of them

are likewise significantly negative, in line with the rather negative than positive

spillover effects, as suggested by the results of the SLX model. Exploring the

various test statistics reveals that the log-likelihood ratio clearly favors Model (3)

over Model (2), yet, the R-squared value is not significantly larger. Moreover, the

residual CD statistic is still significant, and a is still not significantly different from

1, which jointly lead to a rejection of the model in terms of fully capturing the

spatial dependence.

Introducing the dynamic model in Column (4) shows a somewhat different

picture for the q coefficient, which now turns significantly positive. The likewise

Table 2 continued

(1) (2) (3) (4) (5)

Fixed

Effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

Avg. Corr. Coef - 0.057 - 0.058 0.062 0.065 - 0.005

CS-exponent a of

residuals [Conf.

Inter]

0.50

[- 0.07;

1.07]

0.34

[- 1.48;

2.16]

0.76 [0.15;

1.07]

0.77 [0.44; 1.11] 0.73 [0.57;

0.90]

LR-test (p-value) (1) versus

(2)

(2) versus (3) (3) versus (4)1 (4) versus (5)

\ 0.001 \ 0.001 \ 0.001 \ 0.001

Number of Obs 3920 3920 3920 3904 3904

Number of Fed.

States

16 16 16 16 16

Robust Driscoll and Kraay standard errors in parenthesis. ***p\ 0.01, **p\ 0.05, *p\ 0.1. Models (1)

and (2) are estimated via OLS. All other models are estimated via Quasi-Maximum Likelihood. The Yu

et al. (2008) bias-correction is applied in Model (4) and (5). The Stata command xsmle (Belotti et al.

2017) is used to estimate the spatial models. R2 statistics show the corrected overall R2 including the

variation explained by the fixed-effects to be comparable across all five models. 1The likelihood ratio test

is based on comparing the Log Likelihood between Model (3) and (4) with 2 degrees of freedom. Since

this could be considered not fully adequate since the two models are estimated with a different number of

observations, I redo the LR test by (i) dropping the (timewise) first observation of Model (3) such that it is

also estimated with only 3904 observations and (ii) by including the observation of the last day in April,

such that model (4) is estimated with 3920 observations. In both cases, Model (4) is the preferred

specification
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Table 3 Direct effects and spillover effects for infections in the short-run (SR) and long-run (LR)

SR direct SR indirect SR total LR direct LR indirect LR total

SLX

Infections t 0.016*** - 0.002***

Infections t - 1 - 0.002** 0.000

Infections t - 2 0.001 0.002**

Infections t - 3 0.000 - 0.002***

Infections t - 4 0.000 - 0.005***

Infections t - 5 0.001 - 0.001***

Infections t - 6 0.000 0.000

Infections t - 7 0.000 - 0.000

Infections t - 8 0.001*** - 0.003***

Infections t - 9 - 0.005*** - 0.001

Infections t - 10 - 0.002*** - 0.001

Infections t - 11 0.002** 0.002***

Infections t - 12 0.006*** 0.001***

Infections t - 13 0.005*** 0.001

Infections t - 14 0.005*** - 0.001**

S-SDM-FE

Infections t 0.017*** - 0.002*** 0.014***

Infections t - 1 - 0.002** 0.000 - 0.002**

Infections t - 2 0.001 0.002** 0.002***

Infections t - 3 0.000 - 0.002*** - 0.002***

Infections t - 4 0.000 - 0.004*** - 0.004***

Infections t - 5 0.001 - 0.002*** - 0.001

Infections t - 6 0.000 - 0.000 0.000

Infections t - 7 0.000 0.000 0.000

Infections t - 8 0.001*** - 0.002*** - 0.001**

Infections t - 9 - 0.005*** - 0.000 - 0.005***

Infections t - 10 - 0.003*** 0.000 - 0.002**

Infections t - 11 0.002*** 0.002*** 0.004***

Infections t - 12 0.006*** 0.001** 0.007***

Infections t - 13 0.005*** 0.000 0.005***

Infections t - 14 0.005*** - 0.001** 0.004***

D-SDM-FE

Infections t 0.016*** - 0.002*** 0.015*** 0.020*** - 0.003*** 0.017***

Infections t - 1 - 0.005*** 0.001 - 0.004*** - 0.006*** 0.001 - 0.005***

Infections t - 2 0.001** 0.002*** 0.003*** 0.001** 0.002*** 0.003***

Infections t - 3 0.000 - 0.002*** - 0.002*** 0.000 - 0.003*** - 0.002***

Infections t - 4 0.000 - 0.004*** - 0.003*** 0.000 - 0.004*** - 0.004***

Infections t - 5 0.001 - 0.001** 0.000 0.001 - 0.001** 0.000

Infections t - 6 0.000 0.000 0.000 0.000 0.000 0.000

Infections t - 7 0.000 - 0.000 0.000 0.000 - 0.000 0.000

Infections t - 8 0.001*** - 0.002*** - 0.001** 0.001*** - 0.003*** - 0.001**
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positive significant value of s suggests serial correlation in the number of deaths.

The direct effects are again consistently positive and statistically significant after

eleven days, while the indirect effects are again first primarily negative, both in the

short- and in the long-run and only turn positive after a lag of eleven days.

