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Abstract
We consider convex constrained optimization problems that also include a cardi-
nality constraint. In general, optimization problems with cardinality constraints are 
difficult mathematical programs which are usually solved by global techniques from 
discrete optimization. We assume that the region defined by the convex constraints 
can be written as the intersection of a finite collection of convex sets, such that it is 
easy and inexpensive to project onto each one of them (e.g., boxes, hyper-planes, 
or half-spaces). Taking advantage of a recently developed continuous reformula-
tion that relaxes the cardinality constraint, we propose a specialized penalty gradient 
projection scheme combined with alternating projection ideas to compute a solu-
tion candidate for these problems, i.e., a local (possibly non-global) solution. To 
illustrate the proposed algorithm, we focus on the standard mean-variance portfolio 
optimization problem for which we can only invest in a preestablished limited num-
ber of assets. For these portfolio problems with cardinality constraints, we present a 
numerical study on a variety of data sets involving real-world capital market indices 
from major stock markets. In many cases, we observe that the proposed scheme con-
verges to the global solution. On those data sets, we illustrate the practical perfor-
mance of the proposed scheme to produce the effective frontiers for different values 
of the limited number of allowed assets.
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1 Introduction

We are interested in convex constrained optimization problems with an additional 
cardinality constraint. In other words, we are interested in finding sparse solutions 
of those optimization problems, i.e., solutions with a limited number of nonzero 
elements, as required in many areas including image and signal processing, math-
ematical statistics, machine learning, portfolio optimization problems, among oth-
ers. One effective way to ensure the sparsity of the obtained solution is imposing 
a cardinality constraint where the number of nonzero elements of the solution is 
bounded in advance.

To be precise, let us consider the following constrained optimization problem:

where f ∶ ℝ
n
→ ℝ is continuously differentiable, 1 ≤ 𝛼 < n is a given natural num-

ber, Ω is a convex subset of ℝn (that will change depending on the considered appli-
cation), and the L0 (quasi) norm ‖x‖0 denotes the number of nonzero components 
of x. The sparsity constraint ‖x‖0 ≤ � is also called the cardinality constraint. Of 
course, we will assume that 𝛼 < n since otherwise the cardinality constraint could be 
discarded.

The main difference between problem (1) and a standard convex constrained 
optimization problem is that the cardinality constraint, despite of the notation, is 
not a norm, nor continuous neither convex. Because of the non-tractability of the 
so-called zero norm ‖x‖0 , the 1-norm ‖x‖1 has also been frequently considered to 
develop good approximate algorithms. Clearly, to impose a required level of spar-
sity, the use of the zero norm in (1) is much more effective.

Optimization problems with cardinality constraints are (strongly) NP-hard prob-
lems [5, 16], which can be solved by global techniques from discrete or combinato-
rial optimization (see, e.g., [4, 14, 23]). However, in a more general setting, a con-
tinuous reformulation has been recently proposed and analyzed in [12] to deal with 
this difficult cardinality constraint. The main idea is to address the continuous coun-
terpart of problem (1):

where e ∈ ℝ
n denotes the vector of ones. We note that the last n constraints denote 

a simple box in the auxiliary variable vector y ∈ ℝ
n . A more difficult reformulation 

substitutes the simple box by a set of binary constraints given by either yi = 0 or 
yi = 1 for all i. In that case, the problem is an integer programming problem (much 
harder to solve) for which there are several algorithmic ideas already developed (see, 
e.g., [4, 5, 14, 19, 36]). In here, we will focus on the continuous formulation (2) that 
will play a key role in our algorithmic proposal. For additional theoretical properties 

(1)min
x

f (x) subject to x ∈ � and ‖x‖0 ≤ �,

(2)

min
x,y

f (x)

subject to: x ∈ 𝛺,

e⊤y ≥ n − 𝛼,

xiyi = 0, for all 1 ≤ i ≤ n,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n,
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that include the equivalence between the original version (1) and the continuous 
relaxed version (2), see [12, 25, 28, 29].

As a consequence of the so-called Hadamard constraint ( x ◦ y = 0 , i.e., xiyi = 0 
for all i), the formulation (2) is a nonconvex problem, even when the original cardi-
nality constrained problem (except for the cardinality constraint of course) was con-
vex. Thus, one can in general not expect to obtain global minima. But if one is, for 
example, interested in obtaining local solutions or good starting points for a global 
method, this continuous formulation (2) can be useful.

In this work, we will pay special attention to those problems for which the set Ω is 
the intersection of a finite collection of convex sets, in such a way that it is very easy 
to project onto each one of them. In that case, the main idea is to take advantage of 
the fact that two of the constraints in (2), namely, e⊤y ≥ n − 𝛼 and 0 ≤ yi ≤ 1 for all 
i, are also “easy-to-project" convex sets, and so an alternating projection scheme 
can be conveniently applied to project onto the intersection of all the involved con-
straints in (2), except for the Hadamard constraint. For computing a solution candi-
date of the continuous formulation (2), we can then use a suitable low-cost convex 
constrained scheme, such as gradient-type methods in which the objective function 
includes f(x) plus a suitable penalization term that guarantees that the Hadamard 
constraint is also satisfied at the solution. In Section 2, we will describe and ana-
lyze a general penalty method to satisfy the Hadamard constraint that appears in the 
relaxed formulation (2). In Section 3, we will describe a suitable alternating projec-
tion scheme as well as a suitable low-cost gradient-type projection method that can 
be combined with the penalty method of Section 2. We close Section 3 showing the 
combined algorithm that represents the main contribution of our work. Concern-
ing some specific applications, in Section 4, we will consider in detail the standard 
mean-variance limited diversified portfolio selection problem (see, e.g., [13–15, 19, 
21, 23]). In Section 5, we will present a numerical study to illustrate the computa-
tional performance of the proposed scheme on a variety of data sets involving real-
world capital market indices from major stock markets. For each considered data set, 
we will focus our attention on the efficient frontier produced for different values of 
the limited number of allowed assets. In Section 6, we will present some final com-
ments and perspectives.

2  A Penalization Strategy for the Hadamard Constraint

Let us consider again the continuous formulation (2), and let us focus our atten-
tion on the Hadamard constraint x◦y = 0 (i.e., xiyi = 0 for all i). This particu-
lar constraint is the only one that does not define a convex set. The others define 
convex sets in which it is easy to project, as discussed in the previous section. 
To see that the set of vectors (x, y) ∈ ℝ

2n such that x◦y = 0 do not form a convex 
set, it is enough to consider the two 2-dimensional pairs: (x1, y1) = (1, 0, 0, 1) and 
(x2, y2) = (0, 1, 1, 0) . Both pairs are clearly in that set, but the convex combination: 
1

2
(x1, y1) +

1

2
(x2, y2) =

1

2
e , which is not in that set.

