
Vol.:(0123456789)

Operations Research Forum (2023) 4:73
https://doi.org/10.1007/s43069-023-00257-w

1 3

RESEARCH

A Low‑Cost Alternating Projection Approach
for a Continuous Formulation of Convex and Cardinality
Constrained Optimization

N. Krejić1 · E. H. M. Krulikovski2 · M. Raydan2

Received: 21 April 2023 / Accepted: 11 September 2023 / Published online: 3 October 2023
© The Author(s) 2023

Abstract
We consider convex constrained optimization problems that also include a cardi-
nality constraint. In general, optimization problems with cardinality constraints are
difficult mathematical programs which are usually solved by global techniques from
discrete optimization. We assume that the region defined by the convex constraints
can be written as the intersection of a finite collection of convex sets, such that it is
easy and inexpensive to project onto each one of them (e.g., boxes, hyper-planes,
or half-spaces). Taking advantage of a recently developed continuous reformula-
tion that relaxes the cardinality constraint, we propose a specialized penalty gradient
projection scheme combined with alternating projection ideas to compute a solu-
tion candidate for these problems, i.e., a local (possibly non-global) solution. To
illustrate the proposed algorithm, we focus on the standard mean-variance portfolio
optimization problem for which we can only invest in a preestablished limited num-
ber of assets. For these portfolio problems with cardinality constraints, we present a
numerical study on a variety of data sets involving real-world capital market indices
from major stock markets. In many cases, we observe that the proposed scheme con-
verges to the global solution. On those data sets, we illustrate the practical perfor-
mance of the proposed scheme to produce the effective frontiers for different values
of the limited number of allowed assets.

Keywords Cardinality constraints · Portfolio optimization · Efficient frontier ·
Projected gradient methods · Dykstra’s algorithm

AMS Subject Classification 90C30 · 65K05 · 91G10 · 91G15

This article is part of the Topical Collection on Operations Research in Applied Energy,
Environment, Climate Change & Sustainability

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-023-00257-w&domain=pdf

 Operations Research Forum (2023) 4:73

1 3

73 Page 2 of 24

1 Introduction

We are interested in convex constrained optimization problems with an additional
cardinality constraint. In other words, we are interested in finding sparse solutions
of those optimization problems, i.e., solutions with a limited number of nonzero
elements, as required in many areas including image and signal processing, math-
ematical statistics, machine learning, portfolio optimization problems, among oth-
ers. One effective way to ensure the sparsity of the obtained solution is imposing
a cardinality constraint where the number of nonzero elements of the solution is
bounded in advance.

To be precise, let us consider the following constrained optimization problem:

where f ∶ ℝ
n
→ ℝ is continuously differentiable, 1 ≤ 𝛼 < n is a given natural num-

ber, Ω is a convex subset of ℝn (that will change depending on the considered appli-
cation), and the L0 (quasi) norm ‖x‖0 denotes the number of nonzero components
of x. The sparsity constraint ‖x‖0 ≤ � is also called the cardinality constraint. Of
course, we will assume that 𝛼 < n since otherwise the cardinality constraint could be
discarded.

The main difference between problem (1) and a standard convex constrained
optimization problem is that the cardinality constraint, despite of the notation, is
not a norm, nor continuous neither convex. Because of the non-tractability of the
so-called zero norm ‖x‖0 , the 1-norm ‖x‖1 has also been frequently considered to
develop good approximate algorithms. Clearly, to impose a required level of spar-
sity, the use of the zero norm in (1) is much more effective.

Optimization problems with cardinality constraints are (strongly) NP-hard prob-
lems [5, 16], which can be solved by global techniques from discrete or combinato-
rial optimization (see, e.g., [4, 14, 23]). However, in a more general setting, a con-
tinuous reformulation has been recently proposed and analyzed in [12] to deal with
this difficult cardinality constraint. The main idea is to address the continuous coun-
terpart of problem (1):

where e ∈ ℝ
n denotes the vector of ones. We note that the last n constraints denote

a simple box in the auxiliary variable vector y ∈ ℝ
n . A more difficult reformulation

substitutes the simple box by a set of binary constraints given by either yi = 0 or
yi = 1 for all i. In that case, the problem is an integer programming problem (much
harder to solve) for which there are several algorithmic ideas already developed (see,
e.g., [4, 5, 14, 19, 36]). In here, we will focus on the continuous formulation (2) that
will play a key role in our algorithmic proposal. For additional theoretical properties

(1)min
x

f (x) subject to x ∈ � and ‖x‖0 ≤ �,

(2)

min
x,y

f (x)

subject to: x ∈ 𝛺,

e⊤y ≥ n − 𝛼,

xiyi = 0, for all 1 ≤ i ≤ n,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n,

1 3

Operations Research Forum (2023) 4:73 Page 3 of 24 73

that include the equivalence between the original version (1) and the continuous
relaxed version (2), see [12, 25, 28, 29].

As a consequence of the so-called Hadamard constraint (x ◦ y = 0 , i.e., xiyi = 0
for all i), the formulation (2) is a nonconvex problem, even when the original cardi-
nality constrained problem (except for the cardinality constraint of course) was con-
vex. Thus, one can in general not expect to obtain global minima. But if one is, for
example, interested in obtaining local solutions or good starting points for a global
method, this continuous formulation (2) can be useful.

In this work, we will pay special attention to those problems for which the set Ω is
the intersection of a finite collection of convex sets, in such a way that it is very easy
to project onto each one of them. In that case, the main idea is to take advantage of
the fact that two of the constraints in (2), namely, e⊤y ≥ n − 𝛼 and 0 ≤ yi ≤ 1 for all
i, are also “easy-to-project" convex sets, and so an alternating projection scheme
can be conveniently applied to project onto the intersection of all the involved con-
straints in (2), except for the Hadamard constraint. For computing a solution candi-
date of the continuous formulation (2), we can then use a suitable low-cost convex
constrained scheme, such as gradient-type methods in which the objective function
includes f(x) plus a suitable penalization term that guarantees that the Hadamard
constraint is also satisfied at the solution. In Section 2, we will describe and ana-
lyze a general penalty method to satisfy the Hadamard constraint that appears in the
relaxed formulation (2). In Section 3, we will describe a suitable alternating projec-
tion scheme as well as a suitable low-cost gradient-type projection method that can
be combined with the penalty method of Section 2. We close Section 3 showing the
combined algorithm that represents the main contribution of our work. Concern-
ing some specific applications, in Section 4, we will consider in detail the standard
mean-variance limited diversified portfolio selection problem (see, e.g., [13–15, 19,
21, 23]). In Section 5, we will present a numerical study to illustrate the computa-
tional performance of the proposed scheme on a variety of data sets involving real-
world capital market indices from major stock markets. For each considered data set,
we will focus our attention on the efficient frontier produced for different values of
the limited number of allowed assets. In Section 6, we will present some final com-
ments and perspectives.

2 A Penalization Strategy for the Hadamard Constraint

Let us consider again the continuous formulation (2), and let us focus our atten-
tion on the Hadamard constraint x◦y = 0 (i.e., xiyi = 0 for all i). This particu-
lar constraint is the only one that does not define a convex set. The others define
convex sets in which it is easy to project, as discussed in the previous section.
To see that the set of vectors (x, y) ∈ ℝ

2n such that x◦y = 0 do not form a convex
set, it is enough to consider the two 2-dimensional pairs: (x1, y1) = (1, 0, 0, 1) and
(x2, y2) = (0, 1, 1, 0) . Both pairs are clearly in that set, but the convex combination:
1

2
(x1, y1) +

1

2
(x2, y2) =

1

2
e , which is not in that set.

A classical and straightforward approach to force the Hadamard condition at the
solution, while keeping the feasible set of our problem as the intersection of a finite

 Operations Research Forum (2023) 4:73

1 3

73 Page 4 of 24

collection of easy convex sets, is to add a penalization term �h(x, y) to the objective
function and consider instead the following formulation:

where 𝜏 > 0 is a penalization parameter that needs to be properly chosen, and the
function h ∶ ℝ

2n
→ ℝ is continuously differentiable and chosen to satisfy the fol-

lowing two properties: h(x, y) ≥ 0 for all feasible vectors x and y, and h(x, y) = 0 if
and only if x◦y = 0 . Clearly, the function h(x, y) is crucial and should be conveni-
ently chosen depending on the considered application. However, a default option
that satisfies all the required properties is given by h(x, y) =

∑
1≤i≤n x

2
i
y2
i
.