R-squared becomes somewhat larger in comparison to the static model and also the

log-likelihood ratio test rejects the static model in favor of the dynamic model.7

Nevertheless, the CD-test statistic still lies outside of the [- 1.96; 1.96] interval and

Table 3 continued

SR direct SR indirect SR total LR direct LR indirect LR total

Infections t - 9 - 0.005*** 0.000 - 0.005*** - 0.006*** 0.000 - 0.006***

Infections t - 10 - 0.002** 0.000 - 0.002 - 0.002** 0.000 - 0.002

Infections t - 11 0.002*** 0.002*** 0.004*** 0.002*** 0.003*** 0.005***

Infections t - 12 0.006*** 0.000 0.006*** 0.007*** 0.000 0.007***

Infections t - 13 0.004** 0.000 0.004*** 0.005** 0.000 0.005***

Infections t - 14 0.004*** - 0.001*** 0.003** 0.005*** - 0.001*** 0.004**

D-SDM-CSA

Infections t 0.013*** - 0.001** 0.012*** 0.012*** - 0.000 0.012***

Infections t - 1 - 0.003*** 0.001 - 0.002*** - 0.003*** 0.001 - 0.002***

Infections t - 2 - 0.000 0.003*** 0.003*** - 0.000 0.003*** 0.003***

Infections t - 3 0.000 0.001* 0.001** 0.000 0.001** 0.001**

Infections t - 4 - 0.000 - 0.000 - 0.001** - 0.000 - 0.000 - 0.001**

Infections t - 5 - 0.001* 0.001 - 0.000 - 0.001* 0.001 - 0.000

Infections t - 6 - 0.003*** 0.002*** - 0.001*** - 0.003*** 0.002*** - 0.001***

Infections t - 7 - 0.001** 0.001 - 0.000 - 0.001** 0.001 - 0.000

Infections t - 8 0.002*** - 0.002*** 0.000 0.002*** - 0.002*** 0.000

Infections t - 9 - 0.002*** - 0.000 - 0.002*** - 0.002*** - 0.000 - 0.002***

Infections t - 10 - 0.001* - 0.000 - 0.001* - 0.001* - 0.000 - 0.001*

Infections t - 11 - 0.000 0.001*** 0.000 - 0.000 0.001*** 0.000

Infections t - 12 0.002*** - 0.001** 0.001*** 0.002*** - 0.001** 0.001***

Infections t - 13 0.003*** - 0.002** 0.000 0.002*** - 0.002** 0.000

Infections t - 14 0.004*** - 0.002*** 0.001** 0.003*** - 0.002*** 0.001**

Table 3 shows the marginal direct and spillover effects for infections, in the short-run and long-run for

every spatial model from day t to day t - 14. Marginal direct (indirect) effects are derived from the mean

diagonal (off-diagonal) elements of the respective model’s matrix of partial derivates (LeSage and Pace

2009; Debarsy et al. 2012; Elhorst 2014, 2021). ***p\ 0.01, **p\ 0.05, *p\ 0.1. Standard errors are

obtained via Monte Carlo Simulation as described in LeSage and Pace (2009) (see also Belotti et al. 2017;

Elhorst 2021). SLX: Spatial lag of X model; S-SDM-FE: Static Spatial Durbin Model with time and

spatial fixed effects; D-SDM-FE: Dynamic Spatial Durbin Model with time and spatial fixed effects;

D-SDM-CSA: Dynamic Spatial Durbin Model with Cross-Sectional Averages; SR: short-run; LR: long-

run

7 The likelihood ratio test is based on comparing the Log Likelihood between Model (3) and (4) with 2

degrees of freedom. Since this could be considered not fully adequate since the two models are estimated

with a different number of observations, I redo the LR test by (i) dropping the (timewise) first observation

of Model (3) such that it is also estimated with only 3904 observations and (ii) by including the
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the confidence intervals of the cross-sectional exponent a still include the value 1,

making the dynamic SDM with fixed effects also unsuitable to fully capture the

strong cross-sectional dependence. Another aspect leading to a rejection of the

model is the increasing size (in absolute terms) of both the direct and indirect effect.

Given that several federal states implemented cautionary measures to de-link the

number of infections and death cases, one would plausibly expect a decrease in the

effect sizes over time.

The only model that is well suited to fully capture the cross-sectional dependence

in the data is the dynamic SDM with cross-sectional averages presented in Column

(5), which aligns with the cross-sectional exponent a of nearly one that was

estimated for the raw data. R-squared and the log-likelihood value both take on the

largest value in this model and the residual CD-test statistic lies within the [- 1.96;

1.96] interval and is, hence, no longer significant. The average correlation

coefficient of the residuals is now close to zero (- 0.005) and the cross-sectional

exponent alpha is now significantly different from 1, with the point estimate below

the threshold of 3/4, which indicates that common factors have adequately been

addressed (Ciccarelli and Elhorst 2018). Moreover, the sum of s; g and q is smaller

than 1, which is essential for the model to be stationary. s is statistically significant

and negative, supporting again the hypothesis of mortality displacement, i.e., days

with high numbers of death cases are followed by days with on average lower

numbers of death cases.

Several of the h1k coefficients as well as the coefficient q and are statistically

significant, g remains insignificant, yet, a LR-test rejects that this variable can be

dropped from the model. The significant coefficients jointly indicate that global

short-run and long-run spillover effects are present. Interestingly, and in contrast to

the model in Ciccarelli and Elhorst (2018), the model does only account for the full

cross-sectional dependence when cross-sectional averages of both the dependent

and the independent variables are included. Including only the cross-sectional

averages of the current and lagged independent variable results in a residual CD-test

statistic that is still outside the required interval.

As discussed above, the applied QML estimator might be inconsistent in

presence of heteroskedasticity. I therefore present the results of the dynamic spatial

Durbin model with common factors using the QML estimator proposed by Bai and

Li (2021) that explicitly allows for heteroskedasticity in Table 6 in the Appendix.

Common factors in this case are modeled as principal components instead of cross-

sectional averages. To ease the comparison with the main model in Column (5) of

Table 2, which includes five cross-sectional averages, the model estimated with the

Bai and Li (2021) estimator includes five common factors (Column (2), Table 6).

For further robustness checks, I also present a model with only three common

factors (Column (3), Table 6) and a model where the space–time lag is excluded

(Column (4), Table 6). The results of these estimations show that some form of bias

seems indeed to be present in the main results, primarily for the g, bk and h1k

Footnote 7 continued

observation of the last day in April, such that model (4) is estimated with 3920 observations. In both

cases, Model (4) is the preferred specification.
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coefficients. While s and q are fairly similar, the coefficient for the space–time lag

(g) turns negative in Columns (2) and (3) of Table 6. Also, the coefficients for

infections (bkÞ and spatially weighted infections (h1k), especially the later lags after

11 or 12 days, are somewhat smaller (in absolute terms) when estimated with the

QMLE of Bai and Li (2021). Overall, this implies that the main results presented in

Tables 2 and 3 should be cautiously interpreted as upper-bound estimates.

