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Abstract
We consider a system of two unobservable Markovian queues in tandem with strate-
gic customers, who are heterogeneous regarding their delay sensitivity. The custom-
ers decide upon arrival whether to balk or join the system and receive service in the 
first queue or in both queues. We analyze their equilibrium strategic behavior which 
is specified by double-threshold strategies regarding their delay sensitivity param-
eter (one threshold for each queue). Moreover, we compare the strategic behavior of 
the heterogeneous customer population with its homogeneous counterpart. We com-
plement our theoretical results with numerical experiments and provide managerial 
insights into the optimal control of the system parameters.

Keywords Queueing games · Strategic customers · Equilibrium strategies · Tandem 
queues · Join-or-balk dilemma

1 Introduction

The stochastic modeling and analysis of a large number of realistic applications that 
include some kind of complementary services, i.e., when the total value of serving a 
customer depends on a set of smaller services, is carried out through the formation 
and study of networks of service systems. Such realistic applications occur either 
in service delivery systems, e.g., at the emergency department (ED) of a healthcare 
facility, or in make-to-order production systems. The queueing networks that repre-
sent such systems correspond to a variety of topologies, from relatively simple ones 
such as stations in tandem (when the service stages are predetermined and identi-
cal for all customers) to very complex ones (when the customers receive comple-
mentary services through alternative routes). In addition, most of these applications 
involve active customers who make individual decisions for maximizing their utility, 
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taking into account the congestion of the system at any level of service and the avail-
able information. For example, patients who arrive at an ED and need to go through 
blood tests before a physical examination may balk due to excessive delays.

Therefore, the appropriate framework for the study of service systems with com-
plementary services should involve the consideration of strategic customers. This 
area of queueing literature, mentioned as Queueing Games, deals with the analy-
sis of customers’ decentralized behavior from an economic perspective and started 
with the pioneering work of Naor [1], who studied the join-or-balk dilemma when 
the customers observe the queue length before making their decisions (observable 
model). Subsequently, Edelson and Hilderbrand [2] studied the same problem, when 
the customers assess the expected congestion of the system only through its known 
parameters, but without observing the queue length (unobservable model). Since 
then, there has been a growing body of literature that extends in various directions.

For example, there are several papers dealing with various types of decisions 
(entry/exit, arrival time selection, reneging time selection, e.g., [3]), different 
types of systems (e.g., M∕MK∕1 : [4], clearing systems: [5], M/M/1 with retrials: 
[6], M/M/1 with service vacations: [7–9]), system operation management (e.g., [10, 
11]): dynamic control of service rate), or coordinating the system [12]. The cor-
responding studies on queueing networks have mostly focused on parallel queue-
ing systems, i.e., on customer routing problems (e.g., [13]), or in telecommunica-
tions (e.g.,[14]). Other works emphasize that customers exhibit nonlinear aversion to 
delay, see, e.g., [15, 16]. For a comprehensive survey of queueing games, we refer to 
Hassin and Haviv [17] and Hassin [18].

In many cases, customers differ in their evaluation of excessive delays, since dif-
ferent customers value time differently. In fact, some customers are more patient and 
can wait for a long time to obtain service, while other customers are more sensitive 
to system congestion and could leave after a short time of waiting. Therefore, cus-
tomers’ delay sensitivity is an important factor that plays an essential role not only 
in customers’ joining decisions but also in the operation of the system, especially in 
the case of complementary services where customers may abandon the system after 
completing some of the stages of service collecting a smaller service reward, before 
concluding their complete service. In applications, we observe this effect on ride-
hailing platforms which are designed to offer different types of services based on 
the needs of customers that are more sensitive to service congestion. The effect of 
customers’ heterogeneity regarding delay sensitivity on their strategic behavior was 
studied in [19] for the M/M/1 queue under three different levels of available infor-
mation upon customers’ arrival: no, partial, and full information. The authors identi-
fied special cases where more accurate delay information improves the performance 
of the system. On the other hand, Guo and Hassin [9] analyzed the case of heteroge-
neous customers facing the join/balk dilemma in a vacation queue and showed that 
there may exist multiple equilibria in such a system.

The present work focuses on a thread of research that studies the strategic 
customer behavior in tandem queues, see, e.g., [20, 21] and [22]. More specifically, 
in the present paper, we analyze strategic customer joining behavior in a Markovian 
tandem queueing system, where customers are heterogeneous in their delay 
sensitivity. Specifically, we consider two M/M/1 queues in series with strategic 
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customers, who may enter the system only from the first queue and proceed to 
the second queue after completing their service in the first one. Customers are 
making joining decisions at the entrance of each queue, having the option to leave 
permanently the system before entering the second queue, and collecting the reward 
by the first service. In addition, we assume that both queues are unobservable; 
thus, customers’ join/balk decisions depend only on the operational and economic 
parameters of the system and not on the knowledge of the system state at their 
arrival instants, assuming different operational parameters and service values for 
each queue. As in the model by Burnetas [20] who analyzed customers’ strategic 
behavior for the join/balk dilemma considering a tandem system of N unobservable 
Markovian queues, customers’ decisions must take into account not only the trade-
off between the acquired service value and the waiting cost in the current queue, 
but also the possibility that this loss may be compensated by joining the subsequent 
queue. In [20], the author determined the unique subgame perfect equilibrium of the 
problem by a backward recursion scheme.

The crucial difference from the model of Burnetas [20] is that in the present 
paper, we analyze the effect of customer heterogeneity in delay sensitivity on cus-
tomers’ strategic behavior, which leads to the existence of equilibrium thresh-
old strategies on their delay cost parameter. Since the complexity of the analysis 
increases significantly due to customers’ heterogeneity, the present model permits to 
obtain of comparative results between the cases of heterogeneous and homogeneous 
customers for several performance measures, especially for equilibrium arrival rates. 
Other significant works in this research thread are the papers in [21, 23], and [22].

D’Auria and Kanta [21] consider a tandem system with two queues where cus-
tomers cannot balk in between, and they have to go through the whole system. The 
case where the arriving customers know the total number of customers in the system 
was studied by D’Auria and Kanta [23] who proved the existence of a unique stra-
tegic equilibrium. Finally, Ji et al. [22] investigate a tandem system of two M/M/1 
queues where queue-length information is available at customers’ arrival and cus-
tomers have the option to renege at any time. In the case where customers observe 
the state of the entire system and decide whether to join or not, they showed that 
customers’ equilibrium strategy is not necessarily a function of the total number of 
customers in the system and, also, that customers may balk in front of the second 
queue but never renege from the first queue. In all cases, customers are considered 
to be homogeneous.

The contribution of this paper is to enrich the literature in tandem Markovian 
queueing systems with strategic customers examining the more realistic case where 
customers differ on delay sensitivity. We show that equilibrium strategies are thresh-
old-based in delay sensitivity, and we explicitly characterize the equilibrium in the 
whole range of the parameters. We have also applied our findings to situations where 
delay sensitivity parameters are uniformly or gamma-distributed and have conducted 
various numerical experiments under different operational and economic parameters 
to assess the impact of the variance on customers’ equilibrium behavior. The key 
takeaway from this study is that heterogeneity is significant and can be measured 
through our approach.
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Specifically, there exists a set of critical values for the parameters where cus-
tomer heterogeneity disappears and customers behave as almost homogeneous. In 
addition, as the second queue becomes more valuable for the customers or works 
faster, then, in equilibrium, fewer customers will join it as the variance of delay sen-
sitivity increases. On the other hand, for low values of the fraction of the service 
values or the service rates, higher variance results in higher arrival rates. Therefore, 
there exist ideal sets of parameter values for which the information asymmetry can 
be controlled by the administrator of the system either by setting the service rates 
appropriately or by imposing an admission fee or a subsidy which in turn controls 
the fraction of the service values.

The rest of the paper is organized as follows: In Sect. 2, we describe the model, 
whereas in Sect. 3, we set up the strategy space, the equilibrium strategies, and the 
corresponding benefit functions. In Sect.  4, we establish the form of the unique 
symmetric equilibrium threshold strategy. In Sect. 5, we present numerical results 
on the comparison with the homogeneous case considering the equilibrium through-
put and the equilibrium customers’ social welfare. Finally, in Sect. 6, we conclude 
and present possible extensions for future research. Some technical material and the 
notation are presented in the Appendix.

2  Model Description

We consider two M/M/1 tandem queues, namely, queues 1 and 2, where the service 
times are exponentially distributed with rates �1 and �2 , respectively. Potential cus-
tomers arrive at queue 1 according to a Poisson process with rate Λ . We assume that 
both queues have infinite waiting spaces and that the service discipline is FCFS.