Applying now a penalty scheme, problem (3) can be reduced to a sequence of
convex constrained problems of the following form:

where 𝜏k > 0 is the penalty parameter that increases at every k to penalize the
Hadamard-constraint violation, and the closed convex set Ω̂ is given by

Under some mild assumptions and some specific choice of the sequence {�k} , it can
be established that the sequence of solutions of problem (4) converges to a solution
of (2) (see, e.g., [22] and [30, Secc. 12.1]). Let us assume that problem (2) attains
global minimizers. Since f is a continuous function, it is enough to assume that one
of the closed and convex sets involved in the definition of � in (2) is bounded. In
here, for the sake of completeness, we summarize the convergence properties of the
proposed penalty scheme (4).

Theorem 1 If for all k, 𝜏k+1 > 𝜏k > 0 and (xk, yk) is a global solution of (4), then

Moreover, if x̄ is a global solution of problem (2), then for all k

Finally, if �k → ∞ and {(xk, yk)} is the sequence of global minimizers obtained by
solving (4), then any limit point of {(xk, yk)} is a global minimizer of (2).

Remark 1 In the proof of the last statement of Theorem 1 (see, e.g., [30, Secc. 12.1]),
the requirement of �k → ∞ is used only to guarantee that the term h(xk, yk) → 0

(3)

min
x,y

f (x) + 𝜏h(x, y)

subject to: x ∈ 𝛺,

e⊤y ≥ n − 𝛼,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n,

(4)min
x,y

f (x) + �kh(x, y), subject to (x, y) ∈ �̂,

�𝛺 = {(x, y) ∈ ℝ
2n ∶ x ∈ 𝛺, e⊤y ≥ n − 𝛼, 0 ≤ yi ≤ 1, i = 1,… , n}.

f (xk) + �kh(xk, yk) ≤ f (xk+1) + �k+1h(xk+1, yk+1)

h(xk+1, yk+1) ≤ h(xk, yk)

f (xk) ≤ f (xk+1).

f (xk) ≤ f (xk) + 𝜏kh(xk, yk) ≤ f (x̄) .

1 3

Operations Research Forum (2023) 4:73 Page 5 of 24 73

when k → ∞ , i.e., to guarantee that xk◦yk → 0 . In order to guarantee the conver-
gence result, what is important is that the Hadamard product itself goes to zero
even if 0 < 𝜏k < ∞ for all k. This fact will play a key role in our numerical study
(Section 5).

We would like to close this section with a pertinent result [28, Theorem 4] that
establishes a one-to-one correspondence between minimizers of problems (1) and
(2), whenever the obtained solution x̄ satisfies the cardinality constraint with equal-
ity, i.e., ‖x̄‖0 = 𝛼.

Theorem 2 Let (x̄, ȳ) be a local minimizer of the relaxed problem (2). Then, ‖x̄‖0 = 𝛼
if and only if ȳ is unique, that is, if there exist exactly one ȳ such that (x̄, ȳ) is a local
minimizer of (2). In this case, the components of ȳ are binary (i.e., ȳi = 0 or ȳi = 1
for all 1 ≤ i ≤ n) and x̄ is a local minimizer of (1).

3 Dykstra’s Method and the SPG Method

For every k, a low-cost projected gradient method can be used to compute a solution
candidate of the optimization problem (4). For a given vector x̃ ∈ ℝ

2n , a convenient
tool for finding the required projections onto �̂ is Dykstra’s alternating projection
algorithm [11], that projects in a clever way onto the convex sets, say �1,… ,�p ,
individually to complete a cycle which is repeated iteratively, and as any other itera-
tive method, it can be stopped prematurely.

In Dykstra’s method, it is assumed that the projections onto each of the individ-
ual sets �i are relatively simple to compute, e.g., boxes, spheres, subspaces, half-
spaces, and hyperplanes. The algorithm has been adapted and used for solving a
huge amount of different applications and has been combined with several tech-
niques in optimization, including outer approximation strategies for solving nonlin-
ear constraint problems (see, e.g., [2, 17, 33]). For a review on Dykstra’s method, its
properties and applications, as well as many other alternating projection schemes,
see, e.g., [18, 20].

Dykstra’s algorithm generates two sequences: the iterates {xi
�
} and the increments

{Ii
�
} . These sequences are defined by the following recursive formulae:

for � ∈ ℤ
+ with initial values xp

0
= x̃ and Ii

0
= 0 for i = 1, 2,… , p.

The sequence of increments play a fundamental role in the convergence of the
sequence {xi

�
} to the unique optimal solution x∗ = P �𝛺(x̃) . Boyle and Dykstra [11]

established the key convergence theorem associated with algorithm (5), i.e., that for
any i = 1, 2,… , p and any given x̃ , the sequence {xi

�
} generated by (5) converges

to x∗ = P �𝛺(x̃) (i.e., ‖xi
�
− x∗‖ → 0 as � → ∞). Concerning the rate of convergence,

(5)
x0
�
= x

p

�−1

xi
�
= P�i

(xi−1
�

− Ii
�−1

) i = 1, 2,… , p,

Ii
�
= xi

�
− (xi−1

�
− Ii

�−1
) i = 1, 2,… , p,

 Operations Research Forum (2023) 4:73

1 3

73 Page 6 of 24

it is well-known that Dykstra’s algorithm exhibits a linear rate of convergence in
the polyhedral case [18, 20], which is the case in all problems considered here (see
Section 5). Finally, the stopping criterion associated with Dykstra’s algorithm is a
delicate issue. A discussion about this topic and the development of some robust
stopping criteria are fully described in [10]. Based on that, in here, we will stop the
iterations when

where 𝜀 > 0 is a small given tolerance.
Since the gradient ∇f (x, y) of f (x, y) = f (x) + �h(x, y) is available for each fixed

𝜏 > 0 , then Projected Gradient (PG) methods provide an interesting low-cost
option for solving (4). They are simple and easy to code, and avoid the need for
matrix factorizations (no Hessian matrix is used). There have been many differ-
ent variations of the early PG methods. They all have the common property of
maintaining feasibility of the iterates by frequently projecting trial steps on the
feasible convex set. In particular, a well-established and effective scheme is the
so-called Spectral Projected Gradient (SPG) method (see Birgin et al. [6–9]).

The SPG algorithm starts with (x0, y0) ∈ ℝ
2n and moves at every iteration j along

the internal projected gradient direction dj = P�̂((xj, yj) − �j∇f (xj, yj)) − (xj, yj) ,
where dj ∈ ℝ

2n and �j is the well-known spectral choice of step length (see [9]):

and sj−1 = (xj, yj) − (xj−1, yj−1) . In the case of rejection of the first trial point, (xj, yj) + dj ,
the next ones are computed along the same direction, i.e., (x+, y+) = (xj, yj) + �dj , using
a nonmonotone line search to choose 0 < 𝜆 ≤ 1 such that the following condition holds

where M ≥ 1 is a given integer and � is a small positive number. Therefore, the pro-
jection onto �̂ must be performed only once per iteration. More details can be found
in [6] and [7]. In practice, � = 10−4 and a typical value for the nonmonotone param-
eter is M = 10 , but the performance of the method may vary for variations of this
parameter, and a fine tuning may be adequate for specific applications.

Another key feature of the SPG method is to accept the initial spectral step-
length as often as possible while ensuring global convergence. For this reason,
the SPG method employs a non-monotone line search that does not impose func-
tional decrease at every iteration. The global convergence of the SPG method
combined with Dykstra’s algorithm to obtain the required projection per iteration
can be found in [8, Section 3].

Summing up, our proposed combined algorithm is now described in detail.