Turning back to the main results, Table 3 shows that the direct effects of

increases in the own-state infections are, as expected, positive and significant, which

is in line with the hypothesis that increases in infections are followed by increases in

deaths. Regarding the size, an increase in the number of infections by 1000 per

100,000 leads to an additional one to three deaths cases in the same state. The time

lag between an increase in infections and a subsequent increase in death cases can

now be determined at approximately 12 days. Before the 12th lag, the coefficients

for both, the direct and the total effect switch between a negative and positive sign,

but become consistently positive afterwards in each of the five models.

The estimated indirect effects also remain significantly negative (now even for

the longer lags after eleven days) in Model (5), supporting the previous two models

in the hypothesis that increases in infection rates in other states decrease own-state

death cases. These negative spillover effects might seem counterintuitive at first, but

could be an indicator that states choose to implement stricter preventive policy

measures in their own state when the infections in other states rise (assuming that

own infection rates would remain constant). This finding is also well in line with

previous studies. Ehlert (2021), for example, finds that in a given German district

the number of deaths and infections shrink with higher numbers in early Covid-19

infections in neighboring districts. Krisztin et al. (2020) also find a temporarily

negative degree of global spatial autocorrelation and explain their finding with

temporary travel bans to regions with excessive infection rates to prevent

transmission to the own country. Nevertheless, these negative spillovers seem to

contradict the infectious nature of the virus and should be investigated in further

detail in future studies to assess whether the hypothesis of negative spillovers

caused by stricter policy measures can be confirmed.

The size of the short-run (SR) and long-run (LR) effects for the preferred Model

(5) is now also in line with the theoretical considerations, as they show that the size

of all three types of effects becomes smaller in size over time. While this is

somewhat blurred in Table 3 given the decimal rounding, taking a closer look

reveals that the direct effect after 14 days in the short-run (equal to 0.0036) is

reduced by 10% to 0.0033 in the long-run. The same pattern is found for the indirect

effect; for example, the indirect short-run effect after 14 days is equal to - 0.0022

but is reduced in absolute terms to - 0.0020. This reduction in absolute size

indicates that policy measures that have been taken in the time horizon considered

in this study seem to have been effective in protecting the most vulnerable

individuals and thereby have slightly weakened the link between the rising number

of infections from the rising number of death cases.

The coefficients for temperature remain insignificant in every model and both,

the short-run and long-run direct and indirect effects are essentially zero (shown in

Table 5 in the Appendix). Hence, in contrast to studies in different settings (Ma
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et al. 2020; Wu et al. 2020), temperature seems not to affect the number of daily

deaths in Germany. Yet, this can at least to some extent be explained by the

inclusion of time fixed-effects or common factors, respectively, as they absorb a

substantial part of the within-day variation in temperature across states. The number

of patients being treated in intensive care seems to relate to the number of deaths

(Table 5 in the Appendix), yet no clear positive or negative pattern emerges.

5 Conclusion

The severe restrictions and policies that are implemented to limit the dynamic

spread of Covid-19 require a continuous evaluation to assess their effectiveness. In

this regard, the case fatality ratio is one of the most important quantitative measures

(WHO 2020; Ioannidis 2021). Yet, its calculation requires an exact estimate of the

time lag between infections and deaths. In this article, I analyze this lag using daily

spatial panel data of the 16 German federal states over the period May 2020 to

December 2020. My results suggest that the curve of death cases follows the curve

of infections with a lag of approximately 12 days.

Moreover, to account for the spatial spread of the virus, I use spatial econometric

models that allow for exogenous and endogenous spillover effects between states. I

find that only the dynamic Spatial Durbin Model with state-fixed effects and cross-

sectional averages can fully capture the strong cross-sectional dependence found in the

data. While the overall effect is largely positive across the different models, the direct

and indirect effects differ in sign. The direct effects show that an increase in infections

within a given state leads to an increase in the number of reported death cases after

about 12 days. Contrarily, the indirect effects (spillovers) are significantly negative,

indicating that an increase in infections in neighboring states (and via the global

spillovers also in all other states) reduces the number of death cases in that given state.

This could be explained by preventivemeasures taken by the state government as soon

as they observe rising infections in other states.While this is well linewith the findings

of earlier studies (Krisztin et al. 2020; Ehlert 2021), future studies will be needed to

confirm this hypothesis and to investigate the causal underlying reasons inmore detail.

Attention needs also to be paid to the fact that the quasi-maximum likelihood estimator

applied in this study, which is widely used in the micro- and macro-econometric

spatial literature, suffers from the shortcoming of being inconsistent in case of

underlying heteroskedasticity (Bai and Li 2021). A comparison of the results with the

heteroskedasticity-robust estimator proposed by Bai and Li (2021) revealed that the

effect sizes of the increase in death cases after an increase in infections presented and

discussed in this article need to be cautiously interpreted as upper-bound estimates.

The discussion of the consequences of assuming homoskedasticity in case of

underlying heteroskedasticity should therefore receive broader attention in future

studies concerning dynamic spatial panel data.

