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Abstract
The steadily growing access to high-quality spatio-temporal crime count data with a

high level of spatial detail allows to uncover interesting relationships between crime

types within and between small regional units. Data coherent forecasting of such

counts has to take the integer and non-negative nature of the data into account.

Spatial panel data models that meet the criterion of coherency are relatively sparse.

This paper proposes a new spatial panel regression framework with fixed effects to

overcome these shortcomings. Depending on whether time dynamic effects are

included in the model specification, estimation and inference are based either on a

pseudo maximum likelihood method or on quasi-differenced generalized methods

of moments. The models’ usefulness is demonstrated in a forecasting exercise of

monthly crime counts at census tract level from Pittsburgh, Pennsylvania.
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1 Introduction

Modeling and forecasting criminal activities in urban areas is an important field of

study in a range of social science disciplines like, e.g., economics, criminology, and

geography. The results of which are increasingly used for public policy purposes.

The steadily growing access to high-quality spatio-temporal data sets with a high

level of spatial detail allows uncovering interesting relationships within and

between small regional units, like, e.g., census tracts. Variables of interest often

studied in this context are in the form of counts (Taddy 2010; Aldor-Noiman et al.

2016; Weinborn et al. 2017). In particular, data coherent forecasting of such crime

counts has to take the integer and non-negative nature of the data into account. Most

commonly, the observed counts are transformed into continuous data and well-

established linear spatial panel models are employed (see e.g. Jin et al. 2020, for a

recent contribution in this respect). Spatial panel data models that meet the criterion

of coherency are relatively sparse, in particular in the econometrics literature.

A prominent and recent contribution in this area is Liesenfeld et al. (2017), who

propose a Poisson random effects panel framework with a latent Gaussian spatio-

temporal state process for the number of severe crimes. Inference for the model is

based on a (high dimensional) likelihood function, which is not available in closed

form and thus requires a Monte Carlo integration technique, like the efficient

importance sampling (EIS) proposed by Liesenfeld et al. (2016). Their model is

applied to monthly data for the 138 census tracts of Pittsburgh, PA, available from

January 2008 to December 2013.

Complementary to this work, we propose a static and a dynamic version of a

fixed effects spatial panel data model for counts and demonstrate how these models

can be used for predictive purposes. The two model variants are fitted using pseudo

maximum likelihood (PMLE) and generalized methods of moments (GMM),

respectively. In comparing and contrasting our approach to that of Liesenfeld et al.

(2017), we illustrate our approaches using the same data set on severe crime counts

in Pittsburgh, PA.

Our modeling framework extends the standard Poisson fixed effects panel count

data model, which is the workhorse model for longitudinal counts (see, for example,

Cameron and Trivedi 2013, Ch. 9). As in the popular spatial autoregressive (SAR)

model for continuous data, we include the spatially lagged counts into the Poisson

conditional mean, which allows us to estimate spatial spillover effects along with

other parameters of interest. We thereby provide a class of spatio-temporal panel

count models for which the regressors and entity fixed effects do not necessarily

have to be uncorrelated. Moreover, as pointed out by Elhorst (2014, p. 55) and

Cameron and Trivedi (2013, Ch. 9) fixed effect specifications in spatial panel

models have the conceptual advantage over random effects models in confining the

analysis to explain the sample at hand, which is precisely the aim in our application.

Forecasting criminal activity in neighborhoods within a given specific city limit

based on crime counts by using the spatial and temporal correlation of the data

constitutes a relevant and critical focus in the literature. An excellent and up-to-date

survey of the recent work done in this area is provided by Kounadi et al. (2020).
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Also, the paper by Liesenfeld et al. (2017) is a rich source of highly relevant papers

in this context.

To foreshadow our main findings, we qualitatively confirm the results reported in

Liesenfeld et al. (2017). We obtain out-of-sample forecasting results and find that

our fixed effects model performs competitively to theirs. This is a striking result

considering the fact that the random effects model can incorporate socio-

demographic indicators in yearly frequency, which are often good predictors for

future crimes. Instead, these effects are absorbed by our entity and time fixed

effects.

The paper’s remainder is organized as follows: Section 2 introduces the proposed

models and their respective estimation frameworks. Section 3 presents and

discussed the results of our Monte Carlo simulation experiments. Our results of

the empirical crime forecasting application are provided in Sect. 4 while Sect. 5

concludes.

2 Spatial panel count data models

The econometric framework proposed here is quite general, but takes into account

the main features of the crime counts to be found in the empirical application below

as documented in Chapter 2 of Liesenfeld et al. (2017).

We start with the static Poisson spatial panel model, which is a straightforward

extension of the spatial autoregressive model proposed in Glaser and Jung (2021) to

accommodate longitudinal data. It uses multiplicative fixed effects to account for

individual heterogeneity. This model allows for incorporating both a contempora-

neous and a lagged spatial term in the conditional mean function. We derive an

approximate loglikelihood function using the concept of composite likelihood

theory and obtain estimates for all relevant parameters of interest using standard

numerical optimization procedures. Moreover, a predictive distribution based on the

underlying Poisson distribution is readily available to form density forecasts of the

counts.

Since crime counts often exhibit substantial autocorrelation (Li et al. 2014;

Liesenfeld et al. 2017), we attempt to capture this dependence structure by

including time dynamic effects into the spatial panel model and hope to improve the

forecasting performance of the model. More precisely, we include the lagged

outcome in the conditional mean equation. This approach extends the well-known

linear feedback model of Blundell et al. (2002) to the spatial dimension. Since the

spatial panel linear feedback model exhibits a dynamic panel structure and assumes

entity fixed effects, we have to rely on quasi-differenced GMM to estimate the

coefficients consistently (Blundell et al. 2002; Windmeijer 2005, 2008). The price

to be paid for the richer dynamic structure is that only point forecasts based on this

model are available.
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2.1 A Poisson spatial panel model

2.1.1 Model specification, estimation, and inference

We start with a static predictive model for spatial count data which allows us to set

up an approximate likelihood function for inferential purposes and obtain

probabilistic forecasts. To achieve this goal, we choose a specification for the

conditional mean function and the individual or entity-specific effect, which

ultimately leads to the well-known form of the likelihood function in non-spatial

panel models for counts as proposed in Hausman et al. (1984).

The general model specification is as follows: denote the discrete count variable

to be explained with yit, i ¼ 1; . . .;N and t ¼ 1; . . .; T and assume it follows a

(conditional) Poisson distribution as it is standard in count data regression models.

For the regression structure of the Poisson spatial panel model with multiplicative

entity-specific effects mi, we propose to use

E½yitjF it; mi� ¼ litmi; ð1Þ

where the conditioning information set F it contains appropriately defined vectors of

the counts and additional predetermined regressors to be defined below in more

detail.

To close the model, lit needs to be specified. The literature on count data

regression and time series models for counts has developed a range of specifications

to balance out modelling issues like avoiding explosive behaviour of the counts over

time, problems with logarithmic transformations of zero counts and useful

interpretations for the model parameters while preserving the non-negativity of

the entire regression function. All of these have advantages and disadvantages while

none of them has emerged as a standard (see the discussion in Glaser and Jung

2021). The specification proposed here is a straightforward extension of the

regression framework used in Glaser and Jung (2021) for cross-section spatial

counts and is also influenced by the so-called linear feedback model of Blundell

et al. (2002) for non-spatial count data panels. We experimented with alternative

specifications but found them to be inferior in our simulation experiments and

empirical application.