(6)
p�
i=1

‖Ii
�−1

− Ii
�
‖2 ≤ �,

�j =
⟨sj−1, sj−1⟩

⟨sj−1, (∇f (xj, yj) − ∇f (xj−1, yj−1))⟩ ,

f (x+, y+) ≤ max
0≤l≤ min {j,M−1}

f (xk−l, yk−l) + ��⟨dj,∇f (xj, yj)⟩,

1 3

Operations Research Forum (2023) 4:73 Page 7 of 24 73

Algorithm Penalty-SPG (PSPG)

S0 : Given 𝜏−1 > 0 , and vectors x−1 and y−1 ; set k = 0.

S1 : Compute 𝜏k > 𝜏k−1

S2 : Set xk,0 = xk−1 and yk,0 = yk−1 , and from (xk,0, yk,0) apply the SPG method to
(10), until

 is satisfied at some iteration mk ≥ 1 . Set xk = xk,mk
 and yk = yk,mk

.

S3 : If

 then stop. Otherwise, set k = k + 1 and return to S1.
We note that at any iteration k ≥ 1 , Step S2 of Algorithm PSPG starts from

(xk−1, yk−1) , which is the previous solution of (4), obtained using �k−1 . We also note that to
stop the SPG iterations, we monitor the value of ‖P�̂((xk, yk) − ∇f (xk, yk)) − (xk, yk)‖2 .
It is worth recalling that if ‖P�̂((x, y) − ∇f (x, y)) − (x, y)‖2 = 0 , then (x, y) ∈ �̂ is sta-
tionary for problem (4) (see, e.g., [6, 8]). Each SPG iteration uses Dykstra’s alternating
projection scheme to obtain the required projection onto �̂ , and this internal iterative
process is stopped when (6) is satisfied.

4 Cardinality Constrained Optimal Portfolio Problem

Let the vector v ∈ ℝ
n and the symmetric and positive semi-definite matrix

Q ≡ [�ij]i,j=1,…,n ∈ ℝ
n×n be the given mean return vector and variance-covariance

matrix of the n risky available assets, respectively. The entry �ij in Q is the covari-
ance between assets i and j for i, j = 1,… , n , �ii = �2

i
 and �ij = �ji . As a consequence

of the pioneering work of Markowitz [32], the mean-variance portfolio selection
problem can be formulated as (1), where the objective function is given by

and the convex set 𝛺 = {x ∈ ℝ
n ∶ v⊤x ≥ 𝜌, e⊤x = 1, 0 ≤ xi ≤ ui, i = 1,… , n} ,

representing the constraints of minimum expected return level � , budget constraint
(e⊤x =

∑n

i=1
xi = 1 means that all available wealth will be invested), and lower

(x ≥ 0 excludes short sale) and upper bounds ui for each xi , respectively. Notice that
the minimization of f(x), involving the given covariance matrix Q, accounts for the
minimization of the variance, while the return is expected to be at least � . Notice
also that, as previously discussed, in this case, the set � is the intersection of three
easy convex sets: a half-space, a hyperplane, and a box. The additional constraint

‖P
Ω̂
((xk,mk

, yk,mk
) − ∇f (xk,mk

, yk,mk
)) − (xk,mk

, yk,mk
)‖2 ≤ tol1

h(xk, yk) ≤ tol2 and |f (xk) − f (xk−1)| ≤ tol2

(7)f (x) =
1

2
x⊤Qx,

 Operations Research Forum (2023) 4:73

1 3

73 Page 8 of 24

in (1), ‖x‖0 ≤ � for 0 < 𝛼 < n , plays a key role here and indicates that among the
n risky available options, we can only invest in at most � assets (cardinality con-
straint). The solution vector x denotes an investment portfolio, and each xi represents
the fraction held of each asset i. It should be mentioned that other inequality and/or
equality constraints can be added to the problem, as they represent additional real-
life constraints, e.g., transaction costs [3, 26].

Now, as discussed above, our main idea is to consider the continuous formulation
(2) instead of the optimization problem (1). For the portfolio selection problem, we
would end up with the following problem that involves the auxiliary vector y:

where the upper bound vector u ∈ ℝ
n and 𝜌 > 0 are given. Note that the vector y

appears only in the last 3 constraints, and the vector x appears in the first three con-
straints but also in the (non-convex) Hadamard constraint: x◦y = 0.

As discussed in Section 2, the best option to force the Hadamard condition at
the solution while keeping the feasible set of our problem as the intersection of
a finite collection of easy convex sets is to add the term �h(x, y) to the objective
function, where our convenient choice is h(x, y) = x⊤y:

where 𝜏 > 0 is a penalization parameter that needs to be properly chosen as
described in Section 2. Since the vectors x and y will be forced by the alternat-
ing projection scheme to have all their entries greater than or equal to zero, then
h(x, y) = x⊤y ≥ 0 for any feasible pair (x, y), and forcing 𝜏x⊤y = 0 is equivalent to
forcing the Hadamard condition: xiyi = 0 for all i. Notice that setting � = 0 for solv-
ing (8) with f(x, y) given by (9) minimizes the risk, independently of the Hadamard
condition. On the other hand, if 𝜏 > 0 is sufficiently large as compared to the size of
Q, then the term x⊤y must be zero at the solution. Hence, choosing 𝜏 > 0 represents
an explicit trade-off between the risk and the Hadamard condition.

Our algorithmic proposal consists in solving a sequence of penalized prob-
lems, as described in Section 2, using the SPG scheme and Dykstra’s alternat-
ing projection method (that from now on will be denoted as the SPG method)
to solve problem (8), without the complementarity constraint x◦y = 0 , and using
the objective function given by (9). That is, for a sequence of increasing penalty
terms 𝜏k > 0 , we will solve the following problems:

(8)

min
x,y

1

2
x⊤Qx

subject to: v⊤x ≥ 𝜌,

e⊤x = 1,

0 ≤ xi ≤ ui, for all 1 ≤ i ≤ n,

e⊤y ≥ n − 𝛼,

x◦y = 0,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n,

(9)f (x, y) =
1

2
x⊤Qx + 𝜏x⊤y,

1 3

Operations Research Forum (2023) 4:73 Page 9 of 24 73

Since the function h(x, y) = x⊤y satisfies the properties mentioned in Section 2, if we
choose the sequence of parameters {�k} such that h(xk, yk) goes to zero when k goes
to infinity, then Theorem 1 guarantees the convergence of the proposed scheme.

Before showing some computational results in our next section, let us recall that
the gradient and the Hessian of the objective function f at every pair (x, y) are given
by

Notice that, for any 𝜏k > 0 , ∇2f (x, y) is symmetric and indefinite.

5 Computational Results

To add understanding and illustrate the advantages of our proposed combined
scheme, we present the results of some numerical experiments on an academic sim-
ple problem (n = 6) and also on some data sets involving real-world capital market
indices from major stock markets. All the experiments were performed using Matlab
R2022 with double precision on an IntelⓇ Quad-Core i7-1165G7 at 4.70 GHz with
16GB of RAM memory, using Windows 10 Pro with 64 Bits.

For our experiments, we use Algorithm PSPG described in Section 3, setting
x−1 = (1∕n)e , y−1 = 0 , tol1 = 10−6 , and tol2 = 10−8 . We recall that for the portfo-
lio problems h(xk, yk) = x⊤

k
yk . The value of ‖P�̂((xk, yk) − ∇f (xk, yk)) − (xk, yk)‖2

will be denoted as the pgnorm at iteration k (see the tables below). Concerning the
nonmonotone line search strategy used by the SPG method, we set � = 10−4 and
M = 10 . Dykstra’s alternating projection scheme is stopped when (6) is satisfied
with � = 10−8.

To explore the behavior of Algorithm PSPG, we will vary the minimum expected
return parameter 𝜌 > 0 and the cardinality constraint positive integer 1 ≤ 𝛼 < n . In
all cases, we set the upper bound vector u = e , where e is the vector of ones. Of
course, for certain combinations of all those parameters, the problem might be infea-
sible. We will discuss possible choices of these parameters to guarantee that the fea-
sible region of problem (10) is not empty.

