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Abstract
Radiation therapy (RT) is a medical treatment to kill cancer cells or shrink tumors. 
To manually schedule patients for RT is a time-consuming and challenging task. 
By the use of optimization, patient schedules for RT can be created automatically. 
This paper presents a study of different optimization methods for modeling and 
solving the RT patient scheduling problem, which can be used as decision support 
when implementing an automatic scheduling algorithm in practice. We introduce 
an Integer Programming (IP) model, a column generation IP model (CG-IP), and a 
Constraint Programming model. Patients are scheduled on multiple machine types 
considering their priority for treatment, session duration and allowed machines. 
Expected future arrivals of urgent patients are included in the models as placeholder 
patients. Since different cancer centers can have different scheduling objectives, 
the models are compared using multiple objective functions, including minimizing 
waiting times, and maximizing the fulfillment of patients’ preferences for treatment 
times. The test data is generated from historical data from Iridium Netwerk, Bel-
gium’s largest cancer center with 10 linear accelerators. The results demonstrate that 
the CG-IP model can solve all the different problem instances to a mean optimality 
gap of less than 1% within one hour. The proposed methodology provides a tool for 
automated scheduling of RT treatments and can be generally applied to RT centers.
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1 Introduction

Radiation therapy (RT) is a cancer treatment that uses radiation to kill malignant 
tumor cells. Together with chemotherapy and surgery, it is one of the most commonly 
used cancer therapies worldwide. Based on demographic changes such as an aging 
population, cancer incidents are increasing, and a 16% expected increase in the num-
ber of RT treatment courses in Europe has been estimated from 2012 to 2025 [1].

A long waiting time between referral and treatment start has negative effects on 
the outcome of the treatment. Reasons for this include tumor growth, psychological 
distress of the patient, and prolonged symptoms when the waiting times are long 
[2–6]. Therefore, many cancer institutes around the world have adopted waiting time 
targets that state the maximum allowed waiting time before treatment starts.

The RT treatment intent can be divided into either curative or palliative, where 
the first intends to cure the patient, and the latter mainly aims to provide symp-
tom relief. Furthermore, cancer patients are often divided into different urgency 
levels depending on the site of the cancer, treatment intent, and the size and pro-
gress of the tumor. The prioritization of patients for treatment can be done in dif-
ferent ways in different countries or hospitals [7–10].

There are several types of RT, where external photon beam RT is by far the 
most common, and the one covered in this paper. Photon beam RT is delivered 
on machines called linear accelerators (linacs). Because the DNA of healthy cells 
is repaired to a higher degree than that of malignant cells, the radiotherapy treat-
ment is usually divided into multiple sessions, called fractions. The fractions are 
scheduled daily with breaks on the weekends for a period of up to eight weeks. 
The duration of the fractions varies between patients due to treatment technique 
and treatment complexity. For a particular treatment, the delivery time of all frac-
tions is the same. However, the first fraction is usually scheduled for a longer 
time since it includes setup times, extra time for patient education and reassur-
ance, and additional quality checks before treatment start [11].

In the RT patient scheduling problem, the aim is to schedule RT treatments for 
a set of patients, given a set of linacs, for a certain planning horizon. The problem 
is complicated since the patients are of different priorities, and their treatments 
vary in the number of fractions, fraction durations and set of compatible linacs. 
Furthermore, the RT process includes many uncertainties, such as the random 
arrival of new patients.

This paper considers the RT scheduling problem arising at Iridium Netwerk, 
an RT center located in Antwerp, Belgium. In 2020, they operated 10 linacs, 
delivering 5500 RT treatments to approximately 4000 patients. The scheduling at 
Iridium is today done manually. Designing more efficient schedules would be of 
great significance as it could potentially improve patient outcomes by shortening 
waiting times. For this reason, this paper makes the following contributions:

– The main contribution is a comparative study of the performance of three exact 
optimization approaches to the RT scheduling problem. By evaluating the suit-
ability of different optimization technology for the problem, this serves as a 
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foundation for further research in the area, and more importantly, as a decision 
support when implementing an automatic scheduling algorithm in practice.