The base variant for lit takes the form

lit ¼ q
XN

j ¼ 1

j 6¼ i

wijyjt þ expðXit:bÞ ; ð2Þ

where Xit: ¼ ½xit1; . . .; xitK � is the row vector of explanatory variables and b is the

corresponding column vector of regression parameters. wij is an element of the

N � N time-invariant spatial weights matrix W, which is assumed to be row-stan-

dardized. In the spirit of the spatial autoregressive (SAR) model for continuous data,

the first term on the right-hand side of Equation (2) captures possible spatial

autocorrelations in the observed counts and therefore, q is called a (global) spatial
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autocorrelation parameter. The regressors enter the conditional mean function in

log-linear form as it is custom in count data regression models. Accordingly, the

conditioning information set for this model specification takes the form

F it ¼ fXit; y�itg, where y�it is the vector of observations of all neighbors to unit i in
period t. With this specification, we implicitly define the nonlinear regression model

yit ¼ litmi þ uit ð3Þ

for the observed counts, where the error term uit is assumed to be uncorrelated with

yjt for i 6¼ j. Consequently, our model belongs to the broad class of conditional

spatial regression models as discussed e.g. in Cressie (1993, p. 408), which enables

us to use a conditional likelihood function to estimate the model parameters con-

sistently. Note further, that (3) does not allow for direct interactions as in a linear

SAR model for continuous data.

Still, within the static modeling framework, we consider an extension to the base

variant specification, which allows for dependence between the observation yit and
the neighboring observations in the previous time period t � 1. This dependence is

in addition to spatial effects in the cross-section of the data and is captured in the

parameter k as follows

lit ¼ q
XN

j ¼ 1

j 6¼ i

wijyjt þ k
XN

j ¼ 1

j 6¼ i

wijyjt�1 þ expðXit:bÞ; ð4Þ

where the conditioning information set now is of the form F it ¼ fXit; y�it; y�it�1g.
To preserve the non-negativity of the conditional mean (1), restrictions on the

parameter spaces of q and, if included, k have to be imposed. Naturally, these

restrictions depend on the exact values ofW, X, and b and would have to be checked

individually for each application. In principle, q and k are allowed to be negative as

long as the estimated conditional expectation is positive for each unit. Alternatively,

the conditions q; k� 0 can be set independently of the data, although the parameter

space might then be restricted more strictly than necessary.1

As discussed in Glaser and Jung (2021), the derivation of a full likelihood function

based on the multiplicative structure (1) with conditional mean specification (2) or (4) is

not possible due to their nonlinear form. Moreover, an operational high-dimensional

multivariate count distribution is also not readily available. Therefore, as in Glaser and

Jung (2021), we propose to approximate the likelihood using a pseudo-likelihood

function as introduced by Besag (1975) and further developed into the composite

likelihood approach of Varin et al. (2011). Within this framework, it can be shown that

under suitable regularity conditions maximizing the conditional pseudo-likelihood

yields consistent estimators for the parameters of interest.

As already outlined above, to cope with the unobserved entity-specific effect mi,
we follow the proposal of Palmgren (1981) and Hausman et al. (1984) and condition

1 Throughout our simulation experiments and the empirical application, we follow the second strategy

and require that q; k� 0.
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the pseudo-loglikelihood on mi. Based on (4) and ignoring terms that do not depend

on the model parameters, it is straightforward to arrive at the well-known function2

log Lpðq; k; bÞ ¼
XN

i¼1

XT

t¼1

�
yit logðlitÞ � yit log

�XT

s¼1

lis

��
: ð5Þ

Note the special form of the (conditional) pseudo loglikelihood function which is

related to that of the multinomial logit model as discussed in Hausman et al. (1984).

The function (5) can be maximized using standard numerical methods and it is

straightforward to obtain parameter estimates and their associated standard errors, if

desired. Moreover, an estimate of the entity-specific effect mi can easily be obtained

as follows:

bmi ¼
PT

t¼1 yitPT
t¼1 blit

; ð6Þ

where lit is either of the form (2) or (4).

2.1.2 Forecasting using the Poisson spatial panel model

As the focus of this paper is on forecasting, we now derive the minimum mean

squared error (MMSE) predictor for the Poisson spatial panel model. We focus on

one-step-ahead forecasts, which involves an evaluation of the conditional mean

function (1) at t ¼ T þ 1 to start with. Due to its SAR structure which involves a

contemporaneous spatial lag of the observed counts, we make use of the predictors

suggested in the literature on SAR models for continuous data (see e.g. Kelejian and

Piras 2017, Ch. 4). To simplify the exposition, we introduce a matrix notation for

the one-step-ahead MMSE predictor as follows

E½yTþ1jyT ;XTþ1; m� � fTþ1jT ¼ lTþ1jT � m ; ð7Þ

where lTþ1jT is an N � 1 vector of conditional means, m ¼ ðm1; . . .; mNÞ0, yTþ1 ¼
ðy1Tþ1; . . .; yNTþ1Þ0 and yT accordingly, XTþ1 is a N � k matrix, with k being the

number of regressors and � denotes the Hadamard product. lTþ1jT can in principle

be either of the form (2) or (4). For the exposition here, we employ the latter and

present a forecasting approach within a model with contemporaneous and lagged

spatial effects.

The conditional mean component of the MMSE predictor for the Poisson spatial

panel model can then be written in matrix notation as

fTþ1jT ¼
h
qWfTþ1jT þ kWyT þ expðXTþ1bÞ

i
� m ; ð8Þ

where the exponential function is applied element-wise to the vector XTþ1b. This

2 Cameron and Trivedi (2013) provide a derivation of the (conditional) pseudo-loglikelihood function for

Poisson panel models with fixed effects. They prefer to call it a ‘concentrated’ loglikelihood function

after conditioning on mi.
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exponential can also be expressed via a power series as expðAÞ ¼
P1

k¼0 1=k!A
�k,

where A�k is a Hadamard power. Solving (8) for the MMSE predictor, we then have

fTþ1jT ¼ ðIN � qWDmÞ�1 ½kWyT þ expðXTþ1bÞ� � mf g ; ð9Þ

where IN is an N � N identity matrix and Dm is the diagonal matrix of m. A one-step-

ahead prediction of counts can be obtained by replacing the parameter (vectors) in

(9) with their estimated counterparts and element-wise multiplication by the esti-

mated entity-specific effect. As the prediction is not necessarily an integer, an

appropriate rounding procedure can be applied to produce point forecasts.

Data coherent forecasts can directly be obtained from the one-step-ahead density

forecast

bpðyTþ1jTÞ ¼ Poisðf̂Tþ1jTÞ ; ð10Þ

and data coherent point forecasts by taking, for example, its mode. The predictive

models can now be compared across different model specifications using (proper)

scoring rules, like, e.g., the logarithmic, the quadratic, and the ranked probability

score, and evaluated using a number of tools based on the probability integral

transform (PIT) method (see e.g. Czado et al. 2009; Jung et al. 2016). Specifically,

it is straightforward to obtain the (nonrandomized) PIT for the probabilistic fore-

casts based on the Poisson spatial panel model to assess the distributional

assumption. In the application below, we discuss the results of v2 goodness-of-fit

tests of the null hypotheses of uniform distribution of the nonrandomized PITs (see

e.g. Jung et al. 2016).

2.2 The spatial panel linear feedback model

2.2.1 Model specification, estimation, and inference

In many applications, the observed counts exhibit serial correlation. One way to

accommodate this is to extend the static model specification above with time

dynamic components to improve its forecasting performance. A parsimonious time

dynamic specification introduces a lagged dependent variable into the regression

equation (1). In the log-linear framework of count data regression models, this is,

however, not straightforward to accomplish because the inclusion of lagged

outcomes in the exponential function could lead to explosive series or to problems

with transforming zero values (see e.g. Cameron and Trivedi 2013, Ch. 7). An

elegant solution to the problem has been proposed by Blundell et al. (2002) in the

context of a dynamic non-spatial panel model for counts. Their specification is

called linear feedback model (LFM) and is rooted in the linear regression properties

of certain integer valued autoregressive processes (INAR) for time series data (see

e.g. Jung and Tremayne 2011, for a survey).