A classical and straightforward approach to force the Hadamard condition at the 
solution, while keeping the feasible set of our problem as the intersection of a finite 
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collection of easy convex sets, is to add a penalization term �h(x, y) to the objective 
function and consider instead the following formulation:

where 𝜏 > 0 is a penalization parameter that needs to be properly chosen, and the 
function h ∶ ℝ

2n
→ ℝ is continuously differentiable and chosen to satisfy the fol-

lowing two properties: h(x, y) ≥ 0 for all feasible vectors x and y, and h(x, y) = 0 if 
and only if x◦y = 0 . Clearly, the function h(x, y) is crucial and should be conveni-
ently chosen depending on the considered application. However, a default option 
that satisfies all the required properties is given by h(x, y) =

∑
1≤i≤n x

2
i
y2
i
.

Applying now a penalty scheme, problem (3) can be reduced to a sequence of 
convex constrained problems of the following form:

where 𝜏k > 0 is the penalty parameter that increases at every k to penalize the 
Hadamard-constraint violation, and the closed convex set Ω̂ is given by

Under some mild assumptions and some specific choice of the sequence {�k} , it can 
be established that the sequence of solutions of problem (4) converges to a solution 
of (2) (see, e.g., [22] and [30, Secc. 12.1]). Let us assume that problem (2) attains 
global minimizers. Since f is a continuous function, it is enough to assume that one 
of the closed and convex sets involved in the definition of � in (2) is bounded. In 
here, for the sake of completeness, we summarize the convergence properties of the 
proposed penalty scheme (4).

Theorem 1 If for all k, 𝜏k+1 > 𝜏k > 0 and (xk, yk) is a global solution of (4), then

Moreover, if x̄ is a global solution of problem (2), then for all k

Finally, if �k → ∞ and {(xk, yk)} is the sequence of global minimizers obtained by 
solving (4), then any limit point of {(xk, yk)} is a global minimizer of (2).

Remark 1 In the proof of the last statement of Theorem 1 (see, e.g., [30, Secc. 12.1]), 
the requirement of  �k → ∞ is used only to guarantee that the term h(xk, yk) → 0 

(3)

min
x,y

f (x) + 𝜏h(x, y)

subject to: x ∈ 𝛺,

e⊤y ≥ n − 𝛼,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n,

(4)min
x,y

f (x) + �kh(x, y), subject to (x, y) ∈ �̂,

�𝛺 = {(x, y) ∈ ℝ
2n ∶ x ∈ 𝛺, e⊤y ≥ n − 𝛼, 0 ≤ yi ≤ 1, i = 1,… , n}.

f (xk) + �kh(xk, yk) ≤ f (xk+1) + �k+1h(xk+1, yk+1)

h(xk+1, yk+1) ≤ h(xk, yk)

f (xk) ≤ f (xk+1).

f (xk) ≤ f (xk) + 𝜏kh(xk, yk) ≤ f (x̄) .
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when k → ∞ , i.e., to guarantee that xk◦yk → 0 . In order to guarantee the conver-
gence result, what is important is that the Hadamard product itself goes to zero 
even if 0 < 𝜏k < ∞ for all k. This fact will play a key role in our numerical study 
(Section 5).

We would like to close this section with a pertinent result [28, Theorem 4] that 
establishes a one-to-one correspondence between minimizers of problems (1) and 
(2), whenever the obtained solution x̄ satisfies the cardinality constraint with equal-
ity, i.e., ‖x̄‖0 = 𝛼.

Theorem 2 Let (x̄, ȳ) be a local minimizer of the relaxed problem (2). Then, ‖x̄‖0 = 𝛼 
if and only if ȳ is unique, that is, if there exist exactly one ȳ such that (x̄, ȳ) is a local 
minimizer of (2). In this case, the components of ȳ are binary (i.e., ȳi = 0 or ȳi = 1 
for all 1 ≤ i ≤ n ) and x̄ is a local minimizer of (1).

3  Dykstra’s Method and the SPG Method

For every k, a low-cost projected gradient method can be used to compute a solution 
candidate of the optimization problem (4). For a given vector x̃ ∈ ℝ

2n , a convenient 
tool for finding the required projections onto �̂ is Dykstra’s alternating projection 
algorithm [11], that projects in a clever way onto the convex sets, say �1,… ,�p , 
individually to complete a cycle which is repeated iteratively, and as any other itera-
tive method, it can be stopped prematurely.

In Dykstra’s method, it is assumed that the projections onto each of the individ-
ual sets �i are relatively simple to compute, e.g., boxes, spheres, subspaces, half-
spaces, and hyperplanes. The algorithm has been adapted and used for solving a 
huge amount of different applications and has been combined with several tech-
niques in optimization, including outer approximation strategies for solving nonlin-
ear constraint problems (see, e.g., [2, 17, 33]). For a review on Dykstra’s method, its 
properties and applications, as well as many other alternating projection schemes, 
see, e.g., [18, 20].

Dykstra’s algorithm generates two sequences: the iterates {xi
�
} and the increments 

{Ii
�
} . These sequences are defined by the following recursive formulae:

for � ∈ ℤ
+ with initial values xp

0
= x̃ and Ii

0
= 0 for i = 1, 2,… , p.

The sequence of increments play a fundamental role in the convergence of the 
sequence {xi

�
} to the unique optimal solution x∗ = P �𝛺(x̃) . Boyle and Dykstra [11] 

established the key convergence theorem associated with algorithm (5), i.e., that for 
any i = 1, 2,… , p and any given x̃ , the sequence {xi

�
} generated by (5) converges 

to x∗ = P �𝛺(x̃) (i.e., ‖xi
�
− x∗‖ → 0 as � → ∞ ). Concerning the rate of convergence, 

(5)
x0
�
= x

p

�−1

xi
�
= P�i

(xi−1
�

− Ii
�−1

) i = 1, 2,… , p,

Ii
�
= xi

�
− (xi−1

�
− Ii

�−1
) i = 1, 2,… , p,
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it is well-known that Dykstra’s algorithm exhibits a linear rate of convergence in 
the polyhedral case [18, 20], which is the case in all problems considered here (see 
Section 5). Finally, the stopping criterion associated with Dykstra’s algorithm is a 
delicate issue. A discussion about this topic and the development of some robust 
stopping criteria are fully described in [10]. Based on that, in here, we will stop the 
iterations when

where 𝜀 > 0 is a small given tolerance.
Since the gradient ∇f (x, y) of f (x, y) = f (x) + �h(x, y) is available for each fixed 

𝜏 > 0 , then Projected Gradient (PG) methods provide an interesting low-cost 
option for solving (4). They are simple and easy to code, and avoid the need for 
matrix factorizations (no Hessian matrix is used). There have been many differ-
ent variations of the early PG methods. They all have the common property of 
maintaining feasibility of the iterates by frequently projecting trial steps on the 
feasible convex set. In particular, a well-established and effective scheme is the 
so-called Spectral Projected Gradient (SPG) method (see Birgin et al. [6–9]).