Customers are strategic, delay-sensitive, and risk-neutral optimizers. Their objec-
tive is to maximize their individual expected net benefit from their service in the 
system, taking into account that all customers have similar objectives and the same 
level of information. Each customer first decides whether to join or balk at queue 1 
upon arrival. If she joins, she makes a second join/balk decision upon her arrival at 
the second queue.

The service values at queues 1 and 2 for an arbitrary customer are R1 and R2 , 
respectively. To avoid trivialities, we assume that R1,R2 > 0 . A customer may 
choose either to balk upon arrival (in which case she receives 0 total service value), 
or to join the first queue and depart after finishing her service there (in which  
case her total service value is R1 ), or to go through both queues (in which case her 
total service value is R1 + R2).

Customers accumulate waiting costs as long as they stay in the system. Consider-
ing their delay sensitivity, we assume that they are heterogeneous in their valuations. 
Specifically, their valuation on the delay cost is linear on the waiting time with delay 
cost parameter C per unit time which is a customer-specific parameter indicating the 
importance of time. Furthermore, we assume that C is a non-negative continuous ran-
dom variable with H(⋅) being its cumulative distribution defined in an interval, i.e., 
C ∼ H(c), c ∈ I ⊆ (0,∞) . For a tagged customer, we denote the realization of her 



1 3

Operations Research Forum (2023) 4:80 Page 5 of 29 80

delay sensitivity parameter by c. This is considered private information, not known to 
the other customers.

At their arrival instants, customers are not informed about the state of the queues, 
i.e., we consider the unobservable case of this model, but they know the operational 
and economic parameters of the system.

For convenience in the presentation, we assume that Λ < min{𝜇1,𝜇2} in order 
to ensure the stability of the system even if all customers decide to go through both 
queues. In Fig. 1, we illustrate the tandem system along with the customers’ decisions 
and the operational and economic parameters.

3  Game Formulation

Since the expected benefit of an arriving customer at the system depends on the effec-
tive arrival rate at each queue, which in turn depends on the joining decisions of the 
population of customers, we have that the interaction among the customers can be 
viewed as a symmetric game (since they are a priori indistinguishable).

The system is unobservable, i.e., the customers are not aware of the system state at 
any queue upon their arrival instants. Therefore, a pure strategy of a customer with a 
given delay sensitivity c (in the following, we refer to her as a customer of type−c ) is of 
the form x(c) = (x1(c), x2(c)) where xn(c) ∈ {0, 1} , and xn(c) = 1 if and only if the cus-
tomer joins queue n. Note that if x1(c) = 0 , then x2(c) = 0 , because in case a customer 
balks after departing from queue 1, then at the same time she definitely departs from 
the system. Therefore, a customer’s pure strategy is a function

with X(c) = (x1(c), x2(c)) ∈ {(0, 0), (1, 0), (1, 1)} . Note that (0,  0) represents the 
decision that a type−c customer does not enter the system, (1, 0) refers to the deci-
sion of joining only the first queue and then leave the system, and, finally, (1,  1) 
stands for joining both queues.

Furthermore, we consider an equivalent definition of X which mirrors customers’ 
pure strategies to a partition of I, as follows:

(1)X ∶ I → {0, 1}2 ∶ c → (x1(c), x2(c)),

(2)
V00(X) = {c ∈ I ∶ X(c) = (0, 0)},

V10(X) = {c ∈ I ∶ X(c) = (1, 0)},

V11(X) = {c ∈ I ∶ X(c) = (1, 1)}.

Fig. 1  Visualization of the setting
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This partition of the interval I corresponds to the notion of pure strategies employed 
by customers of type−c , since for any c ∈ V00(X) customers will balk the system, for 
any c ∈ V10(X) will join only the first queue, and for any c ∈ V11(X) will definitely join 
both queues. Note that it would be equivalent to a threshold strategy if and only if there 
exist thresholds c1 ≥ c2 ∈ I with c1 ≥ c2 , such that

In order to derive the effective arrival rates at each queue of the system, we note 
that V10(X) ∪ V11(X) refers to those type−c customers who will join at least queue 1, 
whereas V11(X) corresponds to those customers that will join at both queues 1 and 2. 
Letting V1(X) ∶= V10(X) ∪ V11(X) and V2(X) ∶= V11(X) , then the corresponding effec-
tive arrival rates at queues 1 and 2, denoted by �1(X) and �2(X) , respectively, can be 
defined as functions of X as

Note that �1(X) ≥ �2(X) , since we consider that queues 1 and 2 are in series and 
arrivals occur only at queue 1, and thus, the arrival rate at queue 2 cannot exceed the 
arrival rate of queue 1.

Therefore, under a given strategy X, the corresponding effective arrival rates at 
queues 1 and 2 are equal to �1(X) and �2(X) , and thus, the expected sojourn time 
(delay) of any customer entering queue n is given by Wn(X) =

1

�n−�n(X)
 with 𝜆n(X) < 𝜇n

.
Suppose that the population of customers follows a strategy X and let �n(X) , 

n = 1, 2 , be the corresponding arrival rates. Then, the expected net benefit of a tagged 
customer with delay sensitivity parameter c′ for joining queue n is

Therefore, the total expected utility of the tagged type−c� customer from following 
the decision Y(c�) = y(c�) = (y1(c

�), y2(c
�)), y1, y2 ∈ {0, 1} , dictated by her strategy Y, 

when all others follow a strategy X, is

Let Y∗(X) be her optimal response against X, which refers to the strategy that 
maximizes Uc� (Y;X) given that 1 ≥ y1(c

�) ≥ y2(c
�) ≥ 0 , then a symmetric Nash 

(3)

V11(X) = {c ∈ I ∶ c ≤ c2},

V10(X) = {c ∈ I ∶ c2 < c ≤ c1},

V00(X) = {c ∈ I ∶ c > c1}.

(4)�1(X) = ΛP
(
V1(X)

)
= Λ∫V1(X)

dH(c),

(5)�2(X) = ΛP
(
V2(X)

)
= Λ∫V2(X)

dH(c).

(6)Bn,c� (X) = Rn −
c�

𝜇n − 𝜆n(X)
, c� ∈ I, 𝜆n(X) < 𝜇n.

(7)Uc� (Y;X) = y1(c
�)

(
R1 −

c�

�1 − �1(X)

)
+ y2(c

�)

(
R2 −

c�

�2 − �2(X)

)
.
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equilibrium is defined as a strategy X such that Y∗(X) = X , i.e., a best response 
against itself.

The best response Y∗(X) is determined by solving for all c′ the following optimi-
zation problem:

Note that the above maximization could be separated into the corresponding joining 
decisions at each queue considering the signs of Bn,c′ and of their sum B1,c� + B2,c� , 
as follows: 

 (i) Customer of type−c� joins queue 1 ⟺ max{B1,c� , B1,c� + B2,c� , 0} > 0,
 (ii) Customer of type−c� joins queue 2 ⟺ max{B2,c� , 0} > 0.

In Table 1, we present the feasible best responses of a tagged customer, according to 
the relevant signs of the above quantities.

Therefore, the tagged customer’s best response, y∗(c�) , assumes the form

Furthermore, by (6), for any fixed X, Bn,c� (X) for n = 1, 2 , and B1,c� (X) + B2,c� (X) 
are strictly decreasing in c′ . Thus, by the best response function given above, when 
all others follow any fixed X, a customer of type−c� will not enter the system if 
c� > max{k1, k12} , will enter only queue 1 if k2 < c′ < k1 , and she will join both 
queues if c� ≤ min{k2, k12} , where

(8)B1,c� (X)y
∗
1
+ B2,c� (X)y

∗
2
= max

y1,y2∈{0,1}
{B1,c� (X)y1 + B2,c� (X)y2}.