Upon this basis, we propose to specify the conditional mean of the so-called

spatial panel linear feedback model with fixed effects to take the following form
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E½yitjy�it; yt�1;Xit:; mi� ¼ cyit�1 þ q
XN

j ¼ 1

j 6¼ i

wijyjt þ expðXit:bÞmi: ð11Þ

As in the LFM, the entity-specific effects are only multiplied with expðXit:bÞ and

can therefore be understood as a permanent scaling factor for the individual specific

mean. Note that this specification represents a slight deviation from the static

Poisson spatial panel model in Sect. 2.1. However, it has the conceptual advantage

that the spatial panel linear feedback model reduces to the well-known LFM if

q ¼ 0.

As in the INAR framework, the autocorrelation parameter c needs to fulfill c� 0 to

ensure non-negativity of the conditional expectation (11). In addition, q� 0 must be

assumed as in the Poisson spatial panel model specification above. Note that unlike in

the static specification, we do not include a lagged spatial term in our spatio-temporal

model because the inclusion of such terms leads to identification problems (see, e.g.,

Anselin et al. 2008; Elhorst 2010, for a more detailed discussion).

Aside from the restrictions on the autocorrelation and spatial correlation

parameters that guarantee a positive conditional expectation, the parameters also

need to fulfill conditions to warrant stationarity. Stationarity conditions for

miscellaneous dynamic spatial (panel) models are summarized in Elhorst (2012).

Relevant for this model are the following conditions, derived in Parent and LeSage

(2011) and Elhorst (2012), which imply that there is a trade-off between the

autocorrelation and spatial correlation to maintain a stable model (Elhorst 2008):

qwmax � 1\c\1� qwmax if q� 0

qwmin � 1\c\1� qwmin if q\0;
ð12Þ

where xmin and xmax denote the smallest and largest characteristic root of the spatial

weights matrix W. The largest characteristic root of row-standardized spatial

weights matrices is unity by definition.

Estimation of the spatial panel linear feedback model can be based on quasi-

differenced GMM (qdGMM). In the non-spatial framework, such a two-step GMM

estimator is asymptotically efficient and consistent (Blundell et al. 2002; Wind-

meijer 2005). In order to apply the GMM method, the fixed effects have to be

eliminated from the conditional mean (11) for which in principle both the

Chamberlain (1992) and Wooldridge (1997) quasi-differencing transformations of

the regression errors, defined to be uit ¼ yit � E½yitjy�it; yt�1;Xit:; mi�, are available.

As long as the regressor matrix X does not contain endogenous variables, both

transformations can be applied. If the regressor matrix contains endogenous

variables, the multiplicative specification of the fixed effects together with additive

error terms cannot be estimated using the Chamberlain moment conditions because

they would not be valid anymore (Windmeijer 2008). In contrast, the Wooldridge

moment conditions are also valid for endogenous explanatory variables (Windmei-

jer 2000). Consequently, we base our discussion on the more general Wooldridge

quasi-differenced errors (qit), which are given by
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qit ¼
uit

expðXit:bÞ
� uit�1

expðXit�1:bÞ

¼

yit � cyit�1 � q
PN

j ¼ 1

j 6¼ i

wijyjt

expðXit:bÞ
�

yit�1 � cyit�2 � q
PN

j ¼ 1

j 6¼ i

wijyjt�1

expðXit�1:bÞ
:

ð13Þ

For predetermined regressors (E½Xituitþj� ¼ 0; j� 0 and E½Xituit�s� 6¼ 0; s� 1) it

holds that

E½qitjyt�2;Xt�1
i � ¼ 0; ð14Þ

with yt�2 ¼ ½y1; . . .; yt�2� and Xt�1
i ¼ ½Xi1; . . .;Xit�1�. In contrast to the linear feed-

back model discussed in Windmeijer (2008), we note that it is necessary to con-

dition on the past of all entities (yt�2) instead of the individual past (yt�2
i ), since the

spatial panel linear feedback model uses information from all neighbours.

These moment conditions guide the choice of instruments for the GMM

estimation, which are gathered in matrix Z below. For the model considered here,

two lags of the dependent variable, yt�2 and yt�3, two lags of the simultaneous

spatial term, Wyt�2 and Wyt�3, and two lags of the predetermined regressor Xt, Xt�1

and Xt�2, form the instrument matrix. Additional exogenous variables added to the

model can also be included in Z.3

To reduce the instrument count and to limit the overfitting of the endogenous

variables due to too many instruments, Roodman (2009) proposes the use of

collapsed instruments. That is, moment conditions are summarized over t so that the

estimator minimizes, for example, the magnitude of the empirical momentP
t Dyit�2qit instead of the T � 2 empirical moments Dyit�2qit; t ¼ 3; . . .; T . Using

collapsed instruments leads to a more precise estimation of the optimal weight

matrix in the second step and reduces bias (Roodman 2009). The instrument matrix

then takes the form:

Zi ¼

yi1 0 ½Wy1�i 0 Xi2 Xi1

yi2 yi1 ½Wy2�i ½Wy1�i Xi3 Xi2

yi3 yi2 ½Wy3�i ½Wy2�i Xi4 Xi3

..

. ..
. ..

. ..
. ..

.

yiT�2 yiT�3 ½WyT�2�i ½WyT�3�i XiT�1 XiT�2

2

66666664

3

77777775

;

where ½Wyt�i denotes the ith row of the product Wyt for t ¼ 1; . . .; T � 2.

The quasi-differenced error terms and the instrument matrix enter the GMM

function which is given by

3 While we use only linear moment conditions in this paper, in principle, it is possible to use nonlinear

moment conditions as well to improve the efficiency of the GMM estimator for spatial models (Lee

2007). However, this is not straightforward without the guidance of further theoretical results, which, to

the best of our knowledge, are not yet available in the literature.
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QðhÞ ¼
�

1

N

XN

i¼1

qiðhÞ0Zi
�
H�1

�
1

N

XN

i¼1

Z 0
i qiðhÞ

�
; ð15Þ

where qiðhÞ ¼ ðqi3; qi4; . . .; qiTÞ0, h is the vector of parameters to be estimated, and

H is a weight matrix. This function is minimized with respect to the parameters h in

two steps to obtain consistent and efficient estimates. The weight matrix is set to be

equal to the identity matrix for the first step and the weight matrix for the second

step is calculated using the results from the first step such that

Hðĥ1Þ ¼
1

N

XN

i¼1

Z 0
i qiðĥ1Þqiðĥ1Þ

0Zi: ð16Þ

The asymptotic variance of the resulting efficient two-step GMM estimator (ĥ2) is

cvarðĥ2Þ ¼
1

N

�
Cðĥ2Þ0H�1ðĥ1ÞCðĥ2Þ

��1

; ð17Þ

with

Cðĥ2Þ ¼
1

N

XN

i¼1

oZ 0
i qiðhÞ
oh

���
ĥ2
:

2.2.2 Forecasting using the spatial panel linear feedback model

To derive a one-step-ahead predictor, it should be noticed that it cannot be obtained

straightforwardly. Unlike in the case of difference GMM for continuous data, the

quasi-differenced dependent variable forecast cannot simply be added to the level of

the previous period to obtain a level forecast. Instead, another equation has to be

found which provides a forecast ŷTþ1 based only on values known at time

T. Especially, the function is not allowed to depend on the multiplicative fixed

effects mi. Therefore, we employ the following equation which is based on the

Wooldridge transformation for the model in t ¼ T þ 1,

yiTþ1

expðXiTþ1:bÞ
� yiT
expðXiT:bÞ

¼

cyiT þ q
PN

j ¼ 1

j 6¼ i

wijyjTþ1 þ uiTþ1

expðXiTþ1:bÞ

�

cyiT�1 þ q
PN

j ¼ 1

j 6¼ i

wijyjT þ uiT

expðXiT :bÞ
:

Rearranging yields an expression for yTþ1:
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yiTþ1 ¼
�

yiT
expðXiT :bÞ

� Ai:

�
c

�
yT�1

expðXiT :bÞ
� yT
expðXiTþ1:bÞ

�

þ qWyT
expðXiTþ1:bÞ

��
expðXiTþ1:bÞ

� Ai:

�
uiT

expðXiT :bÞ
� uiTþ1

expðXiTþ1:bÞ

�
expðXiTþ1:bÞ;

ð18Þ

with Ai: being the ith row of the Leontief inverse A ¼ ðI � qWÞ�1
. Because of the

assumed predetermination of X and Equations (13) and (14), the expected value of

Equation (18) is given by

E½yiTþ1jyT ;XTþ1
i � ¼

�
yiT

expðXiT :bÞ
� Ai:

�
c

�
yT�1

expðXiT :bÞ
� yT
expðXiTþ1:bÞ

�

þ qWyT
expðXiTþ1:bÞ

��
expðXiTþ1:bÞ;

ð19Þ

which can serve as a one-step-ahead predictor to obtain point predictions. Note that

no straightforward density forecast is available within this framework.