Appendix

See the Tables 4, 5 and 6.
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Table 4 Estimation results for intensive care patients and temperature using different model

specifications

(1) (2) (3) (4) (5)

Fixed

effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

Intensive t 0.005 - 0.003 - 0.003 0.009 - 0.014

(0.015) (0.012) (0.012) (0.013) (0.017)

Intensive t - 1 -

0.089***

-

0.094***

- 0.096*** - 0.092*** - 0.067***

(0.021) (0.025) (0.023) (0.025) (0.022)

Intensive t - 2 -

0.092***

-

0.092***

- 0.093*** - 0.076*** - 0.048***

(0.034) (0.031) (0.029) (0.028) (0.016)

Intensive t - 3 - 0.041 - 0.027 - 0.029 - 0.012 - 0.003

(0.042) (0.042) (0.040) (0.040) (0.031)

Intensive t - 4 - 0.028** - 0.028** - 0.030** - 0.027* 0.002

(0.014) (0.014) (0.014) (0.016) (0.009)

Intensive t - 5 0.002 - 0.015 - 0.016 - 0.014 0.021*

(0.030) (0.025) (0.024) (0.022) (0.012)

Intensive t - 6 0.076 0.072* 0.071** 0.071** 0.039***

(0.047) (0.038) (0.034) (0.030) (0.014)

Intensive t - 7 0.099** 0.094*** 0.085*** 0.071** 0.056***

(0.040) (0.035) (0.030) (0.031) (0.020)

Intensive t - 8 - 0.008 - 0.000 - 0.000 - 0.013 - 0.015

(0.021) (0.019) (0.019) (0.022) (0.022)

Intensive t - 9 0.068** 0.073* 0.071* 0.074** 0.047***

(0.034) (0.038) (0.037) (0.036) (0.010)

Intensive t - 10 0.052** 0.052** 0.053** 0.042** 0.059***

(0.022) (0.022) (0.021) (0.020) (0.014)

Intensive t - 11 - 0.040** -

0.049***

- 0.056*** - 0.065*** - 0.005

(0.015) (0.018) (0.019) (0.020) (0.016)

Intensive t - 12 - 0.065** - 0.061** - 0.059** - 0.051* - 0.021

(0.029) (0.029) (0.029) (0.028) (0.013)

Intensive t - 13 - 0.017 - 0.005 0.001 0.016 - 0.012

(0.033) (0.035) (0.032) (0.032) (0.032)

Intensive t - 14 0.014 0.015 0.015 0.016 - 0.000

(0.033) (0.035) (0.034) (0.035) (0.030)

WIntensive t -

0.002***

- 0.013 - 0.015 0.057

(0.001) (0.025) (0.022) (0.035)

WIntensive t - 1 0.000 - 0.005 - 0.005 0.027*

(0.000) (0.021) (0.022) (0.015)
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Table 4 continued

(1) (2) (3) (4) (5)

Fixed

effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

WIntensive t - 2 0.002** - 0.012 - 0.012 - 0.016

(0.001) (0.015) (0.013) (0.011)

WIntensive t - 3 -

0.002***

0.107*** 0.107*** 0.072***

(0.000) (0.022) (0.022) (0.017)

WIntensive t - 4 -

0.005***

- 0.005 - 0.022 - 0.023

(0.001) (0.015) (0.015) (0.018)

WIntensive t - 5 -

0.001***

- 0.009 - 0.007 - 0.008

(0.000) (0.024) (0.024) (0.012)

WIntensive t - 6 0.000 - 0.001 0.004 0.005

(0.000) (0.031) (0.029) (0.012)

WIntensive t - 7 - 0.000 - 0.063** - 0.061** - 0.051**

(0.001) (0.029) (0.027) (0.026)

WIntensive t - 8 -

0.003***

0.052 0.063* 0.019

(0.001) (0.035) (0.034) (0.020)

WIntensive t - 9 - 0.001 0.025 0.013 - 0.038***

(0.001) (0.036) (0.035) (0.012)

WIntensive t - 10 - 0.001 0.024 0.019 - 0.057*

(0.001) (0.017) (0.013) (0.035)

WIntensive t - 11 0.002*** - 0.041** - 0.046** - 0.048***

(0.000) (0.020) (0.018) (0.012)

WIntensive t - 12 0.001*** 0.039 0.048 0.010

(0.000) (0.026) (0.029) (0.010)

WIntensive t - 13 0.001 0.149** 0.140** 0.079**

(0.001) (0.066) (0.065) (0.033)

WIntensive t - 14 - 0.001** 0.047 0.022 0.025

(0.000) (0.043) (0.040) (0.029)

Temperature t 0.004 0.003 0.004 0.004 0.002

(0.004) (0.005) (0.004) (0.004) (0.002)

Temperature t - 1 - 0.000 0.000 - 0.000 - 0.001 - 0.000

(0.002) (0.002) (0.002) (0.002) (0.001)

Temperature t - 2 - 0.001 - 0.002 - 0.001 - 0.002 0.001

(0.002) (0.002) (0.002) (0.002) (0.001)

Temperature t - 3 - 0.002 - 0.001 - 0.001 - 0.000 0.003

(0.001) (0.001) (0.001) (0.001) (0.002)

Temperature t - 4 - 0.001 - 0.002 - 0.002 - 0.002 - 0.003**

(0.001) (0.002) (0.001) (0.002) (0.001)
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Table 4 continued

(1) (2) (3) (4) (5)

Fixed

effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

Temperature t - 5 - 0.000 - 0.000 - 0.000 0.000 0.001

(0.001) (0.001) (0.001) (0.001) (0.001)

Temperature t - 6 0.004 0.005 0.005 0.004 0.001

(0.004) (0.004) (0.004) (0.004) (0.001)

Temperature t - 7 0.001 0.001 0.001 - 0.000 - 0.000

(0.002) (0.002) (0.002) (0.002) (0.001)

Temperature t - 8 0.002 0.002 0.002 0.002 - 0.000

(0.001) (0.001) (0.001) (0.001) (0.001)

Temperature t - 9 - 0.003 - 0.002 - 0.002 - 0.003 0.001

(0.004) (0.003) (0.003) (0.003) (0.001)

Temperature t - 10 0.002 0.002 0.002 0.002 0.002

(0.004) (0.003) (0.004) (0.004) (0.003)

Temperature t - 11 0.003 0.002 0.002 0.002 0.001

(0.002) (0.002) (0.002) (0.002) (0.001)