To keep a balanced trade-off between the risk and the Hadamard condition, it
is convenient to choose the initial parameter 𝜏−1 > 0 of the same order of magni-
tude of the largest eigenvalue of Q. For that, we proceed as follows: set z = Qe and
𝜏−1 = z⊤Qz∕(z⊤z) , i.e., a Rayleigh-quotient of Q with a suitable vector z, which pro-
duces a good estimate of �max(Q) . This choice worked well for the vast majority of

(10)

min
x,y

1

2
x⊤Qx + 𝜏kx

⊤y

subject to: v⊤x ≥ 𝜌,

e⊤x = 1,

0 ≤ xi ≤ ui, for all 1 ≤ i ≤ n,

e⊤y ≥ n − 𝛼,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n.

∇f (x, y) =

(
Qx + �ky

�x

)
and ∇2f (x, y) =

(
Q �kI

�kI 0

)
.

 Operations Research Forum (2023) 4:73

1 3

73 Page 10 of 24

the test examples. According to Remark 1, to observe convergence, we need to drive
the inner product x⊤

k
yk down to zero. For that, we increase the penalization param-

eter as follows:

We note that in practice, this formula increases the penalty parameter in a controlled
way taking into account the ratio between the absolute value of the current return
|v⊤xk+1| and the current risk

√
x⊤
k+1

Qxk+1 . In all the reported experiments, the con-
trolled sequence {�k} given by (11) was enough to guarantee that the Hadamard
product goes down to zero.

Concerning the choice of the expected return, based on [13, 36], in order to con-
sider feasible problems, we study the behavior of our combined scheme in an inter-
val [�min, �max] of possible values of the parameter � , which is obtained as follows.
Let 𝜌min = v⊤xmin and 𝜌max = v⊤xmax , where xmin = argminx

1

2
x⊤Qx + 𝜏x⊤y and

xmax = argmaxx v⊤x − 𝜏x⊤y , both of them subject to e⊤x = 1 , e⊤y ≥ n − 𝛼 ,
0 ≤ xi ≤ ui , and 0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n . These two auxiliary optimization
problems are solved in advance, only once for each considered problem, using in
turn the proposed Algorithm PSPG. For that, we fix the same parameters and we
start from the same initial values indicated above. Once the interval [�min, �max] has
been obtained, to choose a suitable return � , we can proceed as follows. For a fixed
0 < 𝜖 < 1 , if 𝜌min + 𝜖(𝜌max − 𝜌min) ≥ 0 , we set 𝜌 = 𝜌min + 𝜖(𝜌max − 𝜌min) , else if
|�| ≤ vmax we set 𝜌 = 𝜖|𝜌| , otherwise we set 𝜌 = 𝜖vmax . In here, vmin = min{v1,… , vn}
and vmax = max{v1,… , vn}.

For our first data set, we consider a simple portfolio problem with n = 6 available
assets, denoted as Simple-case for which the mean return vector v and the covari-
ance matrix Q are given by

We note that Q is symmetric and positive definite (�min(Q) = 1.79 × 10−2 and
�max(Q) = 1.17 × 10−1). Notice that the assets three, four, and five have negative
average returns. The purpose of this simple example is to demonstrate properties of
the problem and the proposed algorithm in an easy-to follow fashion. For the other
data sets, involving real-world capital market indices, we consider some larger prob-
lems obtained from Beasley’s OR Library (http:// people. brunel. ac. uk/ ~mastj jb/ jeb/

(11)

𝜏k+1 = 𝛿k+1𝜏k where 𝛿k+1 = 𝛿k +
(n − 𝛼)𝜌

n

|v⊤xk+1|√
x⊤
k+1

Qxk+1

and 𝛿−1 = 1.

v = (0.021 0.04 − 0.034 − 0.028 − 0.005 0.006)⊤,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.038 0.020 0.017 0.014 0.019 0.017

0.020 0.043 0.015 0.013 0.021 0.014

0.017 0.015 0.034 0.011 0.014 0.014

0.014 0.013 0.011 0.044 0.014 0.011

0.019 0.021 0.014 0.014 0.040 0.014

0.017 0.014 0.014 0.011 0.014 0.046

⎤
⎥⎥⎥⎥⎥⎥⎦

.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

1 3

Operations Research Forum (2023) 4:73 Page 11 of 24 73

info. html), built from weakly price data from March 1992 to September 1997, and
that we will denote as Port1 (Hang Seng index with n = 31), Port2 (DAX index with
n = 85), Port3 (FTSE 100 index with n = 89), Port4 (S&P 100 index with n = 98),
and Port5 (Nikkei index with n = 225) (see also [1, 15, 24]).

The key properties, to be discussed and illustrated in the rest of this section,
are the influence of the cardinality constraint to the feasible set in the risk-return
plane, the efficient frontier, and the quality of the solution obtained by Algorithm
PSPG. The feasible set is usually represented in the risk-return plane, presenting all
possible combinations of assets that satisfy the constraints. In general, the feasible
set for the classical problem without cardinality constraint has the so-called bullet
shape. The efficient frontier is the set of optimal portfolios that offer the highest
expected return for a defined level of risk or the lowest risk for a given level of
expected return.

Introducing the cardinality constraints might complicate the feasible set in the
sense that the set is shrinking as we will now show. Starting with the feasible inter-
val for the expected return, we report in Table 1, �max ≤ vmax and �min ≥ vmin , for
� = 5 and for all the considered data sets.

Let us now take a closer look at the Simple-case. If we solve the original Markow-
itz problem [32] - the minimal variance portfolio, (i.e., min

x

1

2
x⊤Qx subject to

e⊤x = 1) for the Simple-case problem, we obtain

risk
√
x̄⊤Qx̄ = 0.1379 , and expected return v⊤x̄ = −0.0079 . Solving the same prob-

lem with the additional constraint x ≥ 0 , we get the same solution. Thus, the mini-
mal variance portfolio is the same as the minimal variance portfolio without short
sale. In Fig. 1, we present for the Simple-case problem, the return and risk for all
6 assets, the minimal variance portfolio, denoted by MVP, the classical Markow-
itz portfolio without short sale and the expected return constraint v⊤x ≥ 𝜌 = 0.002 ,
denoted by MP, as well as the efficient frontier for different values of the cardinality
constraint � . Clearly for � = 6 , i.e., without cardinality constraint, we get a classical
convex efficient frontier, while for smaller � values, the curves are discontinuous
and deformed (see, e.g., [15] for similar observations).

For the Simple-case problem, with n = 6 available assets, an approximation of the
feasible set is shown in Fig. 2, which is obtained by running a simulation based on

x̄ = (0.0961, 0.1168, 0.2625, 0.2140, 0.1429, 0.1677)⊤,

Table 1 Return value
with � = 5 for all data sets

Problem n v
min

v
max

�
min

�
max

Simple case 6 −0.0340 0.0400 −0.0238 0.0373
Port1 31 5.64e-4 0.0435 0.0130 0.0435
Port2 85 −0.0160 0.0392 0.0099 0.0342
Port3 89 −0.0045 0.0328 0.0102 0.0268
Port4 98 −0.0079 0.0368 0.0077 0.0271
Port5 225 −0.0340 0.0159 −0.0060 −0.0060

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

 Operations Research Forum (2023) 4:73

1 3

73 Page 12 of 24

finite sampling. In our simulation, we pay more attention to the left side to observe
the bullet shape. As a consequence, only a few scattered points are shown on the
right side of the figure. We note that for a larger value of � , we get a larger area of the
feasible set. We also note that the bullet shape is not affected by the cardinality con-
straint, but, as expected, the set is shrinking as the number of zero elements increases.

The same conclusions apply to the larger data sets coming from real assets.
Below, in Fig. 3, we show the approximate feasible set for Port1. We note that once
again, the area is shrinking when � decreases. We also note that the same is true for
all considered cases.

Fig. 1 Risk versus return, using Algorithm PSPG for the Simple-case problem

Fig. 2 Feasible set for the Simple case and � = 2, 3, 4, 5 , and 6

1 3

Operations Research Forum (2023) 4:73 Page 13 of 24 73

The efficient frontier for Port1 is shown in Fig. 4. Again, we observe that the effi-
cient frontier is deformed by the value of the cardinality constraint, and when 𝛼 < n ,
it is not a convex curve. For the sake of completeness, in the Appendix, we provide
some tables with more detailed results, varying the cardinality constraints, for all
considered data sets. We can observe in all figures and tables the effectiveness of
our low-cost continuous approach (Algorithm PSPG).