– The main technical novelty lies in the original models developed: an integer lin-
ear programming (IP) model, a column generation IP (CG-IP) model, and a con-
straint programming (CP) model, as well as a method combining the CP and IP 
models. To the best of our knowledge, these models are the first to simultane-
ously assign all fractions of the patients to both linacs and specific time win-
dows, while including all the medical and technical constraints necessary for the 
scheduling to work in practice. Furthermore, it is the first time column genera-
tion has been used for the RT patient scheduling problem. The problem instances 
solved are larger than in previous studies in terms of number of linacs, number of 
patients and length of the planning horizon.

– Different cancer centers may have different goals when creating the RT sched-
ules. In order to study the suitability of the above-mentioned optimization models 
for various cancer centers, each model is solved using multiple different objec-
tive functions. Six different objectives are evaluated, such as minimizing waiting 
times and maximizing the satisfaction of time window preferences among the 
patients. Furthermore, a sensitivity analysis and a study of competing objectives 
is performed to further evaluate the modeling approach.

The paper is organized as follows. Section 2 presents the related work. Section 3 
describes the problem. Section 4 presents the models. The setup for the computa-
tional experiments is explained in Section 5, followed by the results in Section 6. 
Section 7 contains the discussion, and Section 8 presents the conclusions.

2  Related Work

A literature review on the use of operations research for resource planning in RT 
was published in 2016 by Vieira et al. [12]. The authors found 12 papers addressing 
the problem of scheduling RT patients on linacs. The first use of integer program-
ming (IP) for optimization of RT appointments was published in 2008 by Conforti 
et  al. [13], where a block scheduling model is presented. The day is divided into 
blocks of equal duration and each treatment is assigned to one block. The same 
authors later developed a non-block scheduling model, which allows for different 
treatment durations [14]. Another IP model for non-block scheduling is presented by 
Jacquemin et al. [15], where the notion of treatment patterns is introduced to allow 
non-consecutive treatment days. A limitation of these papers is that they do not con-
sider all the constraints present in RT scheduling, such as multiple machine types 
and partial availability in the schedule.

Sauré et  al. [16] present a method for advance RT patient scheduling using a 
discounted infinite-horizon Markov decision process, and show that their pro-
posed policy can increase the percentage of treatments initiated within 10 days 
from 73% to 96%. In [17], Gocgun extends the same problem setup to also include 
patient cancellations. The setting used in these papers is a simplified model of a 
cancer center, equipped with three identical machines and 18 treatment types. The 
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resulting policies assign a start day to each patient, with no sequencing of patients 
throughout the day.

In order to schedule RT appointments one by one in an online fashion, Legrain 
et  al. [18] propose a hybrid method combining stochastic and online optimization 
using a block-scheduling strategy. The results show that their method works well on 
small real instances, with two linacs and less than 3.5 requests per day. Aringhieri 
et al. [19] also present methods for online RT scheduling, and develop three online 
optimization algorithms for a block-scheduling formulation and one machine.

Li et al. [20] model the RT patient scheduling as a queueing system with multi-
ple queues. A new class of scheduling policies is proposed, where the parameters 
are selected through simulation-based optimization heuristics. All treatments are 
assumed to have the same length, and all machines are assumed to be identical.

The type of RT that uses high-energy particles (protons or helium ions) is referred 
to as particle therapy (PT), in which a single particle beam is shared between mul-
tiple treatment rooms. This gives very different technical and medical constraints 
than in conventional photon beam RT. Two papers that present methods for opti-
mizing the sequencing of patients throughout the day in PT are Vogl et al. [21] and 
Maschler et al. [22], both aiming to schedule treatments close to a pre-defined target 
time and both using different heuristic methods. Braune et al. [23] present a model 
for planning appointment times in PT under uncertain activity durations, and solve 
the resulting stochastic optimization model using a combination of a Genetic Algo-
rithm and Monte Carlo simulation.