The SPG algorithm starts with (x0, y0) ∈ ℝ
2n and moves at every iteration j along 

the internal projected gradient direction dj = P�̂((xj, yj) − �j∇f (xj, yj)) − (xj, yj) , 
where dj ∈ ℝ

2n and �j is the well-known spectral choice of step length (see [9]):

and sj−1 = (xj, yj) − (xj−1, yj−1) . In the case of rejection of the first trial point, (xj, yj) + dj , 
the next ones are computed along the same direction, i.e., (x+, y+) = (xj, yj) + �dj , using 
a nonmonotone line search to choose 0 < 𝜆 ≤ 1 such that the following condition holds

where M ≥ 1 is a given integer and � is a small positive number. Therefore, the pro-
jection onto �̂ must be performed only once per iteration. More details can be found 
in [6] and [7]. In practice, � = 10−4 and a typical value for the nonmonotone param-
eter is M = 10 , but the performance of the method may vary for variations of this 
parameter, and a fine tuning may be adequate for specific applications.

Another key feature of the SPG method is to accept the initial spectral step-
length as often as possible while ensuring global convergence. For this reason, 
the SPG method employs a non-monotone line search that does not impose func-
tional decrease at every iteration. The global convergence of the SPG method 
combined with Dykstra’s algorithm to obtain the required projection per iteration 
can be found in [8, Section 3].

Summing up, our proposed combined algorithm is now described in detail.

(6)
p�
i=1

‖Ii
�−1

− Ii
�
‖2 ≤ �,

�j =
⟨sj−1, sj−1⟩

⟨sj−1, (∇f (xj, yj) − ∇f (xj−1, yj−1))⟩ ,

f (x+, y+) ≤ max
0≤l≤ min {j,M−1}

f (xk−l, yk−l) + ��⟨dj,∇f (xj, yj)⟩,
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Algorithm Penalty-SPG (PSPG)

S0  : Given 𝜏−1 > 0 , and vectors x−1 and y−1 ; set k = 0.

S1  : Compute 𝜏k > 𝜏k−1

S2  : Set xk,0 = xk−1 and yk,0 = yk−1 , and from (xk,0, yk,0) apply the SPG method to 
(10), until 

 is satisfied at some iteration mk ≥ 1 . Set xk = xk,mk
 and yk = yk,mk

.

S3  : If 

 then stop. Otherwise, set k = k + 1 and return to S1.
We note that at any iteration k ≥ 1 , Step S2 of Algorithm PSPG starts from 

(xk−1, yk−1) , which is the previous solution of (4), obtained using �k−1 . We also note that to 
stop the SPG iterations, we monitor the value of ‖P�̂((xk, yk) − ∇f (xk, yk)) − (xk, yk)‖2 . 
It is worth recalling that if ‖P�̂((x, y) − ∇f (x, y)) − (x, y)‖2 = 0 , then (x, y) ∈ �̂ is sta-
tionary for problem (4) (see, e.g., [6, 8]). Each SPG iteration uses Dykstra’s alternating 
projection scheme to obtain the required projection onto �̂ , and this internal iterative 
process is stopped when (6) is satisfied.

4  Cardinality Constrained Optimal Portfolio Problem

Let the vector v ∈ ℝ
n and the symmetric and positive semi-definite matrix 

Q ≡ [�ij]i,j=1,…,n ∈ ℝ
n×n be the given mean return vector and variance-covariance 

matrix of the n risky available assets, respectively. The entry �ij in Q is the covari-
ance between assets i and j for i, j = 1,… , n , �ii = �2

i
 and �ij = �ji . As a consequence 

of the pioneering work of Markowitz [32], the mean-variance portfolio selection 
problem can be formulated as (1), where the objective function is given by

and the convex set 𝛺 = {x ∈ ℝ
n ∶ v⊤x ≥ 𝜌, e⊤x = 1, 0 ≤ xi ≤ ui, i = 1,… , n} , 

representing the constraints of minimum expected return level � , budget constraint 
( e⊤x =

∑n

i=1
xi = 1 means that all available wealth will be invested), and lower 

( x ≥ 0 excludes short sale) and upper bounds ui for each xi , respectively. Notice that 
the minimization of f(x), involving the given covariance matrix Q, accounts for the 
minimization of the variance, while the return is expected to be at least � . Notice 
also that, as previously discussed, in this case, the set � is the intersection of three 
easy convex sets: a half-space, a hyperplane, and a box. The additional constraint 

‖P
Ω̂
((xk,mk

, yk,mk
) − ∇f (xk,mk

, yk,mk
)) − (xk,mk

, yk,mk
)‖2 ≤ tol1

h(xk, yk) ≤ tol2 and |f (xk) − f (xk−1)| ≤ tol2

(7)f (x) =
1

2
x⊤Qx,
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in (1), ‖x‖0 ≤ � for 0 < 𝛼 < n , plays a key role here and indicates that among the 
n risky available options, we can only invest in at most � assets (cardinality con-
straint). The solution vector x denotes an investment portfolio, and each xi represents 
the fraction held of each asset i. It should be mentioned that other inequality and/or 
equality constraints can be added to the problem, as they represent additional real-
life constraints, e.g., transaction costs [3, 26].

Now, as discussed above, our main idea is to consider the continuous formulation 
(2) instead of the optimization problem (1). For the portfolio selection problem, we 
would end up with the following problem that involves the auxiliary vector y:

where the upper bound vector u ∈ ℝ
n and 𝜌 > 0 are given. Note that the vector y 

appears only in the last 3 constraints, and the vector x appears in the first three con-
straints but also in the (non-convex) Hadamard constraint: x◦y = 0.

As discussed in Section 2, the best option to force the Hadamard condition at 
the solution while keeping the feasible set of our problem as the intersection of 
a finite collection of easy convex sets is to add the term �h(x, y) to the objective 
function, where our convenient choice is h(x, y) = x⊤y:

where 𝜏 > 0 is a penalization parameter that needs to be properly chosen as 
described in Section  2. Since the vectors x and y will be forced by the alternat-
ing projection scheme to have all their entries greater than or equal to zero, then 
h(x, y) = x⊤y ≥ 0 for any feasible pair (x, y), and forcing 𝜏x⊤y = 0 is equivalent to 
forcing the Hadamard condition: xiyi = 0 for all i. Notice that setting � = 0 for solv-
ing (8) with f(x, y) given by (9) minimizes the risk, independently of the Hadamard 
condition. On the other hand, if 𝜏 > 0 is sufficiently large as compared to the size of 
Q, then the term x⊤y must be zero at the solution. Hence, choosing 𝜏 > 0 represents 
an explicit trade-off between the risk and the Hadamard condition.