3 Monte Carlo simulations

Before presenting an empirical application of both models proposed in the previous

section, we provide some simulation evidence about key properties of parameter

estimates in empirically relevant situations.4 According to the data-generating

process implied by our proposed models, obtaining adequate simulated data sets

requires the specification of a suitable spatial weights matrix W and draws of

random numbers from the joint distribution of the counts which include the spatial

effects.

As already discussed above, in the context of deriving a suitable likelihood

function for the models under study here, such a discrete-valued joint distribution is

not readily available. Following Glaser and Jung (2021), we therefore propose to

produce the joint distribution to draw from by means of the Gibbs sampling

algorithm of Geman and Geman (1984). This algorithm iteratively draws from the

conditional distributions of yit, i ¼ 1; . . .;N given all other yj, j 6¼ i at a given time t

to obtain the joint distribution of y1; . . .yn asymptotically. Thus, in the kth iteration

of this algorithm at time t, the data-generating process for the static model draws

from the following distributions:

4 The subsequent analysis is conducted using R software. The programs can be obtained from the

authors.
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y
ðkÞ
1t 	 Poisðy1tjyðk�1Þ

2t ; . . .; y
ðk�1Þ
Nt Þ

y
ðkÞ
2t 	 Poisðy2tjyðkÞ1t ; y

ðk�1Þ
3t ; . . .; y

ðk�1Þ
Nt Þ

..

. ..
.

y
ðkÞ
Nt 	 PoisðyNtjyðkÞ1t ; . . .; y

ðkÞ
N�1tÞ :

The starting values y
ð0Þ
it are drawn from a distribution with a non-spatial model

specification.

For the generation of the spatial weights matrix W, we use a nearest neighbors

inverse distance matrix.5 To compute it, N random coordinates on the two-

dimensional Cartesian plane are generated from a Uð0; 100Þ � Uð0; 100Þ distribu-
tion. Then, we compute the Euclidean inverse distance matrix for these points,

which represent the N spatial units of the simulated dataset. Furthermore, we select

a threshold value to determine the nearest neighbors of each unit, all other entries of

the matrix are set to zero and the resulting matrix is finally row-standardized. In our

simulations, we consider two choices of the threshold value, p 2 f25; 50g, to

generate a sparse and a dense spatial weight matrix.

3.1 The Poisson spatial panel model

First, we study the properties of the static Poisson spatial panel model from Sect.

2.1. Parameter estimates for this model are obtained using the pseudo maximum

likelihood method. The following data-generating process is employed

yi;t 	Pois q
XN

j ¼ 1

j 6¼ i

wijyj;t þ k
XN

j ¼ 1

j 6¼ i

wijyj;t�1 þ expðbxi;tÞ

2

66664

3

77775
mi

0

BBBB@

1

CCCCA
;

xi;t 	 i:i:d: Nð0; r2xÞ;

ð20Þ

where mi ¼ exp gi and gi 	 i:i:d: Nð0; r2gÞ, r2x ¼ 0:5, and r2g ¼ 0:5. We consider

panels with T ¼ f4; 8; 16g time periods and N ¼ f100; 200; 400g entities.

The results are reported in Table 1. Overall, we find that the results for both

specifications of the spatial weight matrix are very similar with slightly better

results for the less dense matrix. We find that the pseudo maximum likelihood

estimator of both spatial effects is biased in small samples but the bias vanishes for

larger samples. However, the estimator’s properties for contemporaneous and

lagged spatial effects are affected differently by the increase of N and T. It generally
seems to be more difficult to estimate the contemporaneous effect. Specifically, we

report a smaller RMSE for the lagged spatial effect in the first specification with

equal coefficient values. b can be estimated without problems, even in situations

5 We considered other specifications of the spatial weight matrix in our simulations, for example the

8-nearest neighbors inverse distance matrix, but this did not change our results substantially.
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where the other coefficients are slightly biased. Similarly, the distribution of our entity-

specific effects can be recovered using Equation (6). To verify this, we compute the

mean entity-specific effect for each replication and compare it to its true value of

EðmiÞ ¼ expðr2g=2Þ 
 1:284. We find that the mean of the estimated fixed effects

converges to this number for increasing N and T.6 We conclude that spatial effects can

be estimated consistently but not very precisely in small-N/small-T settings.

3.2 The spatial panel linear feedback model

The remainder of our simulation study provides some insights into the quasi-differenced

GMM estimates’ behavior for specifications of the spatial panel linear feedback model.

To obtain a detailed picture of the model’s properties, the values of the spatio-temporal

parameters c, and q are varied, and the resulting combinations are used in samples of

different size, obtained by varying N and T. Four exemplary configurations of the

parameters are chosen for this purpose, representing different combinations of

autocorrelation and spatial correlation. The autocorrelation and spatial correlation

parameters take the values: ðc; qÞ :¼ fð0:5; 0:2Þ; ð0:5; 0:4Þ; ð0:7; 0:1Þ; ð0:2; 0:3Þg. All
specifications are chosen such that the stationarity conditions for spatio-temporal

models are satisfied. Since we include a third lag in the instrument matrix, the minimum

number of periods to estimate the model is four. Consequently, we consider the sample

sizes ðT ;NÞ :¼ f8; 16g � f50; 100; 200; 400g for all combinations of parameters. The

simulation set-up closely follows Blundell et al. (2002), where the model contains one

additional regressor xit whose coefficient b is set to 0.5 in all configurations. We

generate 1000 replications for each Monte Carlo experiment. The dependent variable

outcomes are generated using the iterative Gibbs sampling algorithm of Geman and

Geman (1984) which first iterates 50 times over the N units for time t and repeats this

for all time periods discarding a burn-in of 50 time periods. After B iterations over all

units i ¼ 1. . .N, the last vector is kept as yt and is then used as a regressor for

generating the outcomes for t þ 1. The data-generating process is given by

yi;t 	Poisðcyj;t�1 þ q
XN

j ¼ 1

j 6¼ i

wijyj;t þ expðbxi;t þ giÞÞ;

xi;t ¼ .xxi;t�1 þ sgi þ ei;t;

xi;0 ¼
s

1� .x
gi þ ni;

yi;0 	Poisðexpðbxi;0 þ giÞÞ;

ð21Þ

where the error term ei;t 	 i:i:d: Nð0; r2e Þ, the entity effects gi 	 i:i:d: Nð0; r2gÞ, and
ni 	 i:i:d: N

�
0; r2e=ð1� .2xÞ

�
. The spatial weight matrix W is again generated for

each replication using randomly generated coordinates. Our results are based on the

parameters b ¼ 0:5, .x ¼ 0:5, s ¼ 0:1, r2e ¼ 0:5, r2g ¼ 0:5.