Temperature t - 12 - 0.002 - 0.003 - 0.003 - 0.004 - 0.002

(0.002) (0.003) (0.003) (0.003) (0.002)

Temperature t - 13 0.000 - 0.000 0.000 0.001 0.001

(0.001) (0.002) (0.001) (0.002) (0.002)

Temperature t - 14 0.001 0.001 0.001 0.000 0.001

(0.002) (0.002) (0.002) (0.002) (0.001)

WTemperature t - 0.000 0.000 - 0.000 0.001

(0.002) (0.002) (0.002) (0.002)

WTemperature t - 1 0.001 0.001 0.001 0.001

(0.002) (0.002) (0.002) (0.001)

WTemperature t - 2 - 0.002 - 0.001 - 0.001 - 0.002

(0.002) (0.001) (0.001) (0.001)

WTemperature t - 3 - 0.002 - 0.002 - 0.002 - 0.003

(0.003) (0.002) (0.003) (0.002)

WTemperature t - 4 0.003 0.003 0.003 0.003*

(0.003) (0.002) (0.003) (0.002)

WTemperature t - 5 - 0.001 0.000 - 0.000 - 0.001

(0.002) (0.002) (0.002) (0.001)

WTemperature t - 6 - 0.003 - 0.003 - 0.003 - 0.001

(0.003) (0.003) (0.003) (0.001)

WTemperature t - 7 - 0.005* - 0.004** - 0.004** - 0.000

(0.003) (0.002) (0.002) (0.000)

WTemperature t - 8 0.004 0.004 0.005 0.001

(0.004) (0.004) (0.004) (0.001)

123

9 Page 20 of 30 M. Fritz



Table 4 continued

(1) (2) (3) (4) (5)

Fixed

effects

SLX Static SDM

with fixed

effects

Dynamic SDM

with fixed effects

Dynamic

SDM with

CSA

WTemperature t - 9 - 0.009 - 0.010 - 0.011 - 0.002

(0.008) (0.008) (0.008) (0.002)

WTemperature t -

10

0.005 0.006 0.007 - 0.001

(0.004) (0.005) (0.006) (0.002)

WTemperature t -

11

- 0.001 - 0.000 - 0.001 - 0.001

(0.002) (0.002) (0.002) (0.001)

WTemperature t -

12

0.004 0.003 0.003 0.003

(0.003) (0.003) (0.003) (0.003)

WTemperature t -

13

- 0.003 - 0.003 - 0.004 - 0.002

(0.004) (0.004) (0.005) (0.002)

WTemperature t -

14

0.000 0.000 0.001 - 0.001

(0.003) (0.003) (0.003) (0.001)

R2 (overall, incl. FE) 0.807 0.814 0.814 0.824 0.849

Log likelihood 2409.24 2489.42 2522.59 2567.47 3285.29

Residual CD-Test - 9.858 - 9.86 10.71 11.06 - 0.94

Avg. Corr. Coef - 0.057 - 0.058 0.062 0.065 - 0.005

CS-exponent a of

residuals [Conf.

Inter]

0.50 [-

0.07;

1.07]

0.34 [-

1.48;

2.16]

0.76 [0.15;

1.07]

0.77 [0.44; 1.11] 0.73 [0.57;

0.90]

LR-test (p-value) (1) versus

(2)

(2) versus (3) (3) versus (4)1 (4) versus (5)

\ 0.001 \ 0.001 \ 0.001 \ 0.001

Number of obs. 3920 3920 3920 3904 3904

Number of fed. states 16 16 16 16 16

Robust Driscoll and Kraay standard errors in parenthesis. ***p\ 0.01, **p\ 0.05, *p\ 0.1. Models (1)

and (2) are estimated via OLS. All other models are estimated via Quasi-Maximum Likelihood. The Yu

et al. (2008) bias-correction is applied in Model (4) and (5). The Stata command xsmle (Belotti et al.

2017) is used to estimate the spatial models. R2 statistics show the corrected overall R2 including the

variation explained by the fixed-effects to be comparable across all five models. 1The likelihood ratio test

is based on comparing the Log Likelihood between Model (3) and (4) with 2 degrees of freedom. Since

this could be considered not fully adequate since the two models are estimated with a different number of

observations, I redo the LR test by (i) dropping the (timewise) first observation of Model (3) such that it is

also estimated with only 3904 observations and (ii) by including the observation of the last day in April,

such that model (4) is estimated with 3920 observations. In both cases, Model (4) is the preferred

specification
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Table 5 Direct effects and spillover effects for intensive care patients and temperature, short-run and

long-run

SR direct SR indirect SR total LR direct LR indirect LR total

SLX

Intensive t - 0.003 - 0.005

Intensive t - 1 - 0.094*** 0.010

Intensive t - 2 - 0.092*** 0.007

Intensive t - 3 - 0.027 0.108***

Intensive t - 4 - 0.028** - 0.004

Intensive t - 5 - 0.015 - 0.008

Intensive t - 6 0.072* - 0.011

Intensive t - 7 0.094*** - 0.079**

Intensive t - 8 - 0.000 0.051

Intensive t - 9 0.073* 0.017

Intensive t - 10 0.052** 0.016

Intensive t - 11 - 0.049*** - 0.029

Intensive t - 12 - 0.061** 0.052*

Intensive t - 13 - 0.005 0.155**

Intensive t - 14 0.015 0.060

Temperature t 0.003 - 0.000

Temperature t - 1 0.000 0.001

Temperature t - 2 - 0.002 - 0.002

Temperature t - 3 - 0.001 - 0.002

Temperature t - 4 - 0.002 0.003

Temperature t - 5 - 0.000 - 0.001

Temperature t - 6 0.005 - 0.003

Temperature t - 7 0.001 - 0.005*

Temperature t - 8 0.002 0.004

Temperature t - 9 - 0.002 - 0.009

Temperature t - 10 0.002 0.005

Temperature t - 11 0.002 - 0.001

Temperature t - 12 - 0.003 0.004

Temperature t - 13 - 0.000 - 0.003

Temperature t - 14 0.001 0.000

S-SDM-FE

Intensive t - 0.002 - 0.012 - 0.014

Intensive t - 1 - 0.096*** 0.010 - 0.086***

Intensive t - 2 - 0.094*** 0.005 - 0.089***

Intensive t - 3 - 0.033 0.101*** 0.067

Intensive t - 4 - 0.029** 0.000 - 0.029

Intensive t - 5 - 0.015 - 0.005 - 0.021

Intensive t - 6 0.073** - 0.013 0.060*

Intensive t - 7 0.088*** - 0.070** 0.018

Intensive t - 8 - 0.002 0.047 0.045
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Table 5 continued