Our algorithmic proposal consists in solving a sequence of penalized prob-
lems, as described in Section  2, using the SPG scheme and Dykstra’s alternat-
ing projection method (that from now on will be denoted as the SPG method) 
to solve problem (8), without the complementarity constraint x◦y = 0 , and using 
the objective function given by (9). That is, for a sequence of increasing penalty 
terms 𝜏k > 0 , we will solve the following problems:

(8)

min
x,y

1

2
x⊤Qx

subject to: v⊤x ≥ 𝜌,

e⊤x = 1,

0 ≤ xi ≤ ui, for all 1 ≤ i ≤ n,

e⊤y ≥ n − 𝛼,

x◦y = 0,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n,

(9)f (x, y) =
1

2
x⊤Qx + 𝜏x⊤y,
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Since the function h(x, y) = x⊤y satisfies the properties mentioned in Section 2, if we 
choose the sequence of parameters {�k} such that h(xk, yk) goes to zero when k goes 
to infinity, then Theorem 1 guarantees the convergence of the proposed scheme.

Before showing some computational results in our next section, let us recall that 
the gradient and the Hessian of the objective function f at every pair (x, y) are given 
by

Notice that, for any 𝜏k > 0 , ∇2f (x, y) is symmetric and indefinite.

5  Computational Results

To add understanding and illustrate the advantages of our proposed combined 
scheme, we present the results of some numerical experiments on an academic sim-
ple problem ( n = 6 ) and also on some data sets involving real-world capital market 
indices from major stock markets. All the experiments were performed using Matlab 
R2022 with double precision on an IntelⓇ Quad-Core i7-1165G7 at 4.70 GHz with 
16GB of RAM memory, using Windows 10 Pro with 64 Bits.

For our experiments, we use Algorithm PSPG described in Section  3, setting 
x−1 = (1∕n)e , y−1 = 0 , tol1 = 10−6 , and tol2 = 10−8 . We recall that for the portfo-
lio problems h(xk, yk) = x⊤

k
yk . The value of ‖P�̂((xk, yk) − ∇f (xk, yk)) − (xk, yk)‖2 

will be denoted as the pgnorm at iteration k (see the tables below). Concerning the 
nonmonotone line search strategy used by the SPG method, we set � = 10−4 and 
M = 10 . Dykstra’s alternating projection scheme is stopped when (6) is satisfied 
with � = 10−8.

To explore the behavior of Algorithm PSPG, we will vary the minimum expected 
return parameter 𝜌 > 0 and the cardinality constraint positive integer 1 ≤ 𝛼 < n . In 
all cases, we set the upper bound vector u = e , where e is the vector of ones. Of 
course, for certain combinations of all those parameters, the problem might be infea-
sible. We will discuss possible choices of these parameters to guarantee that the fea-
sible region of problem (10) is not empty.

To keep a balanced trade-off between the risk and the Hadamard condition, it 
is convenient to choose the initial parameter 𝜏−1 > 0 of the same order of magni-
tude of the largest eigenvalue of Q. For that, we proceed as follows: set z = Qe and 
𝜏−1 = z⊤Qz∕(z⊤z) , i.e., a Rayleigh-quotient of Q with a suitable vector z, which pro-
duces a good estimate of �max(Q) . This choice worked well for the vast majority of 

(10)

min
x,y

1

2
x⊤Qx + 𝜏kx

⊤y

subject to: v⊤x ≥ 𝜌,

e⊤x = 1,

0 ≤ xi ≤ ui, for all 1 ≤ i ≤ n,

e⊤y ≥ n − 𝛼,

0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n.

∇f (x, y) =

(
Qx + �ky

�x

)
and ∇2f (x, y) =

(
Q �kI

�kI 0

)
.
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the test examples. According to Remark 1, to observe convergence, we need to drive 
the inner product x⊤

k
yk down to zero. For that, we increase the penalization param-

eter as follows:

We note that in practice, this formula increases the penalty parameter in a controlled 
way taking into account the ratio between the absolute value of the current return 
|v⊤xk+1| and the current risk 

√
x⊤
k+1

Qxk+1 . In all the reported experiments, the con-
trolled sequence {�k} given by (11) was enough to guarantee that the Hadamard 
product goes down to zero.

Concerning the choice of the expected return, based on [13, 36], in order to con-
sider feasible problems, we study the behavior of our combined scheme in an inter-
val [�min, �max] of possible values of the parameter � , which is obtained as follows. 
Let 𝜌min = v⊤xmin and 𝜌max = v⊤xmax , where xmin = argminx

1

2
x⊤Qx + 𝜏x⊤y and 

xmax = argmaxx v⊤x − 𝜏x⊤y , both of them subject to e⊤x = 1 , e⊤y ≥ n − 𝛼 , 
0 ≤ xi ≤ ui , and 0 ≤ yi ≤ 1, for all 1 ≤ i ≤ n . These two auxiliary optimization 
problems are solved in advance, only once for each considered problem, using in 
turn the proposed Algorithm PSPG. For that, we fix the same parameters and we 
start from the same initial values indicated above. Once the interval [�min, �max] has 
been obtained, to choose a suitable return � , we can proceed as follows. For a fixed 
0 < 𝜖 < 1 , if 𝜌min + 𝜖(𝜌max − 𝜌min) ≥ 0 , we set 𝜌 = 𝜌min + 𝜖(𝜌max − 𝜌min) , else if 
|�| ≤ vmax we set 𝜌 = 𝜖|𝜌| , otherwise we set 𝜌 = 𝜖vmax . In here, vmin = min{v1,… , vn} 
and vmax = max{v1,… , vn}.

For our first data set, we consider a simple portfolio problem with n = 6 available 
assets, denoted as Simple-case for which the mean return vector v and the covari-
ance matrix Q are given by

We note that Q is symmetric and positive definite ( �min(Q) = 1.79 × 10−2 and 
�max(Q) = 1.17 × 10−1 ). Notice that the assets three, four, and five have negative 
average returns. The purpose of this simple example is to demonstrate properties of 
the problem and the proposed algorithm in an easy-to follow fashion. For the other 
data sets, involving real-world capital market indices, we consider some larger prob-
lems obtained from Beasley’s OR Library (http:// people. brunel. ac. uk/ ~mastj jb/ jeb/ 

(11)

𝜏k+1 = 𝛿k+1𝜏k where 𝛿k+1 = 𝛿k +
(n − 𝛼)𝜌

n

|v⊤xk+1|√
x⊤
k+1

Qxk+1

and 𝛿−1 = 1.

v = (0.021 0.04 − 0.034 − 0.028 − 0.005 0.006)⊤,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.038 0.020 0.017 0.014 0.019 0.017

0.020 0.043 0.015 0.013 0.021 0.014

0.017 0.015 0.034 0.011 0.014 0.014

0.014 0.013 0.011 0.044 0.014 0.011

0.019 0.021 0.014 0.014 0.040 0.014

0.017 0.014 0.014 0.011 0.014 0.046

⎤
⎥⎥⎥⎥⎥⎥⎦

.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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info. html), built from weakly price data from March 1992 to September 1997, and 
that we will denote as Port1 (Hang Seng index with n = 31 ), Port2 (DAX index with 
n = 85 ), Port3 (FTSE 100 index with n = 89 ), Port4 (S&P 100 index with n = 98 ), 
and Port5 (Nikkei index with n = 225 ) (see also [1, 15, 24]).