6 More detailed results are available from the authors upon request.

123

Spatial panel count data: modeling and forecasting of urban crimes Page 13 of 29 2



Ta
bl
e
1

S
im

u
la
ti
o
n
re
su
lt
s
fo
r
th
e
P
o
is
so
n
sp
at
ia
l
p
an
el

m
o
d
el

N
T

p
¼

2
5

p
¼

5
0

R
M
S
E

B
ia
s

R
M
S
E

B
ia
s

q̂
k̂

b̂
q̂

k̂
b̂

q̂
k̂

b̂
q̂

k̂
b̂

q
¼

0
:2
,
k
¼

0
:2

1
0
0

4
0
.2
2
0

0
.1
4
6

0
.1
5
9

0
.0
2
5

�
0
.0
0
5

�
0
.0
0
3

0
.2
7
5

0
.1
8
5

0
.1
8
3

0
.0
4
1

0
.0
2
8

0
.0
1
9

2
0
0

4
0
.1
7
7

0
.1
0
7

0
.1
2
4

0
.0
1
9

�
0
.0
0
8

�
0
.0
0
1

0
.2
2
8

0
.1
1
0

0
.1
3
7

0
.0
3
1

0
.0
0
4

0
.0
0
7

4
0
0

4
0
.1
4
7

0
.0
7
1

0
.0
9
6

0
.0
1
1

�
0
.0
0
9

�
0
.0
0
3

0
.1
7
8

0
.0
8
0

0
.1
0
6

0
.0
1
0

0
.0
0
3

�
0
.0
0
1

1
0
0

8
0
.1
1
3

0
.0
7
6

0
.0
8
4

0
.0
0
7

�
0
.0
3
5

�
0
.0
1
7

0
.1
5
9

0
.0
9
2

0
.1
0
7

0
.0
1
7

�
0
.0
2
5

�
0
.0
1
1

2
0
0

8
0
.0
9
6

0
.0
5
6

0
.0
6
6

0
.0
1
2

�
0
.0
2
5

�
0
.0
0
8

0
.1
2
2

0
.0
6
8

0
.0
7
6

0
.0
1
4

�
0
.0
1
4

�
0
.0
0
4

4
0
0

8
0
.0
7
3

0
.0
4
4

0
.0
4
7

0
.0
1
6

�
0
.0
1
9

�
0
.0
0
1

0
.0
9
4

0
.0
4
7

0
.0
5
5

0
.0
1
2

�
0
.0
0
9

�
0
.0
0
1

1
0
0

1
6

0
.0
3
8

0
.0
3
8

0
.0
3
2

0
.0
0
1

�
0
.0
1
3

�
0
.0
0
7

0
.0
6
0

0
.0
4
2

0
.0
3
9

0
.0
0
2

�
0
.0
1
2

�
0
.0
0
7

2
0
0

1
6

0
.0
2
1

0
.0
2
0

0
.0
1
7

0
.0
0
1

�
0
.0
0
4

�
0
.0
0
2

0
.0
2
9

0
.0
1
9

0
.0
1
6

0
.0
0
1

�
0
.0
0
2

0
.0
0
0

4
0
0

1
6

0
.0
0
8

0
.0
0
5

0
.0
0
6

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
8

0
.0
0
6

0
.0
0
4

0
.0
0
0

0
.0
0
0

0
.0
0
0

q
¼

0
:2
,
k
¼

0
:5

1
0
0

4
0
.2
5
3

0
.1
7
0

0
.1
5
9

0
.0
8
4

�
0
.0
0
7

0
.0
2
0

0
.3
1
4

0
.1
8
8

0
.1
7
6

0
.0
9
1

0
.0
2
4

0
.0
2
1

2
0
0

4
0
.2
1
9

0
.1
2
5

0
.1
2
5

0
.0
8
0

�
0
.0
0
3

0
.0
2
7

0
.2
7
3

0
.1
3
4

0
.1
4
7

0
.0
7
6

0
.0
1
1

0
.0
2
6

4
0
0

4
0
.1
9
0

0
.0
8
8

0
.1
0
1

0
.0
7
9

�
0
.0
0
2

0
.0
3
1

0
.2
2
1

0
.0
9
0

0
.1
1
7

0
.0
6
3

0
.0
0
4

0
.0
2
3

1
0
0

8
0
.0
8
0

0
.0
4
2

0
.0
3
6

0
.0
1
8

�
0
.0
0
9

0
.0
0
2

0
.1
1
0

0
.0
5
2

0
.0
5
6

0
.0
2
5

�
0
.0
0
5

0
.0
0
6

2
0
0

8
0
.0
4
9

0
.0
1
6

0
.0
2
3

0
.0
0
9

�
0
.0
0
1

0
.0
0
3

0
.0
7
1

0
.0
2
2

0
.0
3
0

0
.0
1
2

�
0
.0
0
1

0
.0
0
4

4
0
0

8
0
.0
1
5

0
.0
0
5

0
.0
0
5

0
.0
0
1

0
.0
0
0

0
.0
0
0

0
.0
1
7

0
.0
0
8

0
.0
0
7

0
.0
0
1

0
.0
0
0

0
.0
0
0

1
0
0

1
6

0
.0
0
1

0
.0
0
6

0
.0
0
1

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

2
0
0

1
6

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

4
0
0

1
6

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
0

123

2 Page 14 of 29 S. Glaser et al.



Ta
bl
e
1

co
n
ti
n
u
ed

q
¼

0
,
k
¼

0
:4

1
0
0

4
0
.1
6
6

0
.2
1
7

0
.1
4
2

0
.0
8
5

�
0
.0
1
8

0
.0
2
5

0
.2
2
7

0
.2
4
7

0
.1
6
6

0
.1
0
9

0
.0
1
3

0
.0
5
0

2
0
0

4
0
.1
3
7

0
.1
7
0

0
.1
1
4

0
.0
7
4

�
0
.0
1
4

0
.0
2
5

0
.1
8
1

0
.1
8
5

0
.1
2
8

0
.0
9
2

0
.0
0
8

0
.0
4
7

4
0
0

4
0
.1
1
2

0
.1
1
8

0
.0
8
2

0
.0
6
8

�
0
.0
2
3

0
.0
2
4

0
.1
3
3

0
.1
2
9

0
.0
9
2

0
.0
7
2

�
0
.0
0
9

0
.0
3
2

1
0
0

8
0
.0
9
7

0
.1
3
2

0
.0
7
8

0
.0
5
7

�
0
.0
8
5

�
0
.0
1
5

0
.1
4
4

0
.1
3
6

0
.0
9
2

0
.0
8
5

�
0
.0
6
2

0
.0
0
8

2
0
0

8
0
.0
9
1

0
.1
0
1

0
.0
5
7

0
.0
5
8

�
0
.0
6
9

�
0
.0
0
5

0
.1
1
6

0
.1
0
0

0
.0
6
7

0
.0
7
0

�
0
.0
4
0

0
.0
1
4

4
0
0

8
0
.0
8
0

0
.0
7
2

0
.0
4
2

0
.0
5
1

�
0
.0
4
4

0
.0
0
5

0
.0
9
2

0
.0
7
2

0
.0
5
0

0
.0
5
5

�
0
.0
2
7

0
.0
1
4

1
0
0

1
6

0
.0
4
1

0
.0
7
7

0
.0
3
5

0
.0
1
5

�
0
.0
3
4

�
0
.0
0
9

0
.0
6
0

0
.0
7
3

0
.0
3
6

0
.0
2
1

�
0
.0
2
9

�
0
.0
0
4

2
0
0

1
6

0
.0
2
3

0
.0
3
6

0
.0
1
5

0
.0
0
5

�
0
.0
0
9

�
0
.0
0
2

0
.0
3
3

0
.0
3
6

0
.0
1
7

0
.0
0
8

�
0
.0
0
8

0
.0
0
0

4
0
0

1
6

0
.0
0
8

0
.0
1
3

0
.0
0
4

0
.0
0
1

�
0
.0
0
1

0
.0
0
0

0
.0
1
0

0
.0
1
1

0
.0
0
5

0
.0
0
1

�
0
.0
0
1

0
.0
0
0

q
¼

0
:4
,
k
¼

0

1
0
0

4
0
.2
6
3

0
.0
6
7

0
.1
4
8

0
.0
5
0

0
.0
3
0

0
.0
2
5

0
.3
1
9

0
.0
8
6

0
.1
8
5

0
.0
3
5

0
.0
4
0

0
.0
1
8

2
0
0

4
0
.2
3
2

0
.0
4
1

0
.1
2
8

0
.0
3
5

0
.0
2
1

0
.0
1
6

0
.2
6
7

0
.0
5
3

0
.1
4
5

0
.0
1
7

0
.0
2
6

0
.0
0
2

4
0
0

4
0
.1
8
9

0
.0
2
8

0
.0
9
9

0
.0
1
3

0
.0
1
5

0
.0
0
4

0
.2
1
3

0
.0
3
1

0
.1
1
6

0
.0
0
1

0
.0
1
7

�
0
.0
0
3

1
0
0

8
0
.1
4
3

0
.0
3
3

0
.0
7
9

0
.0
0
7

0
.0
1
5

0
.0
0
5

0
.1
9
3

0
.0
5
2

0
.1
0
3

0
.0
1
5

0
.0
2
5

0
.0
1
2

2
0
0

8
0
.1
0
8

0
.0
2
6

0
.0
6
1

�
0
.0
0
4

0
.0
1
2

0
.0
0
1

0
.1
4
0

0
.0
3
1

0
.0
7
6

0
.0
0
3

0
.0
1
5

0
.0
0
5

4
0
0

8
0
.0
9
0

0
.0
1
8

0
.0
4
7

0
.0
0
1

0
.0
0
8

0
.0
0
3

0
.1
1
2

0
.0
2
0

0
.0
6
0

�
0
.0
0
5

0
.0
1
0

0
.0
0
0

1
0
0

1
6

0
.0
4
1

0
.0
1
4

0
.0
2
3

0
.0
0
0

0
.0
0
4

0
.0
0
1

0
.0
7
1

0
.0
2
1

0
.0
3
8

0
.0
0
3

0
.0
0
6

0
.0
0
3

2
0
0

1
6

0
.0
1
8

0
.0
0
6

0
.0
1
1

0
.0
0
0

0
.0
0
1

0
.0
0
0

0
.0
3
1

0
.0
0
8

0
.0
1
6

0
.0
0
1

0
.0
0
1

0
.0
0
1

4
0
0

1
6

0
.0
0
5

0
.0
0
1

0
.0
0
3

0
.0
0
0

0
.0
0
0

0
.0
0
0

0
.0
0
5

0
.0
0
2

0
.0
0
3

0
.0
0
0

0
.0
0
0

0
.0
0
0

M
o
n
te

C
ar
lo

si
m
u
la
ti
o
n
re
su
lt
s
fo
r
th
e
st
at
ic

sp
at
ia
l
p
an
el

m
o
d
el

w
it
h
m
u
lt
ip
li
ca
ti
v
e
fi
x
ed

ef
fe
ct
s
u
si
n
g
p
se
u
d
o
m
ax
im

u
m

li
k
el
ih
o
o
d
es
ti
m
at
io
n
.
W
e
d
ra
w

1
,
0
0
0

re
p
li
ca
ti
o
n
s
fr
o
m

th
e
D
G
P
o
u
tl
in
ed

in
E
q
u
at
io
n
(2
0
).
p
d
en
o