Additionally, we compare our approach to IBM ILOG CPLEX Optimization
Studio, Version: 22.1.0.0. CPLEX is a mixed integer quadratic programming
(MIQP) solver. We note that for these problems, the solution provided by CPLEX
is the globally optimal one up to the provided tolerances. The goal of comparison

Fig. 3 Feasible set for Port1 and � = 6, 11, 16, 21, 26 , and 31

Fig. 4 Risk versus return, using Algorithm PSPG for Port1 and � = 6, 11, 16, 21, 26, 31

 Operations Research Forum (2023) 4:73

1 3

73 Page 14 of 24

is to investigate the quality of solutions obtained by PSPG and CPLEX in terms
of risk and return. We also report CPU time, although CPLEX is implemented
in a low-level language, and so it requires significantly less execution time than
our high-level Matlab implementation. Hence, CPU time might be misleading. For
solving the problems with CPLEX, we consider the following MIQP formulation,
instead of (1):

Notice that in the above problem formulation, we do not have the Hadamard con-
strained, and instead, we have xi + yi ≤ 1 followed by yi ∈ {0, 1} . CPLEX is
designed to work with linear constraints, and for yi = 0 or yi = 1 , we get the same
condition. It is worth mentioning that (1) can also be formulated as a convex mixed
integer non-linear program (MINLP) (see, e.g., [27]). Therefore, using a convenient
formulation, (1) can also be solved by branch-and-bound, e.g., using BARON [34]
or SCIP [35], or by outer approximation strategies [2], e.g., using SHOT [31].

The details of tests for all considered data sets are presented in Tables 3, 4,
5, 6, 7, and 8 in the Appendix. One can easily see that PSPG produces solutions
with slightly higher risk and significantly better return. In Table 5, we observe that
CPLEX needs a very large number of iterations to solve the problem for � ≤ 20 ,
which corresponds to the fact the PSPG needed a special value of �−1 for these val-
ues of � and large values of penalty parameter �. Thus, this behavior is associated
with the data of Port2. In some other cases, reported in the tables in the Appendix,
we can observe a rather large number of CPLEX iterations for small values of � ,
while PSPG solved the same problems with reasonably small values of the penalty
parameters.

An interesting observation from the literature, and confirmed by our experi-
ments, is the fact that the optimal portfolio without cardinality constraint is in fact
sparse. In Table 2, we report the number of assets obtained by our algorithm and
CPLEX which is in accordance with the results reported in [13, Figure 5] and [14,
Section 5.2.2]. We can observe that the number of assets in the unconstrained mean-
variance optimal portfolio for Port1 ‖x∗‖0 ≤ 12 , for Port4 ‖x∗‖0 ≤ 40 , and for Port5
‖x∗‖0 ≤ 15.

As noticed above, the feasible set of (8) belongs to the feasible set of (10). In
addition, since the solution of (10) satisfies the Hadamard condition, we obtain that
the solution is also a solution of (8). Then, by Theorem 2, we have that if (x∗, y∗) is a
local minimizer of (10) satisfying ‖x∗‖0 = � , then the components of y∗ are binary,
y∗ is unique, and x∗ is a local minimizer of (1). In fact, for the solutions reported in
Tables 3, 4, and 6 in the Appendix, if ‖x∗‖0 = � , we have that the components of
y∗ are binary. The solution may have non-binary entries in y∗ ; for instance, port1

min
x,y

1

2
x⊤Qx

subject to: v⊤x ≥ 𝜌,

e⊤x = 1,

e⊤y ≥ n − 𝛼,

0 ≤ xi ≤ 1, for all 1 ≤ i ≤ n,

xi + yi ≤ 1, for all 1 ≤ i ≤ n,

yi ∈ {0, 1}.

1 3

Operations Research Forum (2023) 4:73 Page 15 of 24 73

with � = n = 31 , we have that y∗ is binary; however, the cardinality constraint is not
active ‖x∗‖0 = 12 . Another interesting example is detected for Port3 with � = n = 89
in which we obtain a binary y∗ but ‖x∗‖0 = 34.

6 Conclusions and Final Remarks

Taking advantage of a recently developed continuous formulation, we have devel-
oped and analyzed a low-cost and effective computational scheme for finding a
solution candidate of convex constrained optimization problems that also include a
“hard-to-deal" cardinality constraint. As it appears in many applications, we assume
that the region defined by the convex constraints can be written as the intersection of
a finite collection of “easy to project" convex sets. Under this continuous formula-
tion, to fulfill the cardinality constraint, the Hadamard condition x◦y = 0 must be
satisfied between the solution vector x and an auxiliary vector y. In our scheme, this
condition is achieved by adding a non-negative penalty term h(x, y) and using a clas-
sical penalization strategy. For each penalty subproblem, a convex constrained prob-
lem must be solved, which in our proposal is achieved by combining two low-cost
computational schemes: the spectral projected gradient (SPG) method and Dykstra’s
alternating projection method.

To illustrate the computational performance of our combined scheme, we have
considered in detail the standard mean-variance limited diversified portfolio selec-
tion problem, which involves obtaining the proportion of the initial budget that
should be allocated in a limited number of the available assets. For this specific
application, we proposed a natural differentiable choice of the penalty term (given
by h(x, y) = x⊤y) that must be driven to zero, which allowed us to develop a sim-
ple way of increasing the associated penalty parameter in a controlled and bounded
way. In our numerical study, we have included a variety of data sets involving
real-world capital market indices. For these data sets, we have produced the fea-
sible sets and also the efficient frontier (a curve illustrating the tradeoff between
risk and return) for different values of the limited number of allowed assets. In each
case, we highlighted the differences that arise in the shape of this efficient frontiers
as compared with the unconstrained efficient one. The presented numerical study

Table 2 Performance of Algorithm PSPG for all cases when n = �

PSPG CPLEX

Problem � = n ‖x‖
0 v

⊤
x
∗

√
(x∗)⊤Qx∗ ‖x‖

0 v
⊤
x
∗

√
(x∗)⊤Qx∗

Simple-case 6 6 0.0003 0.1394 6 0.0003 0.1394
Port1 31 12 0.0133 0.0509 12 0.0133 0.0509
Port2 85 24 0.0085 0.0234 25 0.0084 0.0234
Port3 89 34 0.0101 0.0282 34 0.0101 0.0282
Port4 98 38 0.0098 0.0223 38 0.0098 0.0223
Port5 225 12 0.0003 0.0349 12 0.0003 0.0349

 Operations Research Forum (2023) 4:73

1 3

73 Page 16 of 24

includes comparison with CPLEX, a professional software for general mixed integer
programming problems. The comparison is presented in terms of quality of solution
(higher return, lower risk), and PSPG appears to be competitive.

In our modeling of the portfolio problem, we have bounded the proportion to be
invested in each of the selected assets between 0 and 1. However, without altering
our proposed scheme, stricter upper limits (less than 1) can be imposed on some
particular assets. Clearly, this would require a more careful analysis of the feasible
options for the expected return. Moreover, it could also be interesting from a portfo-
lio point of view to allow negative entries in some of the proportions to be invested,
and that can be accomplished by allowing negative values in the lower bounds of the
solution vector. In that case, the penalization term to force the Hadamard condition
needs to be chosen accordingly (e.g., h(x, y) =

∑n

i=1
(x2

i
yi)).

Appendix. Performance of Algorithm PSPG for All Data Sets

In Tables 3, 4, 5, 6, 7, and 8, we report the performance of PSPG and CPLEX, for
several values of � , reporting the values of optimal portfolio return, risk, number of
non-zero portfolio weights, number of iteration (Iter), and number of SPG iterations
for PSPG, the CPU time (time) in seconds, the last value of � , as well as the final
value of the Hadamard product, and the total number of required function evalua-
tions (fcnt). It is worth noticing that in all the results reported in these tables, the
pgnorm at the obtained solution and the Hadamard products (x∗)⊤y∗ are strictly less
than 10−6 , and hence, we did not report these values.