The key properties, to be discussed and illustrated in the rest of this section, 
are the influence of the cardinality constraint to the feasible set in the risk-return 
plane, the efficient frontier, and the quality of the solution obtained by Algorithm 
PSPG. The feasible set is usually represented in the risk-return plane, presenting all 
possible combinations of assets that satisfy the constraints. In general, the feasible 
set for the classical problem without cardinality constraint has the so-called bullet 
shape. The efficient frontier is the set of optimal portfolios that offer the highest 
expected return for a defined level of risk or the lowest risk for a given level of 
expected return.

Introducing the cardinality constraints might complicate the feasible set in the 
sense that the set is shrinking as we will now show. Starting with the feasible inter-
val for the expected return, we report in Table 1, �max ≤ vmax and �min ≥ vmin , for 
� = 5 and for all the considered data sets.

Let us now take a closer look at the Simple-case. If we solve the original Markow-
itz problem [32] - the minimal variance portfolio, (i.e., min

x

1

2
x⊤Qx subject to 

e⊤x = 1 ) for the Simple-case problem, we obtain

risk 
√
x̄⊤Qx̄ = 0.1379 , and expected return v⊤x̄ = −0.0079 . Solving the same prob-

lem with the additional constraint x ≥ 0 , we get the same solution. Thus, the mini-
mal variance portfolio is the same as the minimal variance portfolio without short 
sale. In Fig. 1, we present for the Simple-case problem, the return and risk for all 
6 assets, the minimal variance portfolio, denoted by MVP, the classical Markow-
itz portfolio without short sale and the expected return constraint v⊤x ≥ 𝜌 = 0.002 , 
denoted by MP, as well as the efficient frontier for different values of the cardinality 
constraint � . Clearly for � = 6 , i.e., without cardinality constraint, we get a classical 
convex efficient frontier, while for smaller � values, the curves are discontinuous 
and deformed (see, e.g., [15] for similar observations).

For the Simple-case problem, with n = 6 available assets, an approximation of the 
feasible set is shown in Fig. 2, which is obtained by running a simulation based on 

x̄ = (0.0961, 0.1168, 0.2625, 0.2140, 0.1429, 0.1677)⊤,

Table 1  Return value 
with � = 5 for all data sets

Problem n v
min

v
max

�
min

�
max

Simple case 6 −0.0340 0.0400 −0.0238 0.0373
Port1 31 5.64e-4 0.0435 0.0130 0.0435
Port2 85 −0.0160 0.0392 0.0099 0.0342
Port3 89 −0.0045 0.0328 0.0102 0.0268
Port4 98 −0.0079 0.0368 0.0077 0.0271
Port5 225 −0.0340 0.0159 −0.0060 −0.0060

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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finite sampling. In our simulation, we pay more attention to the left side to observe 
the bullet shape. As a consequence, only a few scattered points are shown on the 
right side of the figure. We note that for a larger value of � , we get a larger area of the 
feasible set. We also note that the bullet shape is not affected by the cardinality con-
straint, but, as expected, the set is shrinking as the number of zero elements increases.

The same conclusions apply to the larger data sets coming from real assets. 
Below, in Fig. 3, we show the approximate feasible set for Port1. We note that once 
again, the area is shrinking when � decreases. We also note that the same is true for 
all considered cases.

Fig. 1  Risk versus return, using Algorithm PSPG for the Simple-case problem

Fig. 2  Feasible set for the Simple case and � = 2, 3, 4, 5 , and 6
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The efficient frontier for Port1 is shown in Fig. 4. Again, we observe that the effi-
cient frontier is deformed by the value of the cardinality constraint, and when 𝛼 < n , 
it is not a convex curve. For the sake of completeness, in the Appendix, we provide 
some tables with more detailed results, varying the cardinality constraints, for all 
considered data sets. We can observe in all figures and tables the effectiveness of 
our low-cost continuous approach (Algorithm PSPG).

Additionally, we compare our approach to IBM ILOG CPLEX Optimization 
Studio, Version: 22.1.0.0. CPLEX is a mixed integer quadratic programming 
(MIQP) solver. We note that for these problems, the solution provided by CPLEX 
is the globally optimal one up to the provided tolerances. The goal of comparison 

Fig. 3  Feasible set for Port1 and � = 6, 11, 16, 21, 26 , and 31

Fig. 4  Risk versus return, using Algorithm PSPG for Port1 and � = 6, 11, 16, 21, 26, 31
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is to investigate the quality of solutions obtained by PSPG and CPLEX in terms 
of risk and return. We also report CPU time, although CPLEX is implemented 
in a low-level language, and so it requires significantly less execution time than 
our high-level Matlab implementation. Hence, CPU time might be misleading. For 
solving the problems with CPLEX, we consider the following MIQP formulation, 
instead of (1):

Notice that in the above problem formulation, we do not have the Hadamard con-
strained, and instead, we have xi + yi ≤ 1 followed by yi ∈ {0, 1} . CPLEX is 
designed to work with linear constraints, and for yi = 0 or yi = 1 , we get the same 
condition. It is worth mentioning that (1) can also be formulated as a convex mixed 
integer non-linear program (MINLP) (see, e.g., [27]). Therefore, using a convenient 
formulation, (1) can also be solved by branch-and-bound, e.g., using BARON [34] 
or SCIP [35], or by outer approximation strategies [2], e.g., using SHOT [31].

The details of tests for all considered data sets are presented in Tables  3, 4, 
5, 6, 7, and 8 in the Appendix. One can easily see that PSPG produces solutions 
with slightly higher risk and significantly better return. In Table 5, we observe that 
CPLEX needs a very large number of iterations to solve the problem for � ≤ 20 , 
which corresponds to the fact the PSPG needed a special value of �−1 for these val-
ues of � and large values of penalty parameter �. Thus, this behavior is associated 
with the data of Port2. In some other cases, reported in the tables in the Appendix, 
we can observe a rather large number of CPLEX iterations for small values of � , 
while PSPG solved the same problems with reasonably small values of the penalty 
parameters.

An interesting observation from the literature, and confirmed by our experi-
ments, is the fact that the optimal portfolio without cardinality constraint is in fact 
sparse. In Table 2, we report the number of assets obtained by our algorithm and 
CPLEX which is in accordance with the results reported in [13, Figure 5] and [14, 
Section 5.2.2]. We can observe that the number of assets in the unconstrained mean-
variance optimal portfolio for Port1 ‖x∗‖0 ≤ 12 , for Port4 ‖x∗‖0 ≤ 40 , and for Port5 
‖x∗‖0 ≤ 15.