te
s
th
e
th
re
sh
o
ld

v
al
u
es

fo
r
th
e
co
n
st
ru
ct
io
n
o
f
th
e
sp
at
ia
l
w
ei
g
h
t
m
at
ri
x
.
T
h
e
tr
u
e
p
ar
am

et
er

v
al
u
e
o
f
b
is
0
.5

fo
r
al
l
si
m
u
la
ti
o
n
s

123

Spatial panel count data: modeling and forecasting of urban crimes Page 15 of 29 2



Ta
bl
e
2

S
im

u
la
ti
o
n
re
su
lt
s
fo
r
th
e
sp
at
ia
l
p
an
el

li
n
ea
r
fe
ed
b
ac
k
m
o
d
el

N
T

p
¼

2
5

p
¼

5
0

R
M
S
E

B
ia
s

R
M
S
E

B
ia
s

ĉ
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The results for our four main specifications are displayed in Table 2. Again, the

difference between both specifications of the spatial weights matrix are marginal.

The most striking result is that quasi-difference GMM estimation generally requires

much larger samples to produce accurate coefficient estimates than the MLE for the

static model. It appears difficult to estimate spatio-temporal effects in small

samples. Blundell et al. (2002) also remark that small sample bias and imprecision

are common problems with the quasi-differenced GMM estimator. Still, the quasi-

differenced GMM estimator appears to be asymptotically unbiased and the RMSE

decreases with the sample size if substantial spatio-temporal effects are present.

While c is on average overestimated, k is underestimated for small to moderate

sample sizes. As expected, c converges faster by increasing the time dimension of

the panel than by increasing the number of entities. We need a sufficient number of

time periods to estimate c precisely for more persistent model specifications.

Unfortunately, wrongly estimated spatio-temporal effects using quasi-differenced

GMM can have negative effects on the precision of b estimates (see, for example,

the third panel of Table 2). It seems that the relative bias of b is positively related to

the spatio-temporal persistence of the panel model.

To investigate how the degree of spatial autocorrelation affects the properties of

the quasi-difference GMM estimator, we increase only the spatial autocorrelation

going from the first to the second specification. The results show that the estimator

still converges for all parameters if we move closer to the bounds of the stationarity

region. More specifically, the relative bias of q̂ is substantially lower in the second

specification. The third specification is characterized by high temporal autocorre-

lation and low spatial autocorrelation. Here, we observe that T ¼ 8 time periods are

not enough to estimate the spatio-temporal effects properly. Not surprisingly, we

find that increasing the time dimension to T ¼ 16 leads to greater performance gains

than doubling the number of entities. Finally, our fourth specification has temporal

autocorrelation coefficient that is slightly lower than the spatial autocorrelation

coefficient.7 In this case, we find that moving from T ¼ 8 to T ¼ 16 does not

improve the estimates by much. However, using a combination of moderate N and

T yields relatively precise results.

4 Application

The proposed models will now be applied in a predictive exercise using the same

data set as in Liesenfeld et al. (2017) on severe crime counts in Pittsburgh, PA. We

briefly describe the data set and then present empirical results from fitting the

Poisson spatial panel model and the spatial panel linear feedback model. For further

details about the data and the predictors to be included in the regression framework,

we refer to Chapter 2 of that paper.

7 Since spatial autocorrelation is measured in a geographical scale and temporal autocorrelation is

measured in a time scale, it is not straightforward to compare the speed of both dimensions of the

dynamic space-time process.
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4.1 The data

The data set consists of crime counts for the 138 census tracts of Pittsburgh,

Pennsylvania (in the borders for the 2010 census) sampled at a monthly frequency

from January 2008 to December 2013. It contains 33 different crime types which are

Fig. 1 Map of time averages of Part I crimes in Pittsburgh, grouped in deciles. Dark red (dark blue) areas
indicate highest (lowest) deciles

Table 3 Descriptive statistics of

the Pittsburgh crime dataset
Mean Std. Dev. Min. Max.

Number of Part I crimes 8.436 8.897 0 106

Number of Part II crimes 11.495 10.980 0 120

Number of Part I crimes

2008 9.626 9.719 0 99

2009 9.059 9.474 0 106

2010 8.455 8.848 0 97

2011 7.722 7.885 0 84

2012 8.143 8.723 0 89

2013 7.612 8.232 0 102

Number of Part II crimes

2008 13.283 12.463 0 120

2009 12.137 11.089 0 91

2010 11.201 10.681 0 91

2011 10.993 10.312 0 89

2012 10.992 10.457 0 83

2013 10.361 10.234 0 90
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reported separately and summarized into two categories according to the U.S.

Department of Justice and Federal Bureau of Investigation (2004). Part I crimes

encompass major crimes such as aggravated assault, burglary, larceny, motor

vehicle theft, murder/manslaughter, negligent manslaughter, rape, and robbery. Part

II crimes are the remaining minor offences like drunken driving, fraud, and

vandalism, etc. (see U.S. Department of Justice and Federal Bureau of Investigation

2004, p. 8 for the full list). The logarithm of the lagged Part II crimes is used here as

an explanatory variable for the Part I crimes models according to the so-called

‘broken-windows’ hypothesis (Wilson and Kelling 1982; Kelling and Coles 1996).