The first paper to include the sequencing of patient throughout the day in pho-
ton beam RT was published in 2020 by Vieira et al. [24]. The authors create weekly 
schedules with the objective to maximize the fulfillment of the patients’ time window 
preferences using a mixed-integer programming (MIP) model together with a pre-
processing heuristic to divide the problem into subproblems for clusters of machines. 
In a second paper they test their method in two Dutch clinics [25], with results show-
ing that the weekly schedule was improved in both centers. However, the problem 
studied in these papers is different from the one in this paper, as they create weekly 
schedules for a time horizon of five days, whereas we aim to assign all fractions to 
machines and therefore have a significantly longer time horizon (typically around 80 
days). Using a data-driven approach, Moradi et al. [26] study the patient sequencing 
problem in a simplified clinical setup, where all treatment durations are equal and 
all machines are identical and independent. To improve the weekly schedules, the 
authors utilize patient information in a MIP model to determine the optimal sequence 
of patients for a list of patients that have been previously assigned to a treatment day. 
The results show that it is favorable to schedule reliable patients early on to reduce 
idle time on machines caused by delayed patients or no-shows.

Constraint Programming (CP) is a technique for solving combinatorial problems 
with origins in computer science and artificial intelligence. CP solvers use rule-
based inference, logical reasoning, and search techniques. For an overview, see [27]. 
CP has been used in RT treatment planning [28], in chemotherapy patient schedul-
ing [29] and in operating room scheduling [30]. Overall, scheduling is a field where 
CP has shown to be effective, see for example [31]. Frimodig et  al. [32] present 
and compare two CP models and one IP model for the RT scheduling problem. The 
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CP models are shown to be efficient at finding feasible solutions, but are generally 
slower than the IP model at proving optimality. A limitation for these models is that 
they only consider one machine type.

Pham et  al. [33] propose a two-stage approach for the RT scheduling problem. 
In a first phase, an IP model is used to assign patients to linacs and days, and in 
the second phase the patients’ specific appointment times are decided using either a 
MIP or a CP model. The test data is generated based on data from CHUM, a cancer 
center in Canada. The test instances have seven linacs and a time horizon of 60 days. 
The results in the second phase show that CP finds good solutions faster, while MIP 
is better at closing optimality gaps, which agrees with the results in [32]. Some sim-
plifications in their models are that all patients can be treated on all machines, that 
all machine switches are allowed, and that the first fraction has the same duration as 
the rest. These assumptions make the models less general than the ones presented in 
this paper, and not suited for the scheduling problem at Iridium Netwerk.

Column generation (CG) is a method that is often successful in solving certain 
classes of large scale integer programs. The method alternates between a restricted 
master problem and a column generation subproblem. CG has been applied in various 
areas within the medical treatment field, such as for surgeon and surgery scheduling 
[34], for patient admission [35], and for nurse scheduling [36]. In RT, it has been used 
for brachytherapy scheduling using deteriorating treatment times [37, 38]. In brachy-
therapy, the radiation is produced from a radioactive source placed within the patient, 
and the problem differs significantly from patient scheduling in conventional RT.

3  Problem Formulation

The RT scheduling problem consists of assigning each fraction for each patient to a 
day, a time window, and a machine. This section presents the real-world constraints 
and objectives present at Iridium Netwerk.

Patients A priority is assigned to each patient based on urgency and treatment 
intent. The prioritization can be done differently in different countries or hospitals 
[7–10], but at Iridium Netwerk it is done by a physician. In 2020 at Iridium, there 
were three priority groups, and approximately 42% patients were priority A, 18% 
priority B, and 40% priority C. Furthermore, each patient is assigned to a treatment 
protocol, which states the fractionation scheme (that is, how many days the patient 
is to be treated and with which frequency), and the duration of the first and subse-
quent fractions. An example of a fractionation scheme is shown in Fig. 1. Different 
protocols have different allowed start days: palliative patients can start any week-
day, whereas curative patients cannot start on Fridays. Both the number of priority 
groups and the allowed start days are easily generalizable in the models. Examples 
of some different treatment protocols can be seen in Table 1.

Urgent patients must start treatment soon after arrival. Since the patients are 
of different priority groups, and the fractionation schemes typically span multiple 
weeks, this must be considered when creating the schedules. In practice, most clin-
ics reserve empty time slots on each machine for urgent patients. In this paper, the 
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expected value of the future arrivals of urgent patients for the coming weeks are 
included in the models as placeholder patients (i.e., dummy patients) to predict the 
expected utilization of resources. The models are deterministic, and the placeholder 
patients are handled as regular priority A-patients in the patient list, with earliest 
start day set from the expected arrival day.