Table 3 Performance of PSPG and CPLEX for the Simple case

Algorithm � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0400 0.2074 1 2 4 0.3708 0.117590 7 0.0018
2 0.0293 0.1735 2 2 6 0.3133 0.117577 9 0.0016
3 0.0053 0.1523 3 2 11 0.2786 0.117560 13 0.0017
4 0.0053 0.1523 3 2 12 0.3211 0.117558 16 0.0017
5 0.0053 0.1523 3 2 8 0.2799 0.117557 10 0.0012
6 0.0003 0.1394 6 2 7 0.3001 0.117556 9 0.0003

CPLEX 1 0.0210 0.1949 1 22 - 0.09 - - 0.0018
2 0.0016 0.1612 2 19 - 0.05 - - 0.0016
3 0.0017 0.1483 3 19 - 0.03 - - 0.0017
4 0.0017 0.1414 4 19 - 0.05 - - 0.0017
5 0.0012 0.1414 5 19 - 0.06 - - 0.0012
6 0.0003 0.1394 6 13 - 0.02 - - 0.0003

1 3

Operations Research Forum (2023) 4:73 Page 17 of 24 73

Table 4 Performance of Algorithm PSPG and CPLEX for problem Port1

Algorithm � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0435 0.1382 1 2 4 0.8109 0.1475 6 0.0097
2 0.0435 0.1382 1 2 3 0.3113 0.1476 5 0.0126
3 0.0435 0.1382 1 2 3 0.3203 0.1477 5 0.0133
4 0.0435 0.1382 1 2 3 0.2200 0.1476 5 0.0132
5 0.0435 0.1382 1 2 3 0.2524 0.1476 5 0.0133
10 0.0435 0.1382 1 2 4 0.2028 0.1475 6 0.0136
15 0.0151 0.0678 2 2 17 0.6132 0.1473 23 0.0133
20 0.0154 0.0530 5 2 17 0.3751 0.1473 19 0.0132
30 0.0133 0.0509 11 2 13 0.2978 0.1471 15 0.0133
31 0.0133 0.0509 12 2 12 0.3267 0.1471 14 0.0133

CPLEX 1 0.0233 0.0717 1 32 – 0.0900 – - - 0.0097
2 0.0126 0.0591 2 17 – 0.0300 – – 0.0126
3 0.0140 0.0544 3 17 – 0.0500 – – 0.0133
4 0.0132 0.0523 4 17 – 0.0300 – – 0.0132
5 0.0137 0.0516 1 17 – 0.0500 – – 0.0133
10 0.0136 0.0510 10 19 – 0.0600 – – 0.0136
15 0.0133 0.0509 12 13 – 0.0300 – – 0.0133
20 0.0132 0.0509 12 13 – 0.0200 – – 0.0132
30 0.0133 0.0509 12 13 – 0.0200 – – 0.0133
31 0.0133 0.0509 12 13 – 0.0200 – – 0.0133

Table 5 Performance of Algorithm PSPG and CPLEX for problem Port2

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0392 0.1065 1 2 8 0.6761 0.0976 28 0.0085
2 0.0392 0.1065 1 2 5 0.3885 7.0147 19 0.0058
3 0.0745 0.1327 2 2 10 0.5509 11.815 39 0.0079
4 0.1045 0.1628 3 3 29 0.7973 12.012 155 0.0125
5 0.0745 0.1327 2 2 10 0.5157 11.866 42 0.0163
10 0.1267 0.2010 4 5 109 2.5451 42.404 383 0.0158
15 0.1804 0.2954 7 3 58 1.4936 72.623 163 0.0161
20 0.0745 0.1327 2 2 12 0.5987 26.025 69 0.0022
25 0.0745 0.1327 2 2 12 2.1676 29.028 69 0.0024
30 0.0745 0.1327 2 2 11 0.8536 39.052 61 0.0037
35 0.0291 0.0428 5 2 11 0.2984 0.0977 18 0.0109
40 0.0291 0.0428 5 2 11 0.2845 0.0977 18 0.0117
45 0.0291 0.0428 5 2 13 0.2991 0.0976 25 0.0115

 Operations Research Forum (2023) 4:73

1 3

73 Page 18 of 24

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

50 0.0291 0.0428 5 2 11 0.2731 0.0976 18 0.0115
55 0.0225 0.0357 8 2 15 0.2739 0.0975 22 0.0110
60 0.0186 0.0319 13 2 13 0.2580 0.0974 17 0.0110

65 0.0190 0.0321 12 2 15 0.2748 0.0974 17 0.0111
70 0.0110 0.0237 23 2 19 0.2579 0.0973 21 0.0110
75 0.0111 0.0238 23 2 16 0.2120 0.0973 18 0.0111
80 0.0103 0.0235 25 2 16 0.2108 0.0973 18 0.0103
85 0.0085 0.0234 24 2 15 0.1876 0.0973 17 0.0070

CPLEX 1 0.0134 0.0477 1 504 – 0.14 – – 0.0085
2 0.0066 0.0331 2 5638 – 0.27 – – 0.0058
3 0.0084 0.0296 3 34024 – 0.53 – – 0.0079
4 0.0125 0.0289 4 13926 – 0.39 – – 0.0125
5 0.0163 0.0298 5 6982 – 0.28 – – 0.0163
10 0.0158 0.0263 10 2743 – 0.20 – – 0.0158
15 0.0161 0.0259 15 1485 – 0.23 – – 0.0161
20 0.0083 0.0234 20 75 – 0.20 – – 0.0022
25 0.0083 0.0234 25 13 – 0.02 – – 0.0024
30 0.0084 0.0234 25 13 – 0.02 – – 0.0037
35 0.0109 0.0236 24 14 – 0.02 – – 0.0109
40 0.0117 0.0238 24 14 – 0.03 – – 0.0117
45 0.0115 0.0238 24 14 – 0.03 – – 0.0115
50 0.0115 0.0238 24 14 – 0.02 – – 0.0115
55 0.0110 0.0237 24 14 – 0.02 – – 0.0110
60 0.0110 0.0237 24 14 – 0.02 – – 0.0110
65 0.0111 0.0237 24 14 – 0.02 – – 0.0111
70 0.0110 0.0237 24 14 – 0.03 – – 0.0110
75 0.0111 0.0237 24 14 – 0.05 – – 0.0111
80 0.0103 0.0235 26 14 – 0.03 – – 0.0103
85 0.0084 0.0234 25 13 – 0.03 – – 0.0070

Table 6 (continued)

1 3

Operations Research Forum (2023) 4:73 Page 19 of 24 73

Table 6 Performance of Algorithm PSPG and CPLEX for problem Port3

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0328 0.0779 1 2 7 1.0909 0.1133 16 0.0101
2 0.0328 0.0779 1 2 3 1.0322 9.8615 11 0.0104
3 0.0328 0.0779 1 2 4 0.6540 9.7468 12 0.0102
4 0.0328 0.0779 1 2 3 0.5711 9.6557 10 0.0160
5 0.0328 0.0779 1 2 5 0.7342 9.5319 17 0.0135
10 0.0328 0.0779 1 3 56 4.5180 9.0391 402 0.0119
15 0.0328 0.0779 1 3 55 1.3683 11.429 406 0.0117
20 0.0104 0.0284 14 14 676 36.438 0.0003 885 0.0104
25 0.0104 0.0284 14 11 530 28.613 0.0003 666 0.0104
30 0.0104 0.0284 14 12 547 29.572 0.0003 695 0.0104
35 0.0328 0.0779 1 2 4 0.5872 89.248 13 0.0107
40 0.0104 0.0286 12 5 215 10.943 0.0005 282 0.0104
45 0.0251 0.0464 4 3 51 1.9333 0.2019 59 0.0114
50 0.0104 0.0285 13 5 194 3.2324 0.0005 252 0.0104
55 0.0104 0.0285 13 4 151 2.6642 0.0005 183 0.0104
60 0.0167 0.0321 19 5 183 6.3165 1.1546 440 0.0133
65 0.0157 0.0310 21 8 341 5.8265 2.8615 652 0.0145
70 0.0105 0.0333 10 2 29 0.9089 0.1129 31 0.0105
75 0.0105 0.0308 11 2 20 0.6148 0.1129 22 0.0105
80 0.0105 0.0295 16 2 16 0.6074 0.1129 18 0.0105
85 0.0104 0.0286 23 2 26 0.6432 0.1129 28 0.0104
89 0.0101 0.0282 34 2 18 0.5024 0.1129 20 0.0101