(y∗
1
(c�), y∗

2
(c�)) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0, 0), if B1,c� (X) ≤ 0 and B1,c� (X) + B2,c� (X) ≤ 0

({0, 1}, 0), if B1,c� (X) = 0 and B2,c� (X) ≤ 0

(1, 0), if B1,c� (X) ≥ 0 and B2,c� (X) ≤ 0

(1, {0, 1}), if B1,c� (X) ≥ 0 and B2,c� (X) = 0

(1, 1), if B2,c� (X) ≥ 0 and B1,c� (X) + B2,c� (X) ≥ 0

({0, 1}, {0, 1}), if B1,c� (X) ≤ 0 and B1,c� (X) + B2,c� (X) = 0

({0, 1}, {0, 1}), if Bn,c� (X) = 0, for n = 1, 2, and

B1,c� (X) + B2,c� (X) = 0

Table 1  Feasible best responses 
of the tagged customer of 
type−c�

B1 B1 + B2 B2 (y∗
1
, y∗

2
)

+ + + (1, 1)
+ + − (1, 0)
+ − + Not feasible
+ − − (1, 0)
− + + (1, 1)
− + − Not feasible
− − + (0, 0)
− − − (0, 0)



 Operations Research Forum (2023) 4:80

1 3

80 Page 8 of 29

Therefore, depending on the values of the parameters, and the relative order-
ing of k1, k2 , and k12 , it follows that there exist thresholds c1 ≥ c2 such that the best 
response of the tagged customer of type−c� to be

with V11(Y
∗(X)) = {c� ∈ I ∶ c� ≤ c2} , V10(Y

∗(X)) = {c� ∈ I ∶ c2 < c� ≤ c1} , and 
V00(Y

∗(X)) = {c� ∈ I ∶ c� > c1}.
As we have noticed, due to the monotonicity of Bn,c′ and B1,c� + B2,c� with respect 

to c′ , the best response of the tagged is specified by thresholds c1, c2 for joining each 
queue, formulating a threshold-based strategy of the form (c1, c2) where a customer 
of type−c will join queue n if and only if c ≤ cn . Therefore, the symmetric Nash 
equilibrium would also be a threshold strategy denoted by (ce

1
, ce

2
).

In the following, we proceed with the equilibrium analysis which is restricted to 
the following set of threshold joining strategies:

4  Equilibrium Analysis

We consider threshold joining strategies of the form (c1, c2) ∈ TH as defined in 
(3) where a customer of type c joins queue 1 if and only if c ≤ c1 , and queue 2 
if and only if c ≤ c2 . Since C is a non-negative continuous random variable taking 
values in the interval I representing the delay sensitivity of an arbitrary customer 
with distribution H(c), the corresponding joining probabilities are P(C ≤ c1) for 
joining queue 1 and P(C ≤ c2,C ≤ c1) for joining queue 2, respectively. But since 
only departures from queue 1 can be arrivals to queue 2, we can restrict our attention 
to the case where c2 ≤ c1 . Therefore, the system corresponds to two M/M/1 queues 
in tandem with arrival rates �1 = ΛH(c1) and �2 = ΛH(c2) . Note that there is a 
one-one correspondence between V1(X),V2(X) , and the threshold strategies c1, c2 . 
The illustration of the system when all customers follow a threshold strategy 
c = (c1, c2) ∈ TH can be seen in Fig. 2.

Therefore, letting c̃ = (c̃1, c̃2) be the threshold strategy followed by a tagged type-
c′ customer, and c = (c1, c2) the one followed by the population of customers, her 
total expected net benefit in (8) can be written as

k1 = R1

[
�1 − �1(X)

]
,

k2 = R2

[
�2 − �2(X)

]
,

k12 =
(
R1 + R2

)[ 1

�1 − �1(X)
+

1

�2 − �2(X)

]−1
.

(9)(y∗
1
(c�), y∗

2
(c�)) =

⎧
⎪⎨⎪⎩

(0, 0), c� > c1,

(1, 0), c2 < c� ≤ c1,

(1, 1), c� ≤ c2,

TH = {(c1, c2) ∶ c1, c2 ∈ I, c1 ≥ c2}.
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where Bn,c� (c) refers to customer’s expected net benefit from joining queue n.
Since the customer’s joining decision at each queue depends only on the corre-

sponding threshold, we simplify Bn,c� (c) to the following:

Similarly to (8), her optimal response is defined as the threshold strategy 
c̃∗ = (c̃∗

1
, c̃∗

2
) that maximizes her expected net benefit Uc� (c̃;c) when all others follow 

the threshold strategy c = (c1, c2) , and thus, it is the solution of the following opti-
mization problem:

To match the optimal response analysis outlined in Sect.  3, we introduce two 
extended threshold values, namely, cl and ch , such that

with the convention that inf � = ∞ . These values describe situations where a type−c 
customer will either always refuse to join a queue for any c ∈ I or always choose 
to join a queue for any c ∈ I , respectively. If the set I is closed, such as when C is 
uniformly distributed in I = [a, b] , then cl = a and ch = b . Additionally, if C follows 
a distribution with a support range of I = [0,∞) , e.g., an exponential distribution, 
then cl = 0 and ch = ∞.

Therefore, in correspondence with the previous analysis in Sect.  3, the tagged 
customer’s optimal response is given:

(10)Uc� (c̃;c) = B1,c� (c)�{c�≤c̃1} + B2,c� (c)�{c�≤c̃2},

(11)Bn,c� (cn) = Rn −
c�

𝜇n − 𝜆(cn)
= Rn −

c�

𝜇n − ΛH(cn)
, c� ∈ I, 𝜆(cn) < 𝜇n.

(12)(c̃∗
1
, c̃∗

2
) = arg max

c̃1,c̃2∈I∶c̃1≥c̃2
{B1,c� (c1)�{c�≤c̃1} + B2,c� (c2)�{c�≤c̃2}}.

(13)cl = sup{c̃ ∶ H(c̃) = 0} = inf I, ch = inf{c̃ ∶ H(c̃) = 1} = sup I,

(14)(c̃∗
1
, c̃∗

2
) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(cl, cl), B1,c� (c1) ≤ 0 and B1,c� (c1) + B2,c� (c2) ≤ 0

(c1, cl), B1,c� (c1) = 0 and B2,c� (c2) ≤ 0

(ch, cl), B1,c� (c1) ≥ 0 and B2,c� (c2) ≤ 0

(ch, c2), B1,c� (c1) ≥ 0 and B2,c� (c2) = 0

(ch, ch), B2,c� (c2) ≥ 0 and B1,c� (c1) + B2,c� (c2) ≥ 0

(c1, c1), B1,c� (c1) ≤ 0 and B1,c� (c1) + B2,c� (c2) = 0

(c1, c2), B1,c� = B2,c� = B1,c� + B2,c� = 0

,

Fig. 2  The tandem system in the framework of customer joining threshold strategies
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where c̃∗
1
and c̃∗

2
 represent the optimal thresholds against the threshold strategy (c1, c2)  

for joining queues 1 and 2, respectively, visualized in Fig. 3.
Finally, for the equilibrium analysis, we let rn be the unique roots of the equa-

tions Bn,rn
(rn) = 0 ⟺ Rn −

rn

�n − �(rn)
= 0 , or equivalently,

First, we consider the case where the support of H is the closed set I = [cl, ch] 
as in the case of a uniformly distributed delay sensitivity to explore all possible 
equilibria that can appear for the different values of the parameters. In this case, 
the extended thresholds cl, ch are finite and coincide with the boundaries of I.

In Theorem 1, we characterize the equilibrium threshold strategies (ce
1
, ce

2
) for 

0 < cl ≤ ce
2
≤ ce

1
≤ ch < ∞ concerning the values of the economic and operational 

parameters of the model. Each of the seven areas (I, II, III, IV, V, VIa, VIb) in 
Fig. 4 refers to the corresponding case of Theorem 1.

Theorem  1 The equilibrium joining threshold strategies for the system of the two 
M/M/1 queues in tandem when customers’ delay sensitivity parameter takes values 
in the interval I = [cl, ch] , are characterized as follows: 

 (i) If R1 ≤ cl

�1

 and R1 + R2 ≤ cl

�1

+
cl

�2

 , then the unique equilibrium threshold 

strategy is (cl, cl) , which implies �e
1
= �e

2
= 0.

(15)rn = Rn[�n − ΛH(rn).

Fig. 3  The best response of a type−c� customer in the B1B2−plain
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 (ii) If R1 ≥ ch

�1 − Λ
 and R2 ≤ cl

�2

 , then the unique equilibrium threshold strategy 

is (ch, cl) , which implies �e
1
= Λ and �e

2
= 0.

 (iii) If R1 + R2 ≥ ch

�1 − Λ
+

ch

�2 − Λ
 and R2 ≥ ch

�2 − Λ
 , then the unique equilibrium 

threshold strategy is (ch, ch) , which implies �e
1
= �e

2
= Λ.

 (iv) If 
cl

𝜇1

< R1 <
ch

𝜇1 − Λ
 and R2 ≤ cl

�2

 , then the unique equilibrium threshold strat-

egy is (ce
1
, cl) , with ce

1
= r1 . In this case, �e

1
= ΛH(r1) and �e

2
= 0.

 (v) If R1 ≥ ch

�1 − Λ
 and 

cl

𝜇2

< R2 <
ch

𝜇2 − Λ
 , then the unique equilibrium threshold 

strategy is (ch, ce2) , with ce
2
= r2 . In this case, �e

1
= Λ and �e

2
= ΛH(r2).