Time RT clinics have different routines for scheduling patients on linacs. Some 
gather patients into a batch and schedule them once or several times per day, while 
others schedule each patient at admission. In [33], different scheduling strategies are 
evaluated using a simulation. Preliminary results show that daily batch scheduling 
reduces patients’ waiting time and overdue time. This paper focuses on batch sched-
uling and assumes that the scheduling is done at the end of each day taking patients 
from previous days into account.

There are two different scheduling systems used at RT centers: block or non-block 
scheduling systems. In the block system, the day is divided into blocks of equal 
duration and each patient is assigned to a block. This is commonly used in clinics, 
but has severe drawbacks since there is no way to control the variability of treatment 
time, which can generate costs related to machine under utilization, staff overtime, 
and patient waiting time. This paper uses a non-block scheduling strategy. The day 
is divided into time windows that are typically 2 − 4 hours long, while a treatment 
duration is 10 − 60 minutes depending on the type of treatment. This is different 
from a block scheduling system where each treatment is assumed to have the same 
duration as one or multiple blocks. Patients are assigned to windows instead of spe-
cific start times, as this leads to simpler and more efficient models while maintain-
ing an adequate level of detail from a clinical perspective. The specific start time for 
each treatment within the time window is given in a post-processing step.

During the first treatment fraction, extra time is needed for both instructing the 
patient and for linac setup [39]. Therefore, auxiliary time must be assigned to each 
new patient, which is done by assigning the first fraction to a longer time duration 
(see Table 1). Furthermore, at Iridium no patients are treated during weekends. This 
fact is used to simplify the models; the time horizon is adjusted to only contain 
weekdays ( Dw ). In general, at most cancer centers in the world only patients under-
going an oncologic emergency are treated during weekends, and in that case, the 
care is not planned more than a day in advance [40, 41].

Fig. 1  A typical fractionation scheme of an RT patient
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Machines The radiation is delivered on linacs. This paper assumes that there are 
multiple machine types, which is the case in almost all clinics. At Iridium there are 
ten linacs distributed over four different hospitals. The treatment protocol for each 
patient states one or more machines that can deliver the protocol, however, some 
machines are preferred over the others. An example can be seen in Table 1.

Some linacs are so called beam-matched, meaning that a patient can switch 
between these linacs between fractions. Two linacs are considered completely 
beam-matched if they are the same machine type at the same hospital, and partially 
beam-matched if they are the same machine type, but at different hospitals. Switch-
ing between completely beam-matched machines can be done at no cost, whereas 
there is a cost for switching to a machine that is only a partially matched. The beam-
matched machines are presented in Table 2. To generalize the models, the cost for 
machine switches between partially beam-matched machines is not active in all 
objective functions investigated.

Objectives Different RT centers can have different scheduling objectives. In order to 
evaluate how suitable the different optimization models are for solving the RT sched-
uling problem, the models are tested for multiple objective functions to evaluate their 
performance, and also to evaluate if some particular model is better for a certain sched-
uling objective. The following objectives will be tested in different combinations: 

 (i) Minimize a weighted sum of the waiting times
 (ii) Minimize a weighted sum of the violations of the target dates
 (iii) Minimize the number of time window switches
 (iv) Minimize violations of time window preferences
 (v) Minimize the number of fractions scheduled on non-preferred machines
 (vi) Minimize the number of switches between machines that are not completely 