CPLEX 1 0.0151 0.0473 1 328 – 0.19 – – 0.0101
2 0.0117 0.0384 2 9537 – 0.42 – – 0.0104
3 0.0104 0.0346 3 133879 – 2.76 – – 0.0102
4 0.0160 0.0340 4 26021 – 0.58 – – 0.0160
5 0.0135 0.0314 5 125555 – 2.61 – – 0.0135
10 0.0119 0.0290 10 35025 – 1.08 – – 0.0119
15 0.0117 0.0286 15 4705 – 0.42 – – 0.0117
20 0.0104 0.0282 20 1102 – 0.44 – – 0.0104
25 0.0104 0.0282 24 909 – 0.48 – – 0.0104
30 0.0104 0.0282 28 545 – 0.50 – – 0.0104
35 0.0107 0.0282 32 14 – 0.02 – – 0.0107
40 0.0104 0.0282 33 13 – 0.02 – – 0.0104
45 0.0114 0.0283 30 13 – 0.03 – – 0.0114
50 0.0104 0.0282 33 13 – 0.03 – – 0.0104
55 0.0104 0.0282 33 13 – 0.03 – – 0.0104
60 0.0133 0.0289 27 13 – 0.03 – – 0.0133
65 0.0145 0.0294 28 14 – 0.05 – – 0.0145
70 0.0105 0.0282 33 13 – 0.02 – – 0.0105

 Operations Research Forum (2023) 4:73

1 3

73 Page 20 of 24

Table 6 (continued)

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

75 0.0105 0.0282 33 13 – 0.02 – – 0.0105
80 0.0105 0.0282 33 13 – 0.02 – – 0.0105

85 0.0104 0.0282 33 13 – 0.02 – – 0.0104
89 0.0101 0.0282 34 13 – 0.09 – – 0.0101

Table 7 Performance of Algorithm PSPG and CPLEX for problem Port4

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0343 0.0983 1 2 11 1.0960 0.0891 32 0.0095
2 0.0368 0.1084 1 2 5 0.2783 0.8903 18 0.0091
3 0.0368 0.1084 1 2 5 0.2805 0.8899 18 0.0075
4 0.0368 0.1084 1 2 26 0.4912 0.8908 74 0.0108
5 0.0368 0.1084 1 2 5 0.2296 0.8905 18 0.0101
10 0.0368 0.1084 1 2 4 0.2047 0.8890 11 0.0050
15 0.0368 0.1084 1 2 5 0.2230 1.7778 17 0.0047
20 0.0368 0.1084 1 2 4 0.3299 3.7049 12 0.0048
25 0.0206 0.0365 10 3 72 0.9029 0.4027 118 0.0053
30 0.0194 0.0346 14 3 107 2.0201 0.5036 194 0.0060
35 0.0197 0.0349 13 3 74 0.9154 0.5033 133 0.0060
40 0.0178 0.0319 20 3 96 1.7136 0.8921 144 0.0055
45 0.0127 0.0371 4 3 51 0.9430 0.0202 54 0.0091
50 0.0175 0.0410 3 3 51 0.9916 0.0202 67 0.0091
55 0.0109 0.0292 6 2 24 0.4256 0.0101 34 0.0106
60 0.0194 0.0346 14 6 213 3.8296 0.9062 417 0.0063
65 0.0191 0.0339 16 20 979 17.236 1.1020 2148 0.0061
70 0.0132 0.0344 5 2 20 0.3864 0.0301 28 0.0010
75 0.0252 0.0481 7 13 561 14.115 0.9461 1052 0.0067
80 0.0138 0.0365 5 2 27 2.1716 0.0888 35 0.0080
85 0.0142 0.0364 6 2 17 1.5391 0.0888 25 0.0075
90 0.0086 0.0250 14 2 23 1.1892 0.0888 25 0.0073
95 0.0089 0.0231 18 2 28 1.1098 0.0888 30 0.0080
98 0.0098 0.0223 38 2 20 0.9998 0.0888 22 0.0098

CPLEX 1 0.0115 0.0462 1 806 – 0.09 – – 0.0095
2 0.0095 0.0350 2 29245 – 0.48 – – 0.0091
3 0.0081 0.0300 3 506050 – 3.63 – – 0.0075
4 0.0108 0.0287 4 1750081 – 14.89 – – 0.0108
5 0.0101 0.0266 5 2497651 – 20.86 – – 0.0101
10 0.0070 0.0231 10 698137 – 6.38 – – 0.0050
15 0.0077 0.0223 15 8163 – 0.33 – – 0.0047
20 0.0075 0.0221 20 11669 – 0.33 – – 0.0048

1 3

Operations Research Forum (2023) 4:73 Page 21 of 24 73

Table 7 (continued)

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

25 0.0074 0.0221 25 1062 – 0.19 – – 0.0053
30 0.0078 0.0221 28 540 – 0.17 – – 0.0060
35 0.0076 0.0221 35 74 – 0.09 – – 0.0060
40 0.0077 0.0220 38 14 – 0.02 – – 0.0055
45 0.0091 0.0222 39 14 – 0.02 – – 0.0091
50 0.0091 0.0222 39 14 – 0.00 – – 0.0091
55 0.0106 0.0226 35 13 – 0.01 – – 0.0106
60 0.0077 0.0220 38 14 – 0.03 – – 0.0063
65 0.0077 0.0220 38 14 – 0.02 – – 0.0061
70 0.0077 0.0220 38 14 – 0.03 – – 0.0010

75 0.0077 0.0220 38 14 – 0.06 – – 0.0067
80 0.0080 0.0220 38 14 – 0.02 – – 0.0080
85 0.0077 0.0220 38 14 – 0.01 – – 0.0075
90 0.0077 0.0220 38 14 – 0.02 – – 0.0073
95 0.0080 0.0220 38 14 – 0.02 – – 0.0080
98 0.0098 0.0223 38 14 – 0.03 – – 0.0098

Table 8 Performance of Algorithm PSPG and CPLEX for problem Port5

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 2 0.0161 0.1081 2 2 102 7.4534 0.1010 356 7.7209e-06
3 0.0037 0.0538 3 20 1020 77.895 0.0100 1342 7.8605e-06
4 0.0034 0.0500 3 20 1020 80.528 0.0100 1333 7.8656e-06
5 0.0009 0.0388 4 12 612 43.506 0.0100 772 1.2051e-05
10 0.0006 0.0355 7 4 204 16.183 0.0400 482 1.1788e-05
15 0.0036 0.0377 8 5 255 19.572 0.2000 658 7.2419e-06
20 0.0059 0.0399 9 11 561 39.421 0.9000 1633 5.9825e-06
25 0.0058 0.0399 10 9 459 19.429 1.0000 1461 6.4813e-06
30 0.0003 0.0349 10 8 325 21.612 0.0001 463 7.8618e-06
225 0.0003 0.0349 12 2 10 1.4476 0.9051 12 1.1926e-05

CPLEX 2 0.0058 0.0439 2 1964 – 0.48 – – 7.7209e-06
3 0.0027 0.0391 3 1034 – 0.41 – – 7.8605e-06
4 0.0009 0.0367 4 386 – 0.61 – – 7.8656e-06
5 0.0003 0.0356 5 132 – 0.33 – – 1.2051e-05
10 0.0003 0.0349 10 19 – 0.27 – – 1.1788e-05
15 0.0003 0.0349 12 17 – 0.22 – – 7.2419e-06
20 0.0003 0.0349 12 17 – 0.11 – – 5.9825e-06
25 0.0003 0.0349 12 17 – 0.26 – – 6.4813e-06
30 0.0003 0.0349 12 17 – 0.09 – – 7.8618e-06
225 0.0003 0.0349 12 17 – 0.11 – – 1.1926e-05

 Operations Research Forum (2023) 4:73

1 3

73 Page 22 of 24

Acknowledgements We are thankful to the comments and suggestions of two anonymous referees, which
helped us to improve the presentation of our work.