SR direct SR indirect SR total LR direct LR indirect LR total

Intensive t - 9 0.072** 0.012 0.083

Intensive t - 10 0.054** 0.012 0.066**

Intensive t - 11 - 0.055*** - 0.028* - 0.083***

Intensive t - 12 - 0.060** 0.045* - 0.015

Intensive t - 13 - 0.007 0.135** 0.128*

Intensive t - 14 0.015 0.042 0.056

Temperature t 0.004 - 0.000 0.003

Temperature t - 1 - 0.000 0.001 0.000

Temperature t - 2 - 0.001 - 0.001 - 0.003

Temperature t - 3 - 0.001 - 0.002 - 0.003

Temperature t - 4 - 0.002 0.003 0.001

Temperature t - 5 - 0.000 0.000 0.000

Temperature t - 6 0.005 - 0.004 0.001

Temperature t - 7 0.001 - 0.004* - 0.003**

Temperature t - 8 0.002 0.004 0.005

Temperature t - 9 - 0.002 - 0.008 - 0.010

Temperature t - 10 0.002 0.005 0.006

Temperature t - 11 0.003* - 0.000 0.002

Temperature t - 12 - 0.003 0.003 - 0.000

Temperature t - 13 0.000 - 0.003 - 0.003

Temperature t - 14 0.001 - 0.000 0.001

D-SDM-FE

Intensive t 0.010 - 0.016 - 0.006 0.012 - 0.019 - 0.007

Intensive t - 1 - 0.092*** 0.012 - 0.080** - 0.113*** 0.017 - 0.096**

Intensive t - 2 - 0.077*** 0.001 - 0.075*** - 0.094*** 0.004 - 0.090***

Intensive t - 3 - 0.013 0.097*** 0.085** - 0.016 0.117*** 0.101**

Intensive t - 4 - 0.026* - 0.016 - 0.042* - 0.032* - 0.019 - 0.051*

Intensive t - 5 - 0.013 - 0.004 - 0.016 - 0.015 - 0.004 - 0.020

Intensive t - 6 0.073** - 0.008 0.065** 0.089** - 0.012 0.078**

Intensive t - 7 0.074** - 0.065** 0.009 0.091** - 0.080** 0.011

Intensive t - 8 - 0.014 0.058* 0.044 - 0.017 0.070* 0.052

Intensive t - 9 0.075** 0.002 0.077 0.091** 0.000 0.091

Intensive t - 10 0.043** 0.011 0.054** 0.052** 0.012 0.064**

Intensive t - 11 - 0.064*** - 0.030** - 0.094*** - 0.078*** - 0.035* - 0.112***

Intensive t - 12 - 0.050* 0.050* - 0.000 - 0.061* 0.061* - 0.000

Intensive t - 13 0.006 0.121** 0.127 0.006 0.145** 0.151

Intensive t - 14 0.014 0.016 0.030 0.017 0.019 0.036

Temperature t 0.004 - 0.001 0.003 0.005 - 0.001 0.004

Temperature t - 1 - 0.001 0.001 0.000 - 0.001 0.001 0.000

Temperature t - 2 - 0.001 - 0.001 - 0.003 - 0.002 - 0.001 - 0.003

Temperature t - 3 - 0.000 - 0.002 - 0.002 - 0.000 - 0.002 - 0.003

Temperature t - 4 - 0.002 0.003 0.001 - 0.002 0.004 0.001

Temperature t - 5 0.000 - 0.000 - 0.000 0.000 - 0.000 - 0.000

Temperature t - 6 0.004 - 0.003 0.001 0.005 - 0.004 0.001

Temperature t - 7 0.000 - 0.003* - 0.003** 0.000 - 0.004* - 0.004**

Temperature t - 8 0.001 0.004 0.006 0.002 0.005 0.007
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Table 5 continued