As noticed above, the feasible set of (8) belongs to the feasible set of (10). In 
addition, since the solution of (10) satisfies the Hadamard condition, we obtain that 
the solution is also a solution of (8). Then, by Theorem 2, we have that if (x∗, y∗) is a 
local minimizer of (10) satisfying ‖x∗‖0 = � , then the components of y∗ are binary, 
y∗ is unique, and x∗ is a local minimizer of (1). In fact, for the solutions reported in 
Tables 3, 4, and 6 in the Appendix, if ‖x∗‖0 = � , we have that the components of 
y∗ are binary. The solution may have non-binary entries in y∗ ; for instance, port1 

min
x,y

1

2
x⊤Qx

subject to: v⊤x ≥ 𝜌,

e⊤x = 1,

e⊤y ≥ n − 𝛼,

0 ≤ xi ≤ 1, for all 1 ≤ i ≤ n,

xi + yi ≤ 1, for all 1 ≤ i ≤ n,

yi ∈ {0, 1}.
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with � = n = 31 , we have that y∗ is binary; however, the cardinality constraint is not 
active ‖x∗‖0 = 12 . Another interesting example is detected for Port3 with � = n = 89 
in which we obtain a binary y∗ but ‖x∗‖0 = 34.

6  Conclusions and Final Remarks

Taking advantage of a recently developed continuous formulation, we have devel-
oped and analyzed a low-cost and effective computational scheme for finding a 
solution candidate of convex constrained optimization problems that also include a 
“hard-to-deal" cardinality constraint. As it appears in many applications, we assume 
that the region defined by the convex constraints can be written as the intersection of 
a finite collection of “easy to project" convex sets. Under this continuous formula-
tion, to fulfill the cardinality constraint, the Hadamard condition x◦y = 0 must be 
satisfied between the solution vector x and an auxiliary vector y. In our scheme, this 
condition is achieved by adding a non-negative penalty term h(x, y) and using a clas-
sical penalization strategy. For each penalty subproblem, a convex constrained prob-
lem must be solved, which in our proposal is achieved by combining two low-cost 
computational schemes: the spectral projected gradient (SPG) method and Dykstra’s 
alternating projection method.

To illustrate the computational performance of our combined scheme, we have 
considered in detail the standard mean-variance limited diversified portfolio selec-
tion problem, which involves obtaining the proportion of the initial budget that 
should be allocated in a limited number of the available assets. For this specific 
application, we proposed a natural differentiable choice of the penalty term (given 
by h(x, y) = x⊤y ) that must be driven to zero, which allowed us to develop a sim-
ple way of increasing the associated penalty parameter in a controlled and bounded 
way. In our numerical study, we have included a variety of data sets involving 
real-world capital market indices. For these data sets, we have produced the fea-
sible sets and also the efficient frontier (a curve illustrating the tradeoff between 
risk and return) for different values of the limited number of allowed assets. In each 
case, we highlighted the differences that arise in the shape of this efficient frontiers 
as compared with the unconstrained efficient one. The presented numerical study 

Table 2  Performance of Algorithm PSPG for all cases when n = �

PSPG CPLEX

Problem � = n ‖x‖
0 v

⊤
x
∗

√
(x∗)⊤Qx∗ ‖x‖

0 v
⊤
x
∗

√
(x∗)⊤Qx∗

Simple-case 6 6 0.0003 0.1394 6 0.0003 0.1394
Port1 31 12 0.0133 0.0509 12 0.0133 0.0509
Port2 85 24 0.0085 0.0234 25 0.0084 0.0234
Port3 89 34 0.0101 0.0282 34 0.0101 0.0282
Port4 98 38 0.0098 0.0223 38 0.0098 0.0223
Port5 225 12 0.0003 0.0349 12 0.0003 0.0349
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includes comparison with CPLEX, a professional software for general mixed integer 
programming problems. The comparison is presented in terms of quality of solution 
(higher return, lower risk), and PSPG appears to be competitive.

In our modeling of the portfolio problem, we have bounded the proportion to be 
invested in each of the selected assets between 0 and 1. However, without altering 
our proposed scheme, stricter upper limits (less than 1) can be imposed on some 
particular assets. Clearly, this would require a more careful analysis of the feasible 
options for the expected return. Moreover, it could also be interesting from a portfo-
lio point of view to allow negative entries in some of the proportions to be invested, 
and that can be accomplished by allowing negative values in the lower bounds of the 
solution vector. In that case, the penalization term to force the Hadamard condition 
needs to be chosen accordingly (e.g., h(x, y) =

∑n

i=1
(x2

i
yi)).

Appendix. Performance of Algorithm PSPG for All Data Sets

In Tables 3, 4, 5, 6, 7, and 8, we report the performance of PSPG and CPLEX, for 
several values of � , reporting the values of optimal portfolio return, risk, number of 
non-zero portfolio weights, number of iteration (Iter), and number of SPG iterations 
for PSPG, the CPU time (time) in seconds, the last value of � , as well as the final 
value of the Hadamard product, and the total number of required function evalua-
tions (fcnt). It is worth noticing that in all the results reported in these tables, the 
pgnorm at the obtained solution and the Hadamard products (x∗)⊤y∗ are strictly less 
than 10−6 , and hence, we did not report these values.

Table 3  Performance of PSPG and CPLEX for the Simple case

Algorithm � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0400 0.2074 1 2 4 0.3708 0.117590 7 0.0018
2 0.0293 0.1735 2 2 6 0.3133 0.117577 9 0.0016
3 0.0053 0.1523 3 2 11 0.2786 0.117560 13 0.0017
4 0.0053 0.1523 3 2 12 0.3211 0.117558 16 0.0017
5 0.0053 0.1523 3 2 8 0.2799 0.117557 10 0.0012
6 0.0003 0.1394 6 2 7 0.3001 0.117556 9 0.0003

CPLEX 1 0.0210 0.1949 1 22 - 0.09 - - 0.0018
2 0.0016 0.1612 2 19 - 0.05 - - 0.0016
3 0.0017 0.1483 3 19 - 0.03 - - 0.0017
4 0.0017 0.1414 4 19 - 0.05 - - 0.0017
5 0.0012 0.1414 5 19 - 0.06 - - 0.0012
6 0.0003 0.1394 6 13 - 0.02 - - 0.0003
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Table 4  Performance of Algorithm PSPG and CPLEX for problem Port1

Algorithm � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0435 0.1382 1 2 4 0.8109 0.1475 6 0.0097
2 0.0435 0.1382 1 2 3 0.3113 0.1476 5 0.0126
3 0.0435 0.1382 1 2 3 0.3203 0.1477 5 0.0133
4 0.0435 0.1382 1 2 3 0.2200 0.1476 5 0.0132
5 0.0435 0.1382 1 2 3 0.2524 0.1476 5 0.0133
10 0.0435 0.1382 1 2 4 0.2028 0.1475 6 0.0136
15 0.0151 0.0678 2 2 17 0.6132 0.1473 23 0.0133
20 0.0154 0.0530 5 2 17 0.3751 0.1473 19 0.0132
30 0.0133 0.0509 11 2 13 0.2978 0.1471 15 0.0133
31 0.0133 0.0509 12 2 12 0.3267 0.1471 14 0.0133