 (vi) If 
cl

𝜇1

+
cl

𝜇2

< R1 + R2 <
ch

𝜇1 − Λ
+

ch

𝜇2 − Λ
 , R1 <

ch

𝜇1 − Λ
 , and R2 >

cl

𝜇2

 , then 

(a) If R2 <
r1(R1)

𝜇1−ΛH(r1(R1))
 , the unique equilibrium threshold strategy is (ce

1
, ce

2
) , with 

ce
1
= r1 and ce

2
= r2 , if r1 > r2 . In this case, �e

1
= ΛH(r1) and �e

2
= ΛH(r2).

(b) Otherwise, the unique equilibrium threshold strategy is (ce
1
, ce

1
) , with ce

1
= r , 

where r is the solution of the following equation 

 In this case, �e
1
= �e

2
= ΛH(r).

(16)R1 −
r

�1 − ΛH(r)
+ R2 −

r

�2 − ΛH(r)
= 0.

Fig. 4  Equilibrium thresholds in the R2R1−plane
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Proof 

 (i) Consider that nobody joins the system, then all follow the threshold strategy 
c1 = c2 = cl . From the best response (c∗

1
, c∗

2
) of the tagged−c� customer against 

(cl, cl) , it follows that (cl, cl) would be an equilibrium if B1,c� (cl) ≤ 0 and 
B1,c� (cl) + B2,c� (cl) ≤ 0 for all c� ∈ [cl, ch] . Since both are strictly decreasing in 
c′ , it suffices to assume that B1,cl

(cl) ≤ 0 and B1,cl
(cl) + B2,cl

(cl) ≤ 0 . These 
imply by (11) that if R1 ≤ cl

�1

 and R2 + R1 ≤ cl

�1

+
cl

�2

 , then the unique equi-

librium threshold strategy is (cl, cl) , and thus, in this case, nobody joins the 
system.

 (ii) Consider that all join the first queue and balk, i.e., all follow the threshold 
strategy c1 = ch, c2 = cl . Once again by the best response function of a 
tagged−c� customer against (ch, cl) , it follows that in order (ch, cl) to be an 
equilibrium strategy, then B1,c� (ch) ≥ 0 and B2,c� (cl) ≤ 0 for all c� ∈ [cl, ch] . 
Following that, and since B1,c′ , B2,c′ are strictly decreasing in c′ , it suffices to 
assume that B1,ch

(ch) ≥ 0 and B2,cl
(cl) ≤ 0 . By substitution from (11), it follows 

that if R1 ≥ ch

�1 − Λ
 and R2 ≤ cl

�2

 , then the unique equilibrium strategy is 

(ch, cl).
 (iii) Consider that all join both queues, i.e., all follow the threshold strategy 

c1 = ch, c2 = ch . From the best response of the tagged−c� customer against 
(ch, ch) , it follows that (ch, ch) would be an equilibrium if B2,c� (ch) ≥ 0 and 
B1,c� (ch) + B2,c� (ch) ≥ 0 for all c� ∈ [cl, ch] . Once again, since both are strictly 
decreasing in  c′ ,  i t  suf f ices  to  consider  B2,ch

(ch) ≥ 0  and 
B1,ch

(ch) + B2,ch
(ch) ≥ 0 . Substituting the expressions for Bi considering (11), 

it follows that if R2 ≥ ch

�1 − Λ
 and R2 + R1 ≥ ch

�2 − Λ
+

ch

�1 − Λ
 , the unique 

equilibrium will be (ch, ch).
 (iv) Consider that a fraction of customers join the first queue and then balk, then all 

follow a threshold strategy (c1, cl) , where c1 ∈ (cl, ch) . By (14), (c1, cl) would 
be best response of the tagged−c� customer against (c1, cl) , when 

 Since B1,c′ is strictly decreasing in c′ , (ce
1
, cl) with ce

1
∈ (cl, ch) is an equilib-

rium strategy if and only if B1,ce
1
(ce

1
) = 0 , and, also, 

 Once again, due to the monotonicity of B2,c′ and B1,c� + B2,c� with respect to 
c′ , the above necessary conditions for equilibrium are equivalent to 

 where ce
1
 is the solution of the equation 

B1,c� (c1) ≥ 0 and B2,c� (cl) ≤ 0 for all c� ≤ c1, and,

B1,c� (c1) ≤ 0 and B1,c� (c1) + B2,c� (cl) ≤ 0 for all c� > c1.

B2,c� (cl) ≤ 0 for all c� ≤ ce
1
, and,

B1,c� (c
e
1
) + B2,c� (cl) ≤ 0 for all c� ≥ ce

1
.
l

(17)B2,cl
(cl) ≤ 0, and B1,ce

1
(ce

1
) + B2,ce

1
(cl) ≤ 0,
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 The latter coincides with r1 in (15). Substituting the expressions for Bn given 
in (11) in (17), it follows that R2 ≤ cl

�2

 and R2 ≤ ce
1

�2

 . Since ce
1
 lies in the inter-

val (cl, ch) , we derive that R2 ≤ cl

�2

 . In addition, the right part of 

R1 =
ce
1

�1 − ΛH(ce
1
)
 is increasing in ce

1
∈ (cl, ch) , thus 

cl

𝜇1

< R1 <
ch

𝜇1 − Λ
 . 

Therefore, if R2 ≤ cl

�2

 and 
cl

𝜇1

< R1 <
ch

𝜇1 − Λ
 , then the unique equilibrium 

strategy is (ce
1
, cl) , where ce

1
= r1 , the solution of (15) in (cl, ch).

 (v) Consider that a fraction of customers join the second queue, whereas all 
have joined queue 1 at first, then all customers follow the threshold strat-
egy c1 = ch, c2 ∈ (cl, ch) . By (14), (ch, c2) would be the best response of the 
tagged−c� customer against (ch, c2) , when 

 Since B2,c′ is strictly decreasing in c′ , (ch, ce2) with ce
2
∈ (cl, ch) is an equilib-

rium strategy if and only if B2,ce
2
(ce

2
) = 0 , and also, 

 Once again, due to the monotonicity of B1,c′ and B1,c� + B2,c� with respect to 
c′ , the above equilibrium conditions are equivalent to 

 where ce
2
 is the solution of the equation 

 The latter coincides with r2 the solution of equation (15) for n = 2 . Substitut-
ing the expressions for Bn in (19), it follows that R1 ≤ ce

2

�1 − Λ
 and 

R1 ≥ ch

�1 − Λ
 . Since ce

2
 lies in the interval (cl, ch) , it follows that R1 ≥ ch

�1 − Λ
 . 

In addition, the right part of R2 =
ce
2

�2 − ΛH(ce
2
)
 is increasing in ce

2
∈ (cl, ch) , 

and thus, 
cl

𝜇2

< R2 <
ch

𝜇2 − Λ
 . Therefore, if R1 ≥ ch

�1 − Λ
 and 

cl

𝜇2

< R2 <
ch

𝜇2 − Λ
 , then the unique equilibrium strategy is (ch, ce2) , where 

ce
2
= r2 , the solution of (15) in (cl, ch) for n = 2.

 (vi) Consider that a fraction of customers join both queues, which means that all 
customers adopt the joining thresholds c1, c2 with c1 ≥ c2 since �1 ≥ �2 . We 
consider the following two cases: (a) c1 > c2 and (b) c1 = c2 . 

(18)B1,ce
1
(ce

1
) = 0 ⇔ R1 −

ce
1

�1 − ΛH(ce
1
)
= 0 with ce

1
∈ (cl, ch).

B2,c� (c2) ≥ 0 and B1,c� (ch) + B2,c� (c2) ≥ 0 for all c� ≤ c2, and,

B1,c� (ch) ≥ 0 and B2,c� (c2) ≤ 0 for all c� > c2.

B1,c� (ch) + B2,c� (c2) ≥ 0 for all c� ≤ ce
2
, and,

B1,c� (ch) ≥ 0 for all c� ≥ ce
2
.

(19)B1,ce
2
(ch) + B2,ce

2
(ce

2
) ≥ 0, and B1,ch

(ch) ≥ 0,

(20)B2,ce
2
(ce

2
) = 0 ⇔ R2 −

ce
2

�2 − ΛH(ce
2
)
= 0 with ce

2
∈ (cl, ch).