SR direct SR indirect SR total LR direct LR indirect LR total

Temperature t - 9 - 0.002 - 0.009 - 0.011 - 0.002 - 0.010 - 0.013

Temperature t - 10 0.002 0.006 0.008 0.002 0.007 0.009

Temperature t - 11 0.002 - 0.001 0.001 0.003 - 0.001 0.001

Temperature t - 12 - 0.004 0.003 - 0.000 - 0.004 0.004 - 0.001

Temperature t - 13 0.001 - 0.003 - 0.003 0.001 - 0.004 - 0.003

Temperature t - 14 0.000 0.000 0.001 0.001 0.000 0.001

D-SDM-CSA

Intensive t - 0.017 0.055 0.038 - 0.015 0.052 0.037

Intensive t - 1 - 0.068*** 0.030** - 0.038*** - 0.063*** 0.026* - 0.037***

Intensive t - 2 - 0.047*** - 0.013 - 0.060*** - 0.044*** - 0.014 - 0.058***

Intensive t - 3 - 0.003 0.068*** 0.065*** - 0.002 0.065*** 0.064***

Intensive t - 4 0.001 - 0.022 - 0.021 0.001 - 0.022 - 0.020

Intensive t - 5 0.020* - 0.009 0.011 0.018* - 0.008 0.010

Intensive t - 6 0.039*** 0.002 0.041** 0.036*** 0.004 0.040**

Intensive t - 7 0.056*** - 0.051** 0.005 0.052*** - 0.047* 0.005

Intensive t - 8 - 0.014 0.020 0.006 - 0.013 0.019 0.006

Intensive t - 9 0.047*** - 0.039*** 0.008 0.044*** - 0.035*** 0.008

Intensive t - 10 0.061*** - 0.058* 0.003 0.057*** - 0.054 0.003

Intensive t - 11 - 0.003 - 0.046*** - 0.049*** - 0.004 - 0.045*** - 0.048***

Intensive t - 12 - 0.021 0.011 - 0.010 - 0.020 0.010 - 0.010

Intensive t - 13 - 0.014 0.075** 0.061 - 0.012 0.072** 0.059

Intensive t - 14 - 0.003 0.025 0.021 - 0.003 0.024 0.021

Temperature t 0.002 0.001 0.003 0.002 0.001 0.003

Temperature t - 1 - 0.000 0.001 0.001 - 0.000 0.001 0.001

Temperature t - 2 0.001 - 0.002 - 0.001 0.001 - 0.002 - 0.001

Temperature t - 3 0.003 - 0.003 0.000 0.003 - 0.003 0.000

Temperature t - 4 - 0.003** 0.003* - 0.000 - 0.003** 0.003* - 0.000

Temperature t - 5 0.001 - 0.001 0.000 0.001 - 0.001 0.000

Temperature t - 6 0.001 - 0.001 0.000 0.001 - 0.001 0.000

Temperature t - 7 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000

Temperature t - 8 - 0.000 0.001 0.001 - 0.000 0.001 0.001

Temperature t - 9 0.001 - 0.002 - 0.001 0.001 - 0.002 - 0.001

Temperature t - 10 0.002 - 0.001 0.001 0.002 - 0.001 0.001

Temperature t - 11 0.001 - 0.001 - 0.000 0.001 - 0.001 - 0.000

Temperature t - 12 - 0.002 0.003 0.001 - 0.002 0.003 0.001

Temperature t - 13 0.001 - 0.001 - 0.001 0.001 - 0.001 - 0.001

Temperature t - 14 0.001 - 0.001 0.000 0.001 - 0.001 0.000

Table 5 shows the marginal direct and spillover effects for the number of new intensive care patients and

mean temperature, in the short-run and long-run for every spatial model from day t to day t - 14.

Marginal direct (indirect) effects are derived from the mean diagonal (off-diagonal) elements of the

respective model’s matrix of partial derivates (LeSage and Pace 2009; Debarsy et al. 2012; Elhorst

2014, 2021). ***p\ 0.01, **p\ 0.05, *p\ 0.1. Standard errors are obtained via Monte Carlo Simu-

lation as described in LeSage and Pace (2009) (see also Belotti et al. 2017; Elhorst 2021). SLX: Spatial

lag of X model; S-SDM-FE: Static Spatial Durbin Model with time and spatial fixed effects; D-SDM-FE:

Dynamic Spatial Durbin Model with time and spatial fixed effects; D-SDM-CSA: Dynamic Spatial

Durbin Model with Cross-Sectional Averages; SR: short-run; LR: long-run
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Table 6 Estimation results for the dynamic spatial Durbin model using the Bai and Li (2021)

heteroskedasticity-robust QMLE

(1) (2) (3) (3)

Dynamic SDM

with CSA

(replication from

Column (5),

Table 2)

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—5 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—3 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

without space–time

lag (g)—5 common

factors

Deaths t - 1 (s) - 0.0690 - 0.0697 - 0.0274 - 0.0106

WDeaths t (q) 0.0758 0.1342 0.1021 0.0940

WDeaths t - 1

(g)
0.0466 - 0.0215 - 0.0058

Infections t 0.0130 - 0.007 - 0.0027 - 0.0038

Infections t - 1 - 0.0028 0.0021 0.0036 0.0035

Infections t - 2 - 0.0004 0.002 0.0029 0.0020

Infections t - 3 0.0000 - 0.0011 - 0.0003 0.0029

Infections t - 4 - 0.0004 - 0.0038 - 0.0086 - 0.0121

Infections t - 5 - 0.0011 0.0029 0.0031 0.0015

Infections t - 6 - 0.0029 0.0024 0.0049 0.0044

Infections t - 7 - 0.0013 0.0000 0.0011 0.0012

Infections t - 8 0.0021 - 0.0075 - 0.0065 - 0.0047

Infections t - 9 - 0.0020 0.0026 0.0030 0.0042

Infections t -

10

- 0.0007 0.0001 0.0010 0.0011

Infections t -

11

- 0.0003 - 0.0003 0.0000 0.0000

Infections t -

12

0.0022 0.0004 0.0002 0.0003

Infections t -

13

0.0026 - 0.0007 - 0.0008 - 0.0008

Infections t -

14

0.0036 0.0002 0.0002 0.0000

WInfections t 0.0001 - 0.008 0.0192 - 0.0055

WInfections t

- 1

0.0004 0.001 0.0106 0.0025

WInfections t

- 2

0.0032 - 0.0145 0.0408 - 0.0096

WInfections t

- 3

0.0008 - 0.0104 0.0237 - 0.0073

WInfections t

- 4

- 0.0005 0.0002 0.0102 0.0068

WInfections t

- 5

0.0007 0.0144 0.0226 0.0030

WInfections t

- 6

0.0017 0.0031 0.0187 - 0.0020

WInfections t

- 7

0.0011 - 0.0033 - 0.0442 - 0.0072
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Table 6 continued

(1) (2) (3) (3)

Dynamic SDM

with CSA

(replication from

Column (5),

Table 2)