Author Contributions NK: study, conception, design, data collection, conceptualization, methodology,
and formal analysis. EHMK: study, conception, design, data collection, conceptualization, methodology,
and formal analysis. MR: study, conception, design, data collection, conceptualization, methodology, and
formal analysis.

Funding Open access funding provided by FCT|FCCN (b-on). The first author was financially supported
by the Serbian Ministry of Education, Science, and Technological Development and Serbian Academy of
Science and Arts, grant no. F10. The second author was financially supported by Fundação para a Ciên-
cia e a Tecnologia (FCT) (Portuguese Foundation for Science and Technology) under the scope of the
projects UIDB/MAT/00297/2020, UIDP/MAT/00297/2020 (Centro de Matemática e Aplicações), and
UI/297/2020-5/2021. The third author was financially supported by Fundação para a Ciência e a Tecno-
logia (FCT) (Portuguese Foundation for Science and Technology) under the scope of the projects UIDB/
MAT/00297/2020, UIDP/MAT/00297/2020 (Centro de Matemática e Aplicações).

Data Availability The data generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Code Availability The codes generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication All authors read and approved the submission of the final manuscript.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Beasley JE (1990) OR-Library: distributing test problems by electronic mail. J Oper Res Soc
41(11):1069–1072

 2. Bernal DE, Peng Z, Kronqvist J, Grossmann IE (2022) Alternative regularizations for Outer-
Approximation algorithms for convex MINLP. J Glob Optim 84:807–842

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Operations Research Forum (2023) 4:73 Page 23 of 24 73

 3. Bertsimas D, Darnell C, Soucy R (1999) Portfolio construction through mixed-integer programming
at Grantham. Mayo, Van Otterloo and Company, Interfaces 29(1):49–66

 4. Bertsimas D, Shioda R (2009) Algorithm for cardinality-constrained quadratic optimization. Com-
put Optim Appl 43:1–22

 5. Bienstock D (1996) Computational study of a family of mixed-integer quadratic programming prob-
lems. Math Programming 74:121–140

 6. Birgin EG, Martínez JM, Raydan M (2000) Nonmonotone spectral projected gradient methods on
convex sets. SIAM J Optim 10:1196–1211

 7. Birgin EG, Martínez JM, Raydan M (2001) Algorithm 813: SPG - software for convex-constrained
optimization. ACM Trans Math Softw 27:340–349

 8. Birgin EG, Martínez JM, Raydan M (2003) Inexact spectral projected gradient methods on convex
sets. IMA J Numer Anal 23:539–559

 9. Birgin EG, Martínez JM, Raydan M (2014) Spectral projected gradient methods: review and per-
spectives. J Stat Softw 60(3)

 10. Birgin EG, Raydan M (2005) Robust stopping criteria for Dykstra’s algorithm. SIAM J Sci Comput
26:1405–1414

 11. Boyle JP, Dykstra L (1986) A method for finding projections onto the intersections of convex sets in
Hilbert spaces. In: Dykstra R, Robertson T, Wright FT (eds) Advances in Order Restricted Statisti-
cal Inference. Lecture Notes in Statistics, 37: 28–47. Springer, New York

 12. Burdakov OP, Kanzow C, Schwartz A (2016) Mathematical programs with cardinality constraints:
reformulation by complementarity-type conditions and a regularization method. SIAM J Optim
26(1):397–425

 13. Cesarone F, Scozzari A, Tardella F (2009) Efficient algorithms for mean-variance portfolio optimi-
zation with hard real-world constraints. Giornale dell’Istituto Italiano degli Attuari 72:37–56

 14. Cesarone F, Scozzari A, Tardella F (2013) A new method for mean-variance portfolio optimization
with cardinality constraints. Ann Oper Res 205:213–234

 15. Chang TJ, Meade N, Beasley JE, Sharaiha YM (2000) Heuristics for cardinality constrained portfo-
lio optimisation. Comput Oper Res 27(13):1271–1302

 16. Chen Y, Ye Y, Wang M (2019) Approximation hardness for a class of sparse optimization problems.
J Mach Learn Res 20(38):1–27

 17. Combettes PL (2000) Strong convergence of block-iterative outer approximation methods for con-
vex optimization. SIAM J Control Optim 38:538–565

 18. Deutsch FR (2001) Best approximation in inner product spaces. Springer-Verlag, New York
 19. Di Lorenzo D, Liuzzi G, Rinaldi F, Schoen F, Sciandrone M (2012) A concave optimization-based

approach for sparse portfolio selection. Optim Methods Softw 27:983–1000
 20. Escalante R, Raydan M (2011) Alternating projection methods. SIAM, Philadelphia
 21. Fastrich B, Paterlini S, Winkler P (2015) Constructing optimal sparse portfolios using regularization

methods. Comput Manag Sci 12(3):417–434
 22. Fiacco AV, McCormick GP (1968) Nonlinear programming: sequential unconstrained minimization

techniques. John Wiley and Sons, New York
 23. Gao JJ, Li D (2013) Optimal cardinality constrained portfolio selection. Oper Res 61(3):745–761
 24. Juszczuk P, Kaliszewski I, Miroforidis J, Podkopaev D (2022) Mean return - standard deviation effi-

cient frontier approximation with low-cardinality portfolios in the presence of the risk-free asset. Int
Trans Oper Res. https:// doi. org/ 10. 1111/ itor. 13121

 25. Kanzow C, Raharja AB, Schwartz A (2021) Sequential optimality conditions for cardinality-con-
strained optimization problems with applications. Comput Optim Appl 80:185–211

 26. Krejić N, Kumaresan M, Rožnjik A (2011) VaR optimal portfolio with transaction costs. Appl Math
Comput 218(8):4626–4637

 27. Kronqvist J, Bernal DE, Lundell A, Grossmann IE (2019) A review and comparison of solvers for
convex MINLP. Optim Eng 20:397–455

 28. Krulikovski EHM, Ribeiro AA, Sachine M (2021) On the weak stationarity conditions for mathe-
matical programs with cardinality constraints: a unified approach. Appl Math Optim 84:3451–3473

 29. Krulikovski EHM, Ribeiro AA, Sachine M (2022) A comparative study of sequential optimality
conditions for mathematical programs with cardinality constraints. JOTA 192:1067–1083

 30. Luenberger DG (1984) Linear and nonlinear programming. Addison-Wesley, Menlo Park, CA
 31. Lundell A, Kronqvist J, Westerlund T (2017) SHOT - a global solver for convex MINLP in Wolfram

Mathematica. Comput Aided Chem Eng 40:2137–2142
 32. Markowitz H (1952) Portfolio selection. J Financ 7:77–91

https://doi.org/10.1111/itor.13121

 Operations Research Forum (2023) 4:73

1 3

73 Page 24 of 24

 33. Moreno J, Datta B, Raydan M (2009) A symmetry preserving alternating projection method for
matrix model updating. Systems and Signal Processing 23:1784–1791

 34. Sahinidis NV (1996) BARON: a general purpose global optimization software package. J Glob
Optim 8:201–205

 35. Vigerske S, Gleixner A (2018) SCIP: global optimization of mixed-integer nonlinear programs in a
branch-and-cut framework. Optim Methods Softw 33(3):563–593

 36. Zeng X, Sun X, Li D (2014) Improving the performance of MIQP solvers for quadratic programs
with cardinality and minimum threshold constraints: a semidefinite program approach. INFORMS J
Comput 26(4):690–703

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

N. Krejić1 · E. H. M. Krulikovski2 · M. Raydan2

 * E. H. M. Krulikovski
 e.krulikovski@fct.unl.pt

 N. Krejić
 natasak@uns.ac.rs

 M. Raydan
 m.raydan@fct.unl.pt

1 Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg
Dositeja Obradovića 4, 21000 Novi Sad, Serbia

2 Center for Mathematics and Applications (NovaMath), FCT NOVA, 2829-516 Caparica,
Portugal

	A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization
	Abstract
	1 Introduction
	2 A Penalization Strategy for the Hadamard Constraint
	3 Dykstra’s Method and the SPG Method
	4 Cardinality Constrained Optimal Portfolio Problem
	5 Computational Results
	6 Conclusions and Final Remarks
	Appendix. Performance of Algorithm PSPG for All Data Sets
	Acknowledgements
	References