CPLEX 1 0.0233 0.0717 1 32 – 0.0900 – - - 0.0097
2 0.0126 0.0591 2 17 – 0.0300 – – 0.0126
3 0.0140 0.0544 3 17 – 0.0500 – – 0.0133
4 0.0132 0.0523 4 17 – 0.0300 – – 0.0132
5 0.0137 0.0516 1 17 – 0.0500 – – 0.0133
10 0.0136 0.0510 10 19 – 0.0600 – – 0.0136
15 0.0133 0.0509 12 13 – 0.0300 – – 0.0133
20 0.0132 0.0509 12 13 – 0.0200 – – 0.0132
30 0.0133 0.0509 12 13 – 0.0200 – – 0.0133
31 0.0133 0.0509 12 13 – 0.0200 – – 0.0133

Table 5  Performance of Algorithm PSPG and CPLEX for problem Port2

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0392 0.1065 1 2 8 0.6761 0.0976 28 0.0085
2 0.0392 0.1065 1 2 5 0.3885 7.0147 19 0.0058
3 0.0745 0.1327 2 2 10 0.5509 11.815 39 0.0079
4 0.1045 0.1628 3 3 29 0.7973 12.012 155 0.0125
5 0.0745 0.1327 2 2 10 0.5157 11.866 42 0.0163
10 0.1267 0.2010 4 5 109 2.5451 42.404 383 0.0158
15 0.1804 0.2954 7 3 58 1.4936 72.623 163 0.0161
20 0.0745 0.1327 2 2 12 0.5987 26.025 69 0.0022
25 0.0745 0.1327 2 2 12 2.1676 29.028 69 0.0024
30 0.0745 0.1327 2 2 11 0.8536 39.052 61 0.0037
35 0.0291 0.0428 5 2 11 0.2984 0.0977 18 0.0109
40 0.0291 0.0428 5 2 11 0.2845 0.0977 18 0.0117
45 0.0291 0.0428 5 2 13 0.2991 0.0976 25 0.0115
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Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

50 0.0291 0.0428 5 2 11 0.2731 0.0976 18 0.0115
55 0.0225 0.0357 8 2 15 0.2739 0.0975 22 0.0110
60 0.0186 0.0319 13 2 13 0.2580 0.0974 17 0.0110

65 0.0190 0.0321 12 2 15 0.2748 0.0974 17 0.0111
70 0.0110 0.0237 23 2 19 0.2579 0.0973 21 0.0110
75 0.0111 0.0238 23 2 16 0.2120 0.0973 18 0.0111
80 0.0103 0.0235 25 2 16 0.2108 0.0973 18 0.0103
85 0.0085 0.0234 24 2 15 0.1876 0.0973 17 0.0070

CPLEX 1 0.0134 0.0477 1 504 – 0.14 – – 0.0085
2 0.0066 0.0331 2 5638 – 0.27 – – 0.0058
3 0.0084 0.0296 3 34024 – 0.53 – – 0.0079
4 0.0125 0.0289 4 13926 – 0.39 – – 0.0125
5 0.0163 0.0298 5 6982 – 0.28 – – 0.0163
10 0.0158 0.0263 10 2743 – 0.20 – – 0.0158
15 0.0161 0.0259 15 1485 – 0.23 – – 0.0161
20 0.0083 0.0234 20 75 – 0.20 – – 0.0022
25 0.0083 0.0234 25 13 – 0.02 – – 0.0024
30 0.0084 0.0234 25 13 – 0.02 – – 0.0037
35 0.0109 0.0236 24 14 – 0.02 – – 0.0109
40 0.0117 0.0238 24 14 – 0.03 – – 0.0117
45 0.0115 0.0238 24 14 – 0.03 – – 0.0115
50 0.0115 0.0238 24 14 – 0.02 – – 0.0115
55 0.0110 0.0237 24 14 – 0.02 – – 0.0110
60 0.0110 0.0237 24 14 – 0.02 – – 0.0110
65 0.0111 0.0237 24 14 – 0.02 – – 0.0111
70 0.0110 0.0237 24 14 – 0.03 – – 0.0110
75 0.0111 0.0237 24 14 – 0.05 – – 0.0111
80 0.0103 0.0235 26 14 – 0.03 – – 0.0103
85 0.0084 0.0234 25 13 – 0.03 – – 0.0070

Table 6  (continued)
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Table 6  Performance of Algorithm PSPG and CPLEX for problem Port3

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0328 0.0779 1 2 7 1.0909 0.1133 16 0.0101
2 0.0328 0.0779 1 2 3 1.0322 9.8615 11 0.0104
3 0.0328 0.0779 1 2 4 0.6540 9.7468 12 0.0102
4 0.0328 0.0779 1 2 3 0.5711 9.6557 10 0.0160
5 0.0328 0.0779 1 2 5 0.7342 9.5319 17 0.0135
10 0.0328 0.0779 1 3 56 4.5180 9.0391 402 0.0119
15 0.0328 0.0779 1 3 55 1.3683 11.429 406 0.0117
20 0.0104 0.0284 14 14 676 36.438 0.0003 885 0.0104
25 0.0104 0.0284 14 11 530 28.613 0.0003 666 0.0104
30 0.0104 0.0284 14 12 547 29.572 0.0003 695 0.0104
35 0.0328 0.0779 1 2 4 0.5872 89.248 13 0.0107
40 0.0104 0.0286 12 5 215 10.943 0.0005 282 0.0104
45 0.0251 0.0464 4 3 51 1.9333 0.2019 59 0.0114
50 0.0104 0.0285 13 5 194 3.2324 0.0005 252 0.0104
55 0.0104 0.0285 13 4 151 2.6642 0.0005 183 0.0104
60 0.0167 0.0321 19 5 183 6.3165 1.1546 440 0.0133
65 0.0157 0.0310 21 8 341 5.8265 2.8615 652 0.0145
70 0.0105 0.0333 10 2 29 0.9089 0.1129 31 0.0105
75 0.0105 0.0308 11 2 20 0.6148 0.1129 22 0.0105
80 0.0105 0.0295 16 2 16 0.6074 0.1129 18 0.0105
85 0.0104 0.0286 23 2 26 0.6432 0.1129 28 0.0104
89 0.0101 0.0282 34 2 18 0.5024 0.1129 20 0.0101

CPLEX 1 0.0151 0.0473 1 328 – 0.19 – – 0.0101
2 0.0117 0.0384 2 9537 – 0.42 – – 0.0104
3 0.0104 0.0346 3 133879 – 2.76 – – 0.0102
4 0.0160 0.0340 4 26021 – 0.58 – – 0.0160
5 0.0135 0.0314 5 125555 – 2.61 – – 0.0135
10 0.0119 0.0290 10 35025 – 1.08 – – 0.0119
15 0.0117 0.0286 15 4705 – 0.42 – – 0.0117
20 0.0104 0.0282 20 1102 – 0.44 – – 0.0104
25 0.0104 0.0282 24 909 – 0.48 – – 0.0104
30 0.0104 0.0282 28 545 – 0.50 – – 0.0104
35 0.0107 0.0282 32 14 – 0.02 – – 0.0107
40 0.0104 0.0282 33 13 – 0.02 – – 0.0104
45 0.0114 0.0283 30 13 – 0.03 – – 0.0114
50 0.0104 0.0282 33 13 – 0.03 – – 0.0104
55 0.0104 0.0282 33 13 – 0.03 – – 0.0104
60 0.0133 0.0289 27 13 – 0.03 – – 0.0133
65 0.0145 0.0294 28 14 – 0.05 – – 0.0145
70 0.0105 0.0282 33 13 – 0.02 – – 0.0105
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Table 6  (continued)