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—5 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—3 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

without space–time

lag (g)—5 common

factors

WInfections t

- 8

- 0.0016 0.0018 0.0956 - 0.0017

WInfections t

- 9

- 0.0005 - 0.0002 0.1461 - 0.0013

WInfections t

- 10

- 0.0001 0.0003 0.0176 0.0008

WInfections t

- 11

0.0007 - 0.0001 0.0048 - 0.0001

WInfections t

- 12

- 0.0007 - 0.0002 - 0.0008 0.0000

WInfections t

- 13

- 0.0024 0.0005 0.0087 0.0000

WInfections t

- 14

- 0.0021 - 0.0002 - 0.0197 - 0.0002

Intensive t - 0.0143 0.0177 - 0.0027 - 0.0061

Intensive t - 1 - 0.0665 0.008 - 0.0002 - 0.0083

Intensive t - 2 - 0.0484 0.0334 - 0.0042 0.0824

Intensive t - 3 - 0.0033 0.0067 - 0.0020 0.0569

Intensive t - 4 0.0019 - 0.0183 0.0025 0.0095

Intensive t - 5 0.0206 - 0.0024 0.0018 0.0127

Intensive t - 6 0.0388 - 0.0638 0.0015 - 0.0028

Intensive t - 7 0.0561 0.0007 - 0.0028 - 0.0636

Intensive t - 8 - 0.0148 0.0715 0.0006 0.0467

Intensive t - 9 0.0470 0.1776 - 0.0021 0.1556

Intensive t - 10 0.0589 0.0225 - 0.0002 0.0094

Intensive t - 11 - 0.0049 0.0202 0.0022 - 0.0124

Intensive t - 12 - 0.0214 0.008 0.0011 0.0060

Intensive t - 13 - 0.0118 0.0173 - 0.0007 0.0121

Intensive t - 14 - 0.0001 - 0.0189 - 0.0004 - 0.0270

WIntensive t 0.0565 - 0.0053 - 0.0062 - 0.0022

WIntensive t -

1

0.0266 0.0028 0.0012 0.0038

WIntensive t -

2

- 0.0156 0.0591 - 0.0055 0.0147

WIntensive t -

3

0.0715 - 0.0222 - 0.0098 0.0024

WIntensive t -

4

- 0.0227 - 0.1213 0.0136 - 0.0903

WIntensive t -

5

- 0.0081 - 0.1901 0.0014 - 0.1748
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Table 6 continued

(1) (2) (3) (3)

Dynamic SDM

with CSA

(replication from

Column (5),

Table 2)

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—5 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—3 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

without space–time

lag (g)—5 common

factors

WIntensive t -

6

0.0045 0.0184 - 0.0036 0.0815

WIntensive t -

7

- 0.0509 0.0733 - 0.0061 0.1554

WIntensive t -

8

0.0189 0.173 - 0.0019 0.1560

WIntensive t -

9

- 0.0377 - 0.0547 - 0.0019 - 0.1869

WIntensive t -

10

- 0.0573 0.0009 0.0011 0.0023

WIntensive t -

11

- 0.0482 0.0155 0.0000 0.0180

WIntensive t -

12

0.0104 - 0.0043 0.0000 - 0.0087

WIntensive t -

13

0.0785 - 0.013 0.0001 - 0.0157

WIntensive t -

14

0.0253 0.0082 - 0.0004 0.0094

Temperature t 0.0017 - 0.0007 0.0037 - 0.0020

Temperature t

- 1

- 0.0002 - 0.0019 0.0088 - 0.0008

Temperature t

- 2

0.0010 - 0.0063 0.0600 - 0.0042

Temperature t

- 3

0.0033 - 0.0018 0.0032 - 0.0017

Temperature t

- 4

- 0.0030 0.0042 - 0.0717 0.0031

Temperature t

- 5

0.0014 0.0013 - 0.1655 0.0014

Temperature t

- 6

0.0013 0.0028 0.0894 0.0006

Temperature t

- 7

- 0.0003 - 0.0037 0.1469 - 0.0035

Temperature t

- 8

- 0.0002 - 0.0014 0.0992 - 0.0001

Temperature t

- 9

0.0009 - 0.0024 - 0.1327 - 0.0006

Temperature t

- 10

0.0021 0.0006 - 0.0228 - 0.0005

Temperature t

- 11

0.0008 0.0045 0.0173 0.0022

Temperature t

- 12

- 0.0024 0.0027 - 0.0073 0.0015

Temperature t

- 13

0.0009 0.0007 - 0.0194 - 0.0009
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Table 6 continued

(1) (2) (3) (3)

Dynamic SDM

with CSA

(replication from

Column (5),

Table 2)

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—5 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

with space–time lag

(g)—3 common

factors

Dynamic SDM with

common factors

(Bai and Li QMLE)

without space–time

lag (g)—5 common

factors

Temperature t

- 14

0.0007 - 0.0006 0.0065 0.0005

WTemperature

t

0.0010 0.0004 0.0000 - 0.0003

WTemperature

t - 1

0.0008 - 0.0002 - 0.0016 - 0.0010

WTemperature

t - 2

- 0.0017 0.0051 0.0032 0.0020

WTemperature

t - 3

- 0.0031 0.0016 0.0028 0.0029

WTemperature

t - 4

0.0029 - 0.0011 0.0001 0.0003

WTemperature

t - 5

- 0.0012 - 0.0019 0.0003 - 0.0003

WTemperature

t - 6

- 0.0009 - 0.0002 - 0.0021 - 0.0020

WTemperature

t - 7

- 0.0002 - 0.0011 - 0.0002 0.0006

WTemperature

t - 8

0.0007 - 0.0001 0.0008 0.0003

WTemperature

t - 9

- 0.0023 0.0044 0.0031 0.0017

WTemperature

t - 10

- 0.0011 0.0037 0.0035 0.0026

WTemperature

t - 11

- 0.0010 - 0.0054 - 0.0047 - 0.0048

WTemperature

t - 12

0.0032 - 0.0027 - 0.0010 - 0.0011

WTemperature

t - 13

- 0.0016 - 0.0047 - 0.0012 - 0.0010

WTemperature

t - 14

- 0.0006 0.003 - 0.0002 0.0005
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