beam-matched

Table 2  Beam-matches 
machines at Iridium Netwerk

Machine Completely matched Partially matched

M1 - M4, M8
M2 - M3, M5, M6, M7, M9
M3 M9 M2, M5, M6, M7
M4 - M1, M8
M5 M6 M2, M3, M7, M9
M6 M5 M2, M3, M7, M9
M7 - M2, M3, M5, M6, M9
M8 - M1, M4
M9 M3 M2, M5, M6, M7
M10 - -
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The weights in the weighted sums in (i) and (ii) should reflect the severeness of 
delaying treatment start for the different priority groups. In objective (ii), the wait-
ing time targets are assumed to be 2 days for priority A, 14 days for priority B, and 
28 days for priority C patients, but this is easily generalizable. The waiting time 
targets differ between countries, and advanced methods to determine the waiting 
time targets have recently been studied [42]. The aim for objective (iii) is to sched-
ule patients at approximately the same time each day, since this is something the 
booking administrators usually try to do. Literature shows that patients have differ-
ent preferences regarding the time of their appointments [43], which is what should 
be captured in objective (iv). As many fractions as possible should be scheduled on 
the machines preferred for the particular treatment, hence objective (5) states that 
the number of fractions scheduled on a non-preferred machine should be minimized. 
Finally in objective (vi), the number of switches between machines that are not com-
pletely beam-matched should be minimized. In Section 5.3, the objectives will be 
combined into different objective functions. For example, a combination of (i)-(vi), 
with (i) being most important, is most similar to what is used at Iridium Netwerk.

4  Models

Multiple models are developed: an IP model, a CG-IP model, and a CP model, as well 
as a method combining CP and IP. They are designed to capture the same real-world 
constraints and objectives. Their inputs are presented in Table 3. As stated in Section 3, 
no patients are treated during weekends. Therefore, the time horizon is adjusted so that 
Dw only contains weekdays.

4.1  Integer Programming Model
The variables in the IP model are presented in Table 4 and the formulation is stated 
in (1)–(19).

Constraints Constraint (2) is formulated to ensure that all fractions are scheduled 
after each other, and that they are all scheduled on beam-matched machines. Con-
straint (3) forces the fth fraction to be scheduled exactly one time for each patient. 
Constraint (4) states that the first fraction for patient p is scheduled on machine m 
on day d, in any window, whereas Constraint (5) also gives the correct window w for 
the first fraction.

(1)minimize 1 +
∑

p∈P

(�1f1,p + �2f2,p + �3f3,p + �4f4,p + �5f5,p + �6f6,p)

(2)

subject to
∑

m∈bM

qp,m,d,f =
∑

m∈bM

qp,m,d+1,f+1, ∀p ∈ P, bM ∈ BM,

d = {1,… ,Dw − 1}, f = {1,… ,Fp − 1}

(3)
∑

m∈M

∑

d∈Dw

qp,m,d,f = 1, ∀p ∈ P, f ∈ Fp
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Table 3  Notations for the models

Parameter Description

P = {1,… ,P} Set of all patients, P ∈ ℕ

Ph ⊂ P Set of patients treated with protocol h ∈ H

Dw = {1,… ,Dw} Set of weekdays. Dw ∈ ℕ is the number of weekdays in the planning horizon
W = {1,… ,W} Set of time windows in a day, W ∈ ℕ

Lw ∈ ℕ The window length for window w ∈ W in number of minutes
M = {1,… ,M} Set of machines, M ∈ ℕ

Mp ⊆ M Set of machines allowed for patient p

M
pref
p

⊆ Mp
Set of machines preferred for patient p

CM List of sets of completely beam-matched machines
PM List of sets of partially beam-matched machines
BM = CM ∪ PM List of sets of all beam-matched machines
H = {1,… ,H} Set of treatment protocols, H = 72

durp0 ∈ ℕ Duration of first fraction for patient p (minutes)
durp ∈ ℕ Duration of fractions other than first for patient p (minutes)
Fp ∈ {1,… ,Fp} Set of all fractions for patient p. Fp ∈ ℕ is the number of fractions
S ∈ ℝ

M ×ℝ
D ×ℝ

W The number of occupied timeslots in each window, machine and day, i.e. 
Sm,d,w ∈ {0, ...,Lw}