 Operations Research Forum (2023) 4:80

1 3

80 Page 14 of 29

(a) For case (a), where c1 > c2 , (c1, c2) would the best response of a tagged 
type−c� customer against itself, when (14), 

 By the monotonicity of Bn,c′ , i.e., B1,c′andB2,c′ are strictly decreasing in c′ , 
(ce

1
, ce

2
) is an equilibrium strategy with cl < ce

2
< ce

1
< ch if and only if 

 and in addition, 

 Once again, due to the monotonicity of B1,c� + B2,c� with respect to c′ , the 
above necessary equilibrium conditions are equivalent to 

 where ce
1
andce

2
 satisfy the following equations 

 which correspond to the roots rn of (15) for n = 1, 2, respectively. Since 
B1,ce

1
(ce

1
) = 0,B2,ce

2
(ce

2
) = 0 , and by substitution of Bn in (22), it follows 

that 

 which both are true if ce
1
= r1 > r2 = ce

2
 . Furthermore, by (23) and (24), it 

follows that R1 =
ce
1

�1 − ΛH(ce
1
)
 for ce

1
∈ (ce

2
, ch) and R2 =

ce
2

�2 − ΛH(ce
2
)
 for 

ce
2
∈ (cl, c

e
1
) . As in the proof of (v), the right part of R1andR2 is increasing 

in ce
2
∈ (cl, c

e
1
) and ce

1
∈ (ce

2
, ch) , respectively, thus 

ce
2

𝜇1 − ΛH(ce
2
)
< R1 <

ch

𝜇1 − Λ
 and 

cl

𝜇2

< R2 <
ce
1

𝜇2 − ΛH(ce
1
)
 . Taking into 

B2,c� (c2) ≥ 0 and B1,c� (c1) + B2,c� (c2) ≥ 0 for all c� ≤ c2,

B1,c� (c1) ≥ 0 and B2,c� (c2) ≤ 0 for all c2 ≤ c� ≤ c1.

B1,c� (c1) ≤ 0 and B1,c� (c1) + B2,c� (c2) ≤ 0 for all c� ≥ c1.

(21)B2,ce
2
(ce

2
) = 0 and B1,ce

1
(ce

1
) = 0 for cl < ce

2
< ce

1
< ch,

B1,c� (c1) + B2,c� (c2) ≥ 0 for all c� ≤ ce
2
, and,

B1,c� (c1) + B2,c� (c2) ≤ 0 for all c� ≥ ce
1
.

(22)B1,ce
2
(ce

1
) + B2,ce

2
(ce

2
) ≥ 0, and B1,ce

1
(ce

1
) + B2,ce

1
(ce

2
) ≤ 0,

(23)B1,ce
1
(ce

1
) = 0 ⇔ R1 −

ce
1

�1 − ΛH(ce
1
)
= 0 with ce

1
∈ (ce

2
, ch),

(24)B2,ce
2
(ce

2
) = 0 ⇔ R2 −

ce
2

�2 − ΛH(ce
2
)
= 0 with ce

2
∈ (cl, c

e
1
),

(25)B1,ce
2
(ce

1
) ≥ 0 ⇔ R1 ≥ ce

2

�1 − ΛH(ce
1
)
,

(26)B2,ce
1
(ce

2
) ≤ 0 ⇔ R2 ≤ ce

1

�2 − ΛH(ce
2
)
,
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account the necessary conditions for equilibrium described by in (25) and 
(26), we derive that the point (R1,R2) must lie in the region 

 It is easy to show that the remaining area from the previous cases (i.e., VI 
in Fig. 4) is created from the set of equations, 

 Clearly, (27) is a sub-area of VI which corresponds to the area VI.a in 
Fig. 4 in which the unique equilibrium strategy is (ce

1
, ce

2
) , where ce

n
= rn , 

the solution of (15) in (cl, ch) for i = 1, 2.
(b) The remaining area of IV corresponds to the pairs of (R1,R2) which belong 

to VI but not in VI.a (the complement of VI.a). This takes place when (25) 
and (26) do not hold, i.e., ce

1
≤ ce

2
 , which correspond to the equilibrium 

threshold strategy (ce
1
, ce

1
) . By using similar arguments, and based on the 

optimal response of the tagged customer in (14), in the area of VI.b the 
equilibrium strategy (ce

1
, ce

1
) corresponds to (r, r) where r is the solution of 

B1,r(r) + B2,r(r) = 0 , i.e., Eq. (16). Finally, regarding the red line in Fig. 4 
that separates the areas VI.a and VI.b, we can derive its form as follows: We 
define the r1, r2 solutions of Eq. (15) as functions of R1 and R2 , respectively. 
Specifically, 

 Cases (a) and (b) are distinguished by the ordering of r1, r2 , i.e., case (a) 
holds if r1 > r2 , whereas case (b) holds if r1 ≤ r2. In order to define this 
area explicitly with respect to the parameters R1,R2 , we need to derive the 
line which is defined by the equation r1(R1) = r2(R2) . Substituting the 

expressions for r1(R1) and r2(R2) , it follows that R2 =
r1(R1)

�1 − ΛH(r1(R1))
 . 

The latter coincides with the red curve in Fig. 4, and its shape depends on 
the distribution function H(c). Thus, the case where 
R2 <

r1(R1)

𝜇1 − ΛH(r1(R1))
 , i.e., r1 > r2 corresponds to the VI.a area. Other-

wise, (R1,R2) pairs lie in the supplementary area VI.b.

(27)
(

ce
2

�1 − ΛH(ce
1
)
,

ch

�1 − Λ

)
×

(
cl

�2

,
ce
1

�2 − ΛH(ce
2
)

)

R1 + R2 =
cl

�1

+
cl

�2

,

R1 + R2 =
ch

�1 − Λ
+

ch

�2 − Λ
,

R1 =
ch

�1 − Λ
, and R2 =

cl

�2

.

r1(R1) = R1

[
�1 − ΛH(r1(R1))

]
⇔ R1 =

r1(R1)

�1 − ΛH(r1(R1))

r2(R2) = R2

[
�2 − ΛH(r2(R2))

]
⇔ R2 =

r2(R2)

�2 − ΛH(r2(R2))
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As we have mentioned, the different cases stated in Theorem 1 characterize the 
equilibrium threshold strategies (ce

1
, ce

2
) when the implemented customers’ delay 

sensitivity distribution takes values in a closed interval I. The latter corresponds 
to applications where the delay cost rate C is uniformly distributed in [cl, ch] with 
0 ≤ cl ≤ ce

2
≤ ce

1
≤ ch < ∞ . Following that, it is of interest to explore how the 

equilibrium threshold strategies (ce
1
, ce

2
) described in Theorem 1 change, when cl = 0 

or ch = ∞ , when other types of distributions are applied for C, e.g., an exponential 
or a gamma distribution.

Indeed, when cl = 0 or ch = ∞ , some of the extreme threshold strategies 
(ce

1
, ce

2
) ∈ TH with ce

1
, ce

2
∈ {cl, ch} are no longer equilibria. This causes the different 

cases of Theorem 1 to limit down. Specifically, Fig. 5 shows the equilibrium thresh-
old strategies (ce

1
, ce

2
) in the R1R2 plane depending on whether cl = 0 or ch = ∞ and 

covers various types of distributions for the customers’ delay sensitivity parameter 
C. Specifically, Fig. 5a and c correspond to cases where cl = 0 , such as when C fol-
lows a uniform distribution in [0, ch] or an exponential distribution with rate 𝜃 > 0 , 
indicating that some customers are not sensitive to potential delays. In these cases, 
the threshold strategies (cl, cl), (r1, cl), and (ch, cl) , which dictate that all customers 
will balk from a certain queue, cannot be equilibrium strategies because at least a 
small portion of customers will join both queues depending on the values of the 
parameters since they definitely acquire a positive expected net benefit. Thus, when 
cl = 0 , areas I, II, and IV of Fig. 4 disappear.

If ch = ∞ , meaning the support I is unbounded above, such as in cases where C fol-
lows an exponential distribution with rate � or a gamma distribution with shape param-
eter n > 0 and rate parameter 𝜃 > 0 , and I is either [0,∞) or (0,∞) , then there will be 
no threshold strategy in equilibrium dictating that all customers join at least the first 
queue. This is because some customers have a high delay sensitivity and their expected 
delay cost cannot be compensated by the potential benefit of joining the queue. There-
fore, in this scenario, the areas II, III, and IV in Fig. 4 disappear, as shown in Fig. 5b 
and c. The proof regarding the corresponding cases in Theorem  1 when cl = 0 or 
ch = ∞ is similar and follows the same steps. Finally, in the case where cl = 0 and 
ch = ∞ , where the different equilibrium threshold strategies are shown in Fig. 5c, the 

Fig. 5  Equilibrium thresholds in the R2R1−plane for the special case where a cl = 0 and ch < ∞ , b cl > 0 
and ch = ∞ , c cl = 0 and ch = ∞
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only valid case of Theorem 1 is (vi), and the different thresholds are distinguished only 
by the inequality R2 <

r1(R1)

𝜇1−ΛH(r1(R1))
 depending on whether r1 > r2 or not.