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

75 0.0105 0.0282 33 13 – 0.02 – – 0.0105
80 0.0105 0.0282 33 13 – 0.02 – – 0.0105

85 0.0104 0.0282 33 13 – 0.02 – – 0.0104
89 0.0101 0.0282 34 13 – 0.09 – – 0.0101

Table 7  Performance of Algorithm PSPG and CPLEX for problem Port4

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 1 0.0343 0.0983 1 2 11 1.0960 0.0891 32 0.0095
2 0.0368 0.1084 1 2 5 0.2783 0.8903 18 0.0091
3 0.0368 0.1084 1 2 5 0.2805 0.8899 18 0.0075
4 0.0368 0.1084 1 2 26 0.4912 0.8908 74 0.0108
5 0.0368 0.1084 1 2 5 0.2296 0.8905 18 0.0101
10 0.0368 0.1084 1 2 4 0.2047 0.8890 11 0.0050
15 0.0368 0.1084 1 2 5 0.2230 1.7778 17 0.0047
20 0.0368 0.1084 1 2 4 0.3299 3.7049 12 0.0048
25 0.0206 0.0365 10 3 72 0.9029 0.4027 118 0.0053
30 0.0194 0.0346 14 3 107 2.0201 0.5036 194 0.0060
35 0.0197 0.0349 13 3 74 0.9154 0.5033 133 0.0060
40 0.0178 0.0319 20 3 96 1.7136 0.8921 144 0.0055
45 0.0127 0.0371 4 3 51 0.9430 0.0202 54 0.0091
50 0.0175 0.0410 3 3 51 0.9916 0.0202 67 0.0091
55 0.0109 0.0292 6 2 24 0.4256 0.0101 34 0.0106
60 0.0194 0.0346 14 6 213 3.8296 0.9062 417 0.0063
65 0.0191 0.0339 16 20 979 17.236 1.1020 2148 0.0061
70 0.0132 0.0344 5 2 20 0.3864 0.0301 28 0.0010
75 0.0252 0.0481 7 13 561 14.115 0.9461 1052 0.0067
80 0.0138 0.0365 5 2 27 2.1716 0.0888 35 0.0080
85 0.0142 0.0364 6 2 17 1.5391 0.0888 25 0.0075
90 0.0086 0.0250 14 2 23 1.1892 0.0888 25 0.0073
95 0.0089 0.0231 18 2 28 1.1098 0.0888 30 0.0080
98 0.0098 0.0223 38 2 20 0.9998 0.0888 22 0.0098

CPLEX 1 0.0115 0.0462 1 806 – 0.09 – – 0.0095
2 0.0095 0.0350 2 29245 – 0.48 – – 0.0091
3 0.0081 0.0300 3 506050 – 3.63 – – 0.0075
4 0.0108 0.0287 4 1750081 – 14.89 – – 0.0108
5 0.0101 0.0266 5 2497651 – 20.86 – – 0.0101
10 0.0070 0.0231 10 698137 – 6.38 – – 0.0050
15 0.0077 0.0223 15 8163 – 0.33 – – 0.0047
20 0.0075 0.0221 20 11669 – 0.33 – – 0.0048
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Table 7  (continued)

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

25 0.0074 0.0221 25 1062 – 0.19 – – 0.0053
30 0.0078 0.0221 28 540 – 0.17 – – 0.0060
35 0.0076 0.0221 35 74 – 0.09 – – 0.0060
40 0.0077 0.0220 38 14 – 0.02 – – 0.0055
45 0.0091 0.0222 39 14 – 0.02 – – 0.0091
50 0.0091 0.0222 39 14 – 0.00 – – 0.0091
55 0.0106 0.0226 35 13 – 0.01 – – 0.0106
60 0.0077 0.0220 38 14 – 0.03 – – 0.0063
65 0.0077 0.0220 38 14 – 0.02 – – 0.0061
70 0.0077 0.0220 38 14 – 0.03 – – 0.0010

75 0.0077 0.0220 38 14 – 0.06 – – 0.0067
80 0.0080 0.0220 38 14 – 0.02 – – 0.0080
85 0.0077 0.0220 38 14 – 0.01 – – 0.0075
90 0.0077 0.0220 38 14 – 0.02 – – 0.0073
95 0.0080 0.0220 38 14 – 0.02 – – 0.0080
98 0.0098 0.0223 38 14 – 0.03 – – 0.0098

Table 8  Performance of Algorithm PSPG and CPLEX for problem Port5

Problem � v
⊤
x
∗

√
(x∗)⊤Qx∗ ‖x∗‖

0
Iter Iter-SPG Time � fcnt �

PSPG 2 0.0161 0.1081 2 2 102 7.4534 0.1010 356 7.7209e-06
3 0.0037 0.0538 3 20 1020 77.895 0.0100 1342 7.8605e-06
4 0.0034 0.0500 3 20 1020 80.528 0.0100 1333 7.8656e-06
5 0.0009 0.0388 4 12 612 43.506 0.0100 772 1.2051e-05
10 0.0006 0.0355 7 4 204 16.183 0.0400 482 1.1788e-05
15 0.0036 0.0377 8 5 255 19.572 0.2000 658 7.2419e-06
20 0.0059 0.0399 9 11 561 39.421 0.9000 1633 5.9825e-06
25 0.0058 0.0399 10 9 459 19.429 1.0000 1461 6.4813e-06
30 0.0003 0.0349 10 8 325 21.612 0.0001 463 7.8618e-06
225 0.0003 0.0349 12 2 10 1.4476 0.9051 12 1.1926e-05

CPLEX 2 0.0058 0.0439 2 1964 – 0.48 – – 7.7209e-06
3 0.0027 0.0391 3 1034 – 0.41 – – 7.8605e-06
4 0.0009 0.0367 4 386 – 0.61 – – 7.8656e-06
5 0.0003 0.0356 5 132 – 0.33 – – 1.2051e-05
10 0.0003 0.0349 10 19 – 0.27 – – 1.1788e-05
15 0.0003 0.0349 12 17 – 0.22 – – 7.2419e-06
20 0.0003 0.0349 12 17 – 0.11 – – 5.9825e-06
25 0.0003 0.0349 12 17 – 0.26 – – 6.4813e-06
30 0.0003 0.0349 12 17 – 0.09 – – 7.8618e-06
225 0.0003 0.0349 12 17 – 0.11 – – 1.1926e-05
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