It suggests that the intensity of less severe crimes in a neighborhood often precedes

the occurrence of more severe crimes.

Figure 1 displays the geographical distribution of the average number of Part I

crimes in Pittsburgh’s census tracts. Colors indicate the deciles of the data with dark

red tracts belonging to the highest decile of Part I crimes and dark blue ones to the

lowest deciles. The highest number of Part I crimes with an average of 76 per month

is observed for census tract 201 (‘‘Downtown’’) followed by census tract 1702

(‘‘Southside’’), which lies to its southwest and has an average number of Part I

crimes of 42. Small values are observed for tracts at the city border (dark blue areas

in Fig. 1) and those with a small population density. Also, the dataset contains

several cross-sectional variables measuring the socio-demographic characteristics of

the inhabitants of each census tract, more specifically, their median income, the

Fig. 2 Descriptives for Pittsburgh crime data. The blue horizontal lines in (b) indicate the 95 %
confidence interval
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fraction of the population age 18 or older, the fraction of the population which has a

bachelor’s degree or higher, and the fraction of female-led households. These

variables are known from the criminology literature to indicate the criminal activity

in a neighborhood and are used for forecasting in the random effects model

proposed by Liesenfeld et al. (2017). Unfortunately, these variables are only

available in yearly sampling frequency and would be picked off in our model by the

inclusion of time fixed effects.

Table 3 reports selected descriptive statistics of the variables in the dataset for the

whole sample period and for each year separately. On average, more Part II crimes

than Part I crimes are observed per month and census tract, although the difference

is quite small considering the large difference in the number of crime types in both

classes. The highest amount of crimes was reported in 2008. A downward tendency

is recognizable over time in this sample, although the differences between the years

are small. 2013 has the lowest average crime rates.

Figure 2(a) gives a visual impression of the seasonal pattern of the crime counts.

Generally, there are more crimes in the first half of the year and a hump in the Part II

crimes during August and September. The autocorrelation functions (ACF) of the

Part I crimes for each of the 138 census tracts are plotted in Fig. 2(b). They indicate

significant but low autocorrelation at the first lag for most census tracts.

The spatial weights matrix used for this application is a queen contiguity matrix.

Its entries are defined in the following: wij ¼ aij
#neighbours, i; j ¼ 1; . . .;N, where

aij ¼ 1, if i is a neighbour of j (sharing a common border or a common vertex) and

aij ¼ 0, if i is not a neighbour of j. Each census tract has on average 5.6 neighbors.

Finally, the spatial weights matrix is row-standardized.

To measure spatial association, we use Moran’s I which was introduced by

Moran (1950) for binary weights and generalised for arbitrary weight matrices by

Cliff and Ord (1981, p. 17). It is the most prevalent measure of spatial association,

quantifying the dependence across the entire dataset by summarising cross-products

of deviations from the mean as follows

It ¼
N

W0

PN
i¼1

PN
j¼1 wijðyit � �ytÞðyjt � �ytÞPN

i¼1ðyit � �ytÞ2
; t ¼ 1; . . .; T ; ð22Þ

where W is the chosen spatial weights matrix and W0 ¼
PN

i¼1

PN
j 6¼i wij, which

equals N for row-standardized weight matrices. The measure was developed for a

cross-section of data, so we have to compute it repeatedly for each month, indicated

by the subscript t. Unfortunately, there is no distributional theory available for

Moran’s I calculated from count data, but we can employ a bootstrap procedure to

obtain inferential statements (Lin et al. 2011; Ren et al. 2014; Jin and Lee 2015). To

do so, we draw elements of yt, place it randomly on our map, and recompute It.
Using 400 bootstrap draws, we can compare the original It statistic to the bootstrap

distribution and determine the p-value.
Figure 2(c) and (d) show the values of Moran’s I and standardized Moran’s I for

each month in the dataset. The lowest values are obtained for August 2009, June

2010, and December 2012. Using our bootstrap test, we are able to reject the null

123

Spatial panel count data: modeling and forecasting of urban crimes Page 21 of 29 2



Table 4 Estimation results for different specifications of the Poisson spatial panel model

Model (1) (2) (3) (4)

Estimator PMLE PMLE PMLE qdGMM

Estimates for Jan. 2008 to Dec. 2012

PartIt�1 0.057� � �
( 0.002 )

WPartIt 0.116� � � 0.124� � � 0.499� � �
( 0.018 ) ( 0.016 ) ( 0.004 )

WPartIt�1 0.058� � � 0.051� � �
( 0.020 ) ( 0.012 )

logðPartIIt�1Þ 0.123� � � 0.102� � � 0.128� � � 0.321� � �
( 0.012 ) ( 0.018 ) ( 0.008 ) ( 0.012 )

Jan -0.050 0.036 0.020 -0.341� � �
( 0.231 ) (0.217 ) (0.160 ) ( 0.037 )

Feb -0.006 0.048 0.025 0.001

( 0.218 ) ( 0.206 ) ( 0.147 ) ( 0.036 )

Mar 0.055 0.089 0.072 -0.039

( 0.222 ) ( 0.219 ) ( 0.144 ) ( 0.036 )

Apr 0.093 0.121 0.110 0.013

( 0.289 ) ( 0.242 ) ( 0.193 ) ( 0.036 )

May 0.129 0.170 0.146 0.018

( 0.243 ) ( 0.215 ) ( 0.165 ) ( 0.036 )

Jun 0.170 0.176 0.186 0.085� � �
( 0.248 ) ( 0.231 ) ( 0.166 ) ( 0.035 )

Jul 0.058 0.025 0.036 0.094� � �
( 0.237 ) ( 0.240 ) ( 0.159 ) ( 0.036 )

Aug 0.026 0.040 0.028 -0.006

( 0.229 ) ( 0.217 ) ( 0.153 ) ( 0.036 )

Sep -0.036 -0.038 -0.048 0.022

( 0.219 ) ( 0.213 ) ( 0.146 ) ( 0.036 )

Oct -0.080 -0.093 -0.092 -0.084� � �
( 0.207 ) ( 0.203 ) ( 0.143 ) ( 0.035 )

Nov -0.095 -0.108 -0.105 -0.089� � �
( 0.186 ) ( 0.187 ) ( 0.127 ) ( 0.036 )

Dec -0.341� -0.440� -0.414� � � -0.068� � �
( 0.203 ) ( 0.253 ) ( 0.157 ) ( 0.034 )

123

2 Page 22 of 29 S. Glaser et al.



hypothesis of no spatial dependence at the 5% level for all months except August

2009. Hence, these initial tests based on Moran’s I clearly point to spatial

correlation in the data.

Table 4 continued

Model (1) (2) (3) (4)

Estimator PMLE PMLE PMLE qdGMM

Log L �279008:7 �279174:5 �278973:1 -

Sargan - - - 0.050

[ 0.997 ]

Av. Forecast Results for Jan. to Dec. 2013

RMSFE 4.296 3.851 4.187 4.978

MAFE 2.772 2.622 2.733 3.571

Results for the Poisson spatial panel model applied to Pittsburgh crime data using maximum likelihood

estimation. Cluster-robust standard errors are given in parentheses. The p-value of the Sargan test is given
in brackets. W is a queen contiguity spatial weights matrix. �, ��, and � � � denote 10%, 5%, and 1%
statistical significance, respectively

Table 5 Point forecasting evaluation for the Poisson spatial panel model

Model (1) (2) (3) (4)

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.897 3.083 4.362 2.752þ 4.734 2.973 4.020þ 3.020