5  The Impact of Heterogeneity on Customers’ Strategic Behavior: 
Numerical Experiments

As previously mentioned, the presence of customer heterogeneity regarding delay sen-
sitivity is compatible with a number of situations that arise in several real-life applica-
tions, especially in the field of complementary services. These situations determine 
which parameters can be controlled by a decision-maker to improve the performance of 
a system. Our objective is to study the effect of customer heterogeneity with respect to 
delay sensitivity, considering several uniform distributions of different variances for the 
delay sensitivity C, and the case of homogeneous customers as a benchmark. The latter 
is approximated by considering a known distribution for C where its variance is almost 0.

Specifically, we perform extensive numerical experiments to obtain further insights 
on the effective arrival rates at each queue (�e

1
, �e

2
) , the corresponding joining double 

threshold strategy (ce
1
, ce

2
) , as well as the total expected customers’ benefit Se , in equi-

librium, under different scenarios. We conducted two sets of numerical experiments. In 
the first set, we apply the uniform distribution for the delay sensitivity parameter C in 
the interval [cl, ch] for given values of cl, ch , whereas in the second set, we apply the 
Gamma distribution with the given shape parameter n ∈ N  and rate 𝜃 > 0 . In both cases,  
we consider distributions of the same mean value where we vary their variance. Spe-
cifically, for the case of the uniform, we considered distributions of mean value 
E(C) =

cl+ch

2
= 4.5 , whereas for the case of the Gamma, we considered distributions of 

mean value E(C) = n

�
= 4 . Note that, in the latter case, the extended thresholds are 

cl = 0 and ch = ∞ , and the relative equilibrium strategies refer to the different cases 
shown in Fig. 5c.

The customers’ expected benefit from joining in equilibrium is given by the formula

which is finite for the considered distributions.
To represent the difference in variance, we use the terms almost zero, medium, 

and large variance, as a characteristic of each distribution for the delay cost rate C, 
since they all have the same mean value. The almost zero variance, which means 
that customers are almost identical, i.e., the case of almost homogeneous customers, 
is represented by the applications of C ∼ U[cl = 4.45, ch = 4.55] in the first set of 
experiments and C ∼ Gamma(n = 256, � = 64] in the second one. The latter appli-
cations are used as a benchmark for the analysis. The medium variance, with 
Var(C) ≤ 1 , is represented by C ∼ U[cl = 3, ch = 6] with Var(C) = 0.75 and 
C ∼ Gamma(n = 16, � = 4] with Var(C) = 1 . Lastly, the large variance, with 

(28)

Se = Λ�
ch

cl

�{c≤ce
1
}B1,c(c

e
1
) + �{c≤ce

2
}B2,c(c

e
2
) dH(c)

= Λ

(
�

ce
2

cl

(B1,c(c
e
1
) + B2,c(c

e
2
)) dH(c) + �

ce
1

ce
2

B1,c(c
e
1
) dH(c)

)
,
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Var(C) ≫ 1 , is represented by C ∼ U[cl = 1, ch = 8] with Var(C) =
49

12
 and 

C ∼ Gamma(n = 1, � = 0.25) ≡ Exp(� = 0.25) with Var(C) = 16.
The figures use dots, dashes, and continuous lines to represent almost zero, 

medium, and large variance, respectively. The black color represents the customers’ 
strategic behavior in queue 1, while red represents queue 2. The left panels show the 
equilibrium arrival rates �e

1
, �e

2
 , the middle panels show the corresponding equilib-

rium threshold strategy (ce
1
, ce

2
) , and the right panels show the plots of Se . The blue 

color is only used for the plots of Se in the right panels.

5.1  Ratio of the Service Values

First, we study the effect on strategic customer behavior of the fraction of service 
valuation at each queueing system, R2∕R1 , for different stochastic valuations of the 
customers’ delay sensitivity C, as we have analyzed above. We perform two numeri-
cal experiments considering different service speeds for the two queues, where 
queue 1 is faster with �1 = 8 than queue 2 where �2 = 6 in Figs. 6 and 8, and vice 
versa, in Figs. 7 and 9. This way, we have a clearer view of not only how custom-
ers differ in the evaluation of their delay, but also how their behavior is affected by 
the operation of the whole system. For both experiments, we fix Λ = 5 and R1 = 1 . 
Therefore, as we increase R2 with respect to R1 , we cover the following cases: 

1. Queue 1 is faster and more valuable for customers than queue 2, i.e., Figs. 6 and 
8 for R2∕R1 < 1.

2. Queue 1 is faster than queue 2 but less valuable for the customers, i.e., Figs. 6 and 
8 for R2∕R1 > 1.

3. Queue 1 is slower than queue 2 but more valuable for the customers, i.e., Figs. 7 
and 9 for R2∕R1 < 1.

4. Queue 1 is slower than queue 2 and less valuable for the customers, i.e., Figs. 7 
and 9 for R2∕R1 > 1.

Our objective is to study the impact of customer heterogeneity along the four cases 
and whether there exists an ideal fraction of service values for which the information 

Fig. 6  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service values ratio when 𝜇1 > 𝜇2 and C ∼ Uniform[cl, ch] with E(C) = 4.5
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asymmetry can be controlled by the administrator of the system either by setting 
the service rates appropriately or by imposing an appropriate service fee. Note that, 
even though the above model formulation does not consider service fees explicitly, 
the service administrator could impose a service fee that decreases the correspond-
ing service values at the desired levels.

Considering both Figs.  6 and 7 which refer to the different applications of the 
uniform distribution, we observe that both effective arrival rates, the corresponding 
thresholds at each queue, and the customers’ total benefit, in equilibrium, are non-
decreasing in R2∕R1 . Therefore, the more valuable the service in the second queue 
becomes, the more customers will join queue 2, as expected. A faster queue 2 will be 
more attractive for customers to join it even for smaller values of R2∕R1 , since all plots 
in Fig. 7 are moved to the left with respect to those in Fig. 6. Also, in both figures, 
we identify a critical value of the fraction of the service values, R2∕R1 ≈ 1.7 in Fig. 6 
and R2∕R1 ≈ 0.65 in Fig. 7, where the equilibrium threshold strategy changes from 
two distinct thresholds, i.e., ce

1
> ce

2
 , to equal ones. In addition, for very low values of 

R2∕R1 , nobody joins the second queue, and the corresponding threshold strategy is 
(r1, cl) . This means that as the value of R2∕R1 increases, a portion of customers initially 
join the first queue and permanently leave the system after service, then they elaborate 
an equilibrium (r1, r2) for intermediate values of R2∕R1 , and, finally, when the benefit 

Fig. 7  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service values ratio when 𝜇1 < 𝜇2 and C ∼ Uniform[cl, ch] with E(C) = 4.5

Fig. 8  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service values ratio when 𝜇1 > 𝜇2 and C ∼ Gamma(n, �) with E(C) = 4
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from joining the second queue becomes significantly higher, i.e., R2 > R1 , they adopt 
the threshold strategy (r, r) and tend to join either both queues or none, since the ser-
vice at the second queue will cover potential losses from the expected delays. Note 
that this critical point is lower when the service speed in queue 2 is higher. Therefore, 
there is a trade-off between service speed and the value of service. Indeed, when the 
second queue works faster, customers will adopt the same threshold for both queues if 
their service value R2 is above the 60% of R1 . Finally, customers’ overall benefit will 
be slightly higher if queue 1 works faster. Observations in Figs. 8 and 9 are similar. 
However, there are some differences in the applications of the gamma distribution. In 
the gamma distribution, the equilibrium threshold (r1, 0) does not occur as expected, 
and the equilibrium threshold ce

2
 fluctuates when the customers are almost homogene-

ous, i.e., when Var(C) ≈ 0 . This differs from the uniform distribution, where the equi-
librium threshold ce

2
 is always almost constant.