Ap ∈ Dw The set of allowed start days for the protocol of patient p
cp ∈ {10, 3, 1} Weights for patient p in priority group A, B or C
dL,p ∈ Dw The day limit for latest allowed treatment start for patient p, adjusted for days 

already waited
dmin,p ∈ Dw The earliest day for patient p to be scheduled

P
pref ⊂ P The set of patients that have a time window preference

w
pref
p ∈ W The window preference of patient p ∈ P

pref

Table 4  Variables in the IP model

qp,m,d,f ∈ {0, 1} 1 if patient p ∈ P has their fth fraction ( f ∈ Fp ) on weekday d ∈ Dw on machine 
m ∈ M , 0 otherwise

xp,m,d,w ∈ {0, 1} 1 if patient p ∈ P is scheduled in window w ∈ W on machine m ∈ M on weekday 
d ∈ Dw , 0 otherwise

tp,m,d,w ∈ {0, 1} 1 if patient p ∈ P starts treatment in window w ∈ W on machine m ∈ M on 
weekday d ∈ Dw , 0 otherwise

yp,d,w ∈ {0, 1} 1 if patient p ∈ P is scheduled in window w ∈ W on day d ∈ Dw

zp,d ∈ {0, 1} 1 if patient p ∈ P has switched windows from day d to d + 1 , 0 otherwise
up,d ∈ {0,… ,W − 1} The violation of the time window preference for patient p ∈ P on day d ∈ Dw

vp,f ∈ {0, 1} 1 if patient p ∈ P is scheduled on non-preferred machine on fraction f ∈ Fp , 0 
otherwise

sp,f ∈ {0, 1} 1 if patient p ∈ P switches to a partially beam-matched machine from fraction f 
to f + 1 , 0 otherwise
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(4)qp,m,d,1 =
∑

w∈W

tp,m,d,w, ∀p ∈ P,m ∈ M, d ∈ Dw

(5)tp,m,d,w ≤ xp,m,d,w, ∀p ∈ P,m ∈ M, d ∈ Dw,w ∈ W

(6)qp,m,d,1 = 0,
∀p ∈ P,m ∈ M,d ∈ Dw if d > dmax,p

or d < dmin,p or d ∉ Ap

(7)qp,m,d,f = 0,
∀p ∈ P,m ∈ M if m ∉ Mp, d ∈ Dw,

f ∈ Fp if f ∉ Fp,d

(8)
∑

w∈W

xp,m,d,w =
∑

f∈Fp

qp,m,d,f , ∀p ∈ P,m ∈ M, d ∈ Dw

(9)

∑

p∈P

(
(xp,m,d,w − tp,m,d,w)durp+

tp,m,d,wdurp0

)
+ Sm,d,w ≤ Lw,

∀m ∈ M, d ∈ Dw,w ∈ W

(10)

∑

d∈Dw

d
∑

m∈M

qp,m,d,1 ≤
∑

d∈Dw

d
∑

m∈M

qp+1,m,d,1, ∀h ∈ H, p ∈ Ph where dL,p ≤ dL,p+1

(11)yp,d,w ≥
∑

m∈M

xp,m,d,w, ∀p ∈ P, d ∈ Dw,w ∈ W

(12)
∑

w∈W

yp,d,w = 1, ∀p ∈ P, d ∈ Dw

(13)zp,d ≥ yp,d,w − yp,d+1,w, ∀p ∈ P, d = {1,… ,Dw − 1},w ∈ W

(14)zp,d ≥ yp,d+1,w − yp,d,w, ∀p ∈ P, d = {1,… ,Dw − 1},w ∈ W

(15)up,d =
∑

m∈M

∑

w∈W

xp,m,d,w|w − wpref
p

|, ∀p ∈ P
pref , d ∈ Dw,

(16)up,d = 0, ∀p ∉ p ∈ P
pref , d ∈ Dw,

(17)

sp,f ≥
∑

d∈Dw

∑

m∈cM

(qp,m,d,f − qp,m,d,f+1), ∀p ∈ P, cM ∈ CM, f = {1,… ,Fp − 1}
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The earliest day to start treatment is dmin,p , and the last day to start treatment is 
dmax,p = Dw − Fp + 1 . A treatment can only start on an allowed start day given by 
Ap . Furthermore, patient p can only be scheduled on a machine that is allowed for 
the patient protocol given by Mp . Finally, the set of allowed day-fraction pairs for 
patient p is denoted Fp,d = {d ∈ Dw, f ∈ Fp ∶ f < d and d − f < Dw − Fp} (e.g., 
cannot schedule fraction 2 on day 1, or fraction 3 on day 50 if Fp > 3 and the plan-
ning horizon Dw = 50 ). In total, this is captured in Constraints (