Feb 13 2.855 2.158þ 2.936 2.278 2.825þ 2.168 7.149 4.79

Mar 13 3.620 2.499 3.486þ 2.481þ 3.755 2.575 4.597 3.520

Apr 13 4.073 2.743 3.895þ 2.733þ 4.143 2.735 5.173 3.759

May 13 3.686 2.730 3.518þ 2.666þ 3.660 2.689 5.355 3.736

Jun 13 3.754þ 2.669þ 3.761 2.695 3.935 2.737 5.338 3.916

Jul 13 3.560 2.421 3.366þ 2.372þ 3.670 2.434 4.224 2.950

Aug 13 5.686 3.269 5.157 3.030þ 5.655 3.274 4.874þ 3.472

Sep 13 5.421 3.099 4.375þ 2.713þ 5.022 2.955 5.515 3.651

Oct 13 4.715 2.801 3.616þ 2.554þ 4.206 2.684 4.181 3.046

Nov 13 4.625 2.845 3.634þ 2.521þ 4.185 2.731 4.277 3.220

Dec 13 4.662 2.941 4.106þ 2.669þ 4.457 2.840 5.028 3.759

Average 4.296 2.772 3.851þ 2.622þ 4.187 2.733 4.978 3.571

Point forecast evaluation for the Pittsburgh crime data using static Poisson panel models. RMSFE stands

for Root Mean Squared Forecast Error and MAFE stands for Mean Absolute Forecast Error, respec-

tivelyþIndicates the smallest value of RMSFE and MAFE
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4.2 Forecasting Pittsburgh’s crime counts using spatial panel count data
models

In this section, we begin by applying static Poisson spatial panel models to

Pittsburgh’s crime counts. To forecast the number of Part I crimes in the census

tracts of Pittsburgh for each month of 2013, a one-step-ahead expanding window

forecast is employed. For this matter, we choose the estimation sample ranging from

January 2008 to December 2012. Resulting parameter estimates of this first

estimation sample are reported in Table 4. We employ different Poisson spatial

panel model specifications with additional time fixed effects dummies for each

month to capture seasonal effects. While Model (1) only contains the contempo-

raneous spatial term, Model (2) only contains the lagged spatial term, and Models

(3) has the full spatial specification. The coefficient of lagged Part II crimes is

highly significant in all specifications, and spatial terms are highly significant for

each configuration. We find that the lagged spatial correlation parameter k is

Fig. 3 Scoring rules of density forecasts for the Poisson spatial panel model with contemporaneous
spatial term (�), with lagged spatial term (M), and with both spatial terms (þ)
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relatively small compared to the contemporaneous spatial term q. Its size remains

stable, whether or not Part II crimes are included as a regressor, which entails

information about the same period as the lagged spatial term.8 Time fixed effects are

insignificant for all specifications of the static model. The summer months have the

highest coefficient values, which seem to support the hypothesis that criminal

activity increases with the temperature because a bad temper is evoked faster in

hotter conditions (Gorr et al. 2003).

To compare and contrast our results with those provided in the literature, we first

obtain point forecasts for the Part I crimes. The lower panel of Table 4 gives the root

mean squared forecast error (RMSFE) and mean absolute forecast error (MAFE)

averaged over the 12 months of the forecasting period (January to December 2013).

Table 5 displays the forecast results for each month separately. In general, both

measures show a very similar pattern across models. Still, we find very different

predictions across model specifications for some months, for example, in February

and June. It turns out that the model specification, which only includes the lagged

spatial term, performs best in terms of RMSE and MAFE. This is surprising

considering that the contemporaneous spatial effect was larger than the lagged

spatial effect during the estimation period. Additional estimates (not reported)

reveal that specifications with entity fixed effects clearly outperform pooled and

time fixed effects models in terms of point forecast accuracy. Comparing these

results to the one-step predictions obtained for the random effects model in

Liesenfeld et al. (2017), which has an average RMSE (MAFE) over 2013 of 3.466

(2.535), we find that our fixed effects model performs competitively in terms of both

measures. This is a striking result considering that the random effects model can

incorporate socio-demographic indicators in yearly frequency, which are often good

predictors for future crimes. Instead, these effects are absorbed by our entity and

time fixed effects.

As pointed out in Sect. 2.1, density forecasts can also be obtained for the Poisson

spatial panel models based on (10). Figure 3 displays various scoring rules of the

density forecasts for all static model specifications over the different forecast

months. All model specifications perform very similarly across all three scoring

rules, and it is difficult to pick a preferred model specification based on this

criterion. Using the logarithmic and ranked probability scores, we find that Model

(2) outperforms Model (1) and Model (3) during the latter half of 2013.

Finally, we can use the nonrandomized PITs to check the distributional

assumption’s adequacy for the Poisson spatial panel model. The v2 goodness-of-fit
tests of the null hypotheses of uniformity of the distribution of the nonrandomized

PITs cannot be rejected for all forecasting months and all three model specifica-

tions.9 We conclude from these results, that the data do not reject the conditional

Poisson assumption.

Now, we present the results based on the spatial panel linear feedback model

(Model (4)) and compare our results to those for the static model (Models (1)–(3)).

The relevant stationarity conditions from Equation (12) are fulfilled for the spatio-

8 Estimation results are not included but can be obtained from the authors upon request
9 The detailed results are not displayed here but are available upon request.
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temporal model specification (xmin ¼ �0:333, xmax ¼ 1) and the Sargan test does

not reject instrument exogeneity. The spatial regressor and the lagged Part II crimes

are highly significant which is in line with our results for the static model where

spatial autocorrelation coefficients are statistically significant over all specifications.

We observe some substantial differences in the estimated coefficient values. Both

the spatial autocorrelation coefficient and the coefficient of lagged Part II crimes are

much higher for the spatial panel linear feedback model. However, to properly

compare direct and indirect effects of lagged Part II crimes would involve the

estimation of marginal effects (LeSage and Pace 2009), something that is not

attempted at this stage. Strikingly, the coefficient of the dynamic effect, although

significant, is quite small numerically.

We evaluate the model specifications’ predictive performance by comparing

them to one-step-ahead predictions for the static panel models in Table 5. Here, it

becomes obvious that the inclusion of a dynamic effect leads to a worse forecasting

performance for this specific dataset. Our dynamic models therefore also perform

worse than the random effects model of Liesenfeld et al. (2017) in terms of RMSFE

and MAFE. Together with the results from the Monte Carlo illustration these

outcomes indicate that the quasi-differenced GMM estimation approach requires

larger sample sizes and may not be useful for this specific application. Although the

total sample size is moderate, we cannot benefit from the large-T panel setting if the

spatial effects drives forecasting performance and the dynamic effect only

contributes marginally. Blundell et al. (2002) also report similar shortcomings of

the quasi-differenced GMM estimation for the non-spatial linear feedback model

and propose to alternatively use a pre-sample mean estimator which has better small

sample properties. However, for this estimator, a long time series of the dependent

variable must be available prior to the actual estimation sample. Therefore, its

applicability critically depends on the data availability, which is not given here.

5 Conclusion

This paper proposes spatial panel models for counts with fixed effects and apply

them to forecast crime counts in an urban environment. While the static Poisson

spatial panel model proved to be reliable in simulations with small sample sizes, the

dynamic spatial panel linear feedback model requires rather large sample sizes to

yield accurate results. The former model can be estimated using pseudo maximum

likelihood estimation, while the latter is estimated using quasi-differenced GMM.

The models are applied to forecast crime counts for the census tracts of Pittsburgh,

PA in 2013. For this, the static model outperforms the dynamic model. Modeling the

dynamic effect is outweighed in terms of forecasting performance by the less

precise quasi-differenced GMM estimation. Our preferred model specification

(Poisson spatial panel model with lagged spatial effects) performs comparably to the

random effects model suggested in Liesenfeld et al. (2017).

The proposed spatial models for count data incorporate spatially lagged

dependent variables to estimate a global spatial effect. Estimation of these models

is relatively straightforward and only imposes moderate computational costs. These
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aspects should foster the applicability of these models by applied researchers. Due

to the inclusion of lagged observed counts, rather than lagged intensities, the

interpretation of the measured spatial correlation is closer to the one usually

encountered when working with linear spatial models for continuous data, making

this class of count data models more accessible.
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