Considering the effect of the customers’ heterogeneity with respect to their delay 
sensitivity on the performance measures in equilibrium, we observe in Figs. 6 and 
8, where 𝜇1 > 𝜇2 , that lower variance always leads to a higher arrival rate at queue 
1, while the opposite occurs for the second queue when R2∕R1 is less than a critical 
value of the ratio. Specifically, in the application of uniform distribution, there is a 
single critical value of R2∕R1 ≈ 1.3 (see Fig. 6), where all plots of �e

2
 intersect in a 

single point and the lower variance induces a higher arrival rate at queue 2 after-
ward. Similar behavior of �e

2
 occurs if the second queue is faster (see Figs. 7 and 

9), but the critical point now moves to a lower value, i.e., when R2∕R1 ≈ 1.1 for the 
uniform, while for lower values of R2∕R1 , the arrival rate at the first queue is higher 
as the variance of C increases. This fact changes after the critical value of R2∕R1 . As 
in the previous case, lower variance induces a higher arrival rate for both queues, 
since �e

1
= �e

2
.

When examining the gamma distribution, it is observed that �e
1
 and �e

2
 exhibit 

the same monotonicity in relation to variance for low or high values of the service 
reward ratio R2∕R1 as mentioned above. However, for certain intermediate values 
of the ratio R2∕R1 , either the equilibrium arrival rate �e

2
 at queue 2 when 𝜇1 > 𝜇2 

(as seen in Fig.  8 for R2∕R1 ∈ (1.25, 1.5) ) or the equilibrium arrival rate �e
1
 at 

queue 1 when 𝜇1 < 𝜇2 (as seen in Fig.  9 for R2∕R1 ∈ (1, 1.4) ) is not monotonic 
in this interval, unlike the previous application of the uniform distribution. This 

Fig. 9  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service values ratio when 𝜇1 < 𝜇2 and C ∼ Gamma(n, �) with E(C) = 4
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is due to the plots of the equilibrium arrival rates intersecting at different points 
when customers are heterogeneous and almost homogeneous, as opposed to a sin-
gle intersection point that we had in the case of uniform distributions. Regard-
less of the above, both uniform and gamma applications indicate that when the 
fraction R2∕R1 is high, customer heterogeneity has a more negative impact on the 
resulting equilibrium arrival rates compared to low values of R2∕R1 , which only 
occur if 𝜇1 > 𝜇2 . Finally, in both numerical experiments, the intersection point of 
the different plots of equilibrium arrival rates also suggests a relative value of the 
corresponding rewards; at this point, customer heterogeneity disappears, and cus-
tomers behave as if they were homogeneous in assessing their delays.

Regarding the threshold strategies in Fig.  6 or in Fig.  8, when the variance is 
large, we observe that the corresponding threshold is higher, while the arrival rate is 
lower. Although it seems counter-intuitive, it is quite reasonable in some cases, espe-
cially in the application of the uniform distribution, since the difference ch − cl is 
increasing in the variance. Therefore, it leads to a lower arrival rate ( �e

1
= �H(ce

1
) , 

where H(c) =
c−cl

ch−cl
 ). In this example, for the large variance case, we obtain ce

1
= 5.1 ; 

thus, we have �e
1
= 5

5−1

8−1
≈ 2.85 . On the other hand, for the medium variance case, 

we have that ce
1
= 4.9 which implies that �e

1
= 5

4.9−3

6−3
≈ 3.16 . A similar effect is iden-

tified in the application of the gamma distribution because of the assumed parame-
ters and the shape of the cumulated distribution.

Another impact of the variance concerns the threshold strategies. The numeri-
cal experiments suggest that the equilibrium threshold strategy at queue 1 is 
always higher for a larger variance in both applications when 𝜇1 > 𝜇2 . This does 
not happen in queue 2, since for low values of R2∕R1 , the lower variance leads 
to a higher threshold up to a point where R2∕R1 ≈ 1.3 in Fig. 6, and the opposite 
takes place afterward. In both cases (medium and large variance) when the frac-
tion becomes sufficiently large, the two thresholds ce

1
 and ce

2
 coincide, similarly 

to the effective arrival rates. In Figs. 7 and 9, in contrast to the previous case, the 
equilibrium threshold strategy for queue 1 is higher for low variance, whereas for 
higher values of R2∕R1 , the two threshold strategies coincide again, and the higher 
variance leads to a higher threshold, independently of which queue is faster.

Regarding the customers’ overall benefit in equilibrium, we observe in Figs. 6, 
7, 8, and 9 that it is always higher when the variance is high and non-decreasing 
at a high rate in all cases. For the case of almost zero variance which refers to the 
approximately homogeneous case, it tends to be zero in the application of uni-
form distribution, whereas it is positive in the application of gamma distribution, 
and coincides with the case where queue 2 is the faster one, as in Figs. 7 and 9. 
The latter indicates that in this case, the relative service speed between the two 
queues does not play any role regarding the effect of the variance on customers’ 
overall benefit.

In short, Figs. 6, 7, 8, and 9 illustrate the following:

• The equilibrium arrival rates (�e
1
, �e

2
) , the corresponding thresholds (ce

1
, ce

2
) , and 

the customers’ overall benefit Se are non-decreasing in R2∕R1.
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• The equilibrium arrival rates coincide above a critical value of R2∕R1 , since the 
equilibrium thresholds become equal, and customers decide either to enter both 
queues or balk from the beginning. A faster queue 2 moves this point towards 
lower values of R2∕R1.

• A faster queue 2 will impose a greater effective arrival rate at queue 1 as the vari-
ance increases, but lower for the same variance in the opposite case, whereas �e

2
 

increases with respect to the variance for low values of R2∕R1 and decreases for 
greater ones. Equilibrium thresholds have the opposite behavior as the variance 
increases. There is a second critical point of R2∕R1 , where the effective arrival rate 
at queue 2 becomes equal for any variance in the applications of the uniform distri-
bution, and the heterogeneity effect seems to disappear. A higher variance will lead 
to greater customers’ overall benefit in equilibrium regardless of the relative service 
speed or the considered distribution for customers’ delay sensitivity.

5.2  Ratio of the Service Rates

In this subsection, we present the sensitivity analysis with respect to the ratio 
�2∕�1 for Λ = 0.8,�1 = 1 , when the service reward is higher on the first queue 
than the second one, i.e., (R1,R2) = (9, 1) in Fig.  10, and vice versa where 

Fig. 10  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service rates ratio when R1 > R2 and C ∼ Uniform[cl, ch] with E(C) = 4.5

Fig. 11  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service rates ratio when R1 < R2 and C ∼ Uniform[cl, ch] with E(C) = 4.5
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(R1,R2) = (1, 9) in Fig. 11. Once again, as in Section 5.1, we consider the same 
three uniform and gamma distributions for customers’ delay sensitivity, presented 
at the beginning of Sect. 5.

We consider the four similar cases discussed in the previous subsection but 
now as a function of the ratio �2∕�1 . 

1. Queue 1 is faster and more valuable for customers than queue 2, i.e., Figs. 10 and 
12 for 𝜇2∕𝜇1 < 1.

2. Queue 1 is slower than queue 2 but more valuable for the customers, i.e., Figs. 10 
and 12 for 𝜇2∕𝜇1 > 1.

3. Queue 1 is faster than queue 2 but less valuable for the customers, i.e., Figs. 11 
and 13 for 𝜇2∕𝜇1 < 1.

4. Queue 1 is slower than queue 2 and less valuable for the customers, i.e., Figs. 11 
and 13 for 𝜇2∕𝜇1 > 1.

Once again, our objective is to study the impact of customer heterogeneity along the 
four cases and whether there exists an ideal fraction of service rates for which the 
information asymmetry can be controlled by the administrator of the system either by 
setting the service rates appropriately or by imposing an appropriate service fee.

Fig. 12  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service rates ratio when R1 > R2 and C ∼ Gamma(n, �) with E(C) = 4

Fig. 13  Effective arrival rates, thresholds, and customers’ overall benefit, in equilibrium, with respect to 
service rates ratio when R1 < R2 and C ∼ Gamma(n, �) with E(C) = 4
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In Fig. 10, as well as in Fig. 12, where the service reward for the first queue is very 
high, while is very low for the second queue, a large fraction of customers join the  
first queue, and in order to continue to the second queue, it requires a high increase 
in its service rate. Even in this case, only a very small portion of customers will 
continue to the second queue. The effect of the variance is very intense in the first 
queue since it leads fewer customers to decide to join when it is high. As in the pre-
vious experiments, for high values of �2∕�1 , the equilibrium effective arrival rates 
for both queues coincide, since the equilibrium thresholds become equal, and cus-
tomers adopt a threshold to either join both queues or to balk. Also, with respect to 
the variance, the equilibrium arrival rates at queue 2 intersect at a certain value, and  
the effect of customer heterogeneity seems to disappear, making customers to be 
considered almost homogeneous in delay sensitivity. Furthermore, for lower values 
of �2∕�1 , greater variance results in a higher effective arrival rate but in a lower 
threshold, while greater values of the fraction of service rates lead the arrival rate 
to become increasing as the variance also increases. Finally, in terms of customers’ 
overall benefit, the higher variance reflects a higher overall benefit but at a very low 
increasing rate (almost constant) due to the devaluation of the second queue, and 
customers mainly benefit from the reward collected by the first queue.

On the other hand, in Fig. 11 where the service rewards are exchanged, making 
the service value of the first queue very low, we observe that customers will adopt 
the same threshold strategy at both queues, i.e., ce

1
= ce

2
 , since they are mainly 

interested to collect the high service reward from the second queue, and thus the 
arrival rates for both queues coincide. Note that, again, there is a critical point of 
the ratio �2∕�1 . For values of �2∕�1 lower than this critical value, the arrival rate 
increases, and the threshold decreases as the variance increases. For values of 
�2∕�1 that are higher than the critical value, the effect is reversed. Regarding the 
customers’ overall expected benefit, we observe again that regardless of the order of 
the service values, the higher variance induces a higher benefit, but at a greater rate 
now. Similar observations can be also made in Fig. 13.

In short, Figs. 10, 11, 12, and 13 illustrate the following:

• The equilibrium arrival rates (�e
1
, �e

2
) , the corresponding thresholds (ce

1
, ce

2
) , and 

the customers’ overall benefit Se are non-decreasing in �2∕�1.
• The equilibrium arrival rates coincide above a critical value of �2∕�1 when 

R1 > R2 . In the other case, where R1 = 1 < 9 = R2 , the high difference in the 
service values forces customers to adopt a single threshold for either joining both 
queues or balking. In a more profitable queue 1, the almost homogeneous cus-
tomers will impose a higher effective arrival rate which decreases as the corre-
sponding variance increases.
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• Once again, there is a critical value of �2∕�1 , where the effective arrival rates at 
queue 2 become equal for any variance, and the heterogeneity effect seems to disap-
pear. A higher variance will lead to greater customers’ overall benefit in equilibrium 
at a much higher rate when queue 2 is more profitable.

6  Conclusion

In this paper, we considered a Markovian tandem system of two unobservable 
M/M/1 queues in series with strategic customers who are heterogeneous in their 
delay sensitivity when they make join/balk decisions when arriving in front of each 
queue. We identified the unique symmetric Nash equilibrium strategy which is 
threshold-based, and depending on the values of the parameters, it can dictate to 
customers either to join each queue under a different threshold or to use the same 
joining threshold for both queues. We performed several numerical experiments 
considering either uniformly distributed or gamma-distributed customers’ delay sen-
sitivity to study the impact of customers’ heterogeneity on their strategic behavior, 
and we also compared it with the case of almost homogeneous customers.

The considered model is the first step towards a more thorough study of the 
impact of customers’ delay sensitivity heterogeneity on their strategic joining 
behavior in a network with queues in series. The current work can be extended in 
several directions to study the impact of customer heterogeneity on customer equi-
librium behavior either considering a finite number of queues in series as in [20] 
or more general networks with feedback loops. Another approach in this direction 
could incorporate aspects of customers’ risk aversion who adopt a non-linear util-
ity. Finally, studying the impact of customer heterogeneity in combination with the 
information disclosure of the number of customers in the system at any decision 
instant will provide managerial insights referring to even more realistic applications.

Appendix 1. Notation

In Tables 2, 3, and 4, we present the notation throughout the paper and the different 
cases with the corresponding values of the parameters for the numerical section. 
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Table 2  Basic notation

Variable/parameters Definition

Λ Potential customers arrival rate
Rn Customer service valuation at queue n, n = 1, 2

�n Service rate at queue n, n = 1, 2

c Customer-type delay sensitivity
C ∼ H(c) Continuous random variable C and CDF
cl, ch Lower and higher value of c
x(c) = (x1(c), x2(c)) Pure strategy of a customer given c
X Function of c with image the pairs of pure strategies
V00(X),V10(X),V11(X) Partition of pure strategies by type−c customers
�n(X) Effective arrival rate at queue n
Wn(X) Expected customer delay from joining queue n
Bn,c� (X) Expected type c′ customer benefit from joining queue n
y(c�) = (y1(c

�), y2(c
�)) Pure strategy of a tagged type c′ customer

Y Function of c′ with image the pairs of pure strategies
(y∗

1
, y∗

2
) Pptimal response against x

TH Set of threshold joining strategies
�n(xn) Effective arrival rate at queue n = 1, 2

Wn(xn) Expected customer delay from joining queue n
Uc� (y;x) Total expected net benefit of a tagged customer
y∗(x) Optimal response against x
TH Set of threshold joining strategies
c = (c1, c2) Threshold joining strategies
c̃ = (c̃1, c̃2) Threshold joining strategies of a type c′ tagged customer
(c̃∗

1
, c̃∗

2
) Optimal response against (c̃1, c̃2)

�n = ΛH(cn) Effective arrival rate at queue n
Uc� (c̃;c) Total expected net benefit of a tagged customer
r1, r2, r Solutions of Bn,rn

= 0, n = 1, 2 and B1,r + B2,r = 0

Table 3  Cases for the numerical section when C ∼ Uniform(cl, ch), 0 < cl < ch < ∞

Parameters Case

(cl, ch) = (4.45, 4.55) Almost homogeneous (dots)
(cl, ch) = (3, 6) Medium variation (dashes)
(cl, ch) = (1, 8) Large variation (lines)
R1 = 1,Λ = 5,�1 = 8,�2 = 6,R2 variable Fig. 6 (fast service at queue 1)
R1 = 1,Λ = 5,�1 = 6,�2 = 8,R2 variable Fig. 7 (fast service at queue 2)
�1 = 1,Λ = 0.8,R1 = 9,R2 = 1,�2 variable Fig. 10 (high valuation at queue 1)
�1 = 1,Λ = 0.8,R1 = 1,R2 = 9,�2 variable Fig. 11 (high valuation at queue 2)
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Appendix 2. The Case of Uniformly Distributed Delay Sensitivity 
Parameter

In this appendix, we summarize how the results are applied in the case where the 
delay sensitivity parameter C follows a uniform distribution on the interval [cl, ch] . 
These results are used to perform our numerical experiments in Sect. 5. For the case 
of a uniform distribution, the cumulative distribution function on [cl, ch] is equal to 
H(rn) =

rn − cl

ch − cl
 , and the solution in (15) can be easily seen to be equal to

Following that, the red curve in Fig. 4 that characterizes (a) and (b) in case vi. 
of Theorem  1 can be also obtained by equating r1(R1) = r2(R2) and solving with 
respect to R2 . After some algebra, we derive that

Therefore, for 
cl

𝜇1

+
cl

𝜇2

− R2 < R1 <
ch

𝜇1 − Λ
 and

the equilibrium threshold is

(29)rn =
Rn

(
�n(ch − cl) + Λcl

)
RnΛ + ch − cl

.

R2 =
A

Φ

(
1 +

A

R1

)
− 1

with A =
ch − cl

Λ
and Φ =

(ch − cl)�2 + Λcl
(ch − cl)�1 + Λcl

.

cl

𝜇2

< R2 < min

⎧
⎪⎪⎨⎪⎪⎩

ch

𝜇1 − Λ
+

ch

𝜇2 − Λ
− R1,

A

Φ

�
1 +

A

R1

�
− 1

⎫
⎪⎪⎬⎪⎪⎭

,

(ce
1
, ce

2
) =

(
R1

(
�1(ch − cl) + Λcl

)
R1Λ + ch − cl

,
R2

(
�2(ch − cl) + Λcl

)
R2Λ + ch − cl

)
;

Table 4  Cases for the numerical section when C ∼ Gamma(n, 𝜃), n ∈ N, 𝜃 > 0

Parameters Case

(n, �) = (256, 64) Almost homogeneous (dots)
(n, �) = (16, 4) Medium variation (dashes)
(n, �) = (1, 0.25) Large variation (lines)
R1 = 1,Λ = 5,�1 = 8,�2 = 6,R2 variable Fig. 6 (fast service at queue 1)
R1 = 1,Λ = 5,�1 = 6,�2 = 8,R2 variable Fig. 7 (fast service at queue 2)
�1 = 1,Λ = 0.8,R1 = 9,R2 = 1,�2 variable Fig. 10 (high valuation at queue 1)
�1 = 1,Λ = 0.8,R1 = 1,R2 = 9,�2 variable Fig. 11 (high valuation at queue 2)
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otherwise, there exists the same joining threshold in both queues, ce
1
= r , the solu-

tion of (16), which can be simplified to the following quadratic equation:

with r̃ =
r − cl

ch − cl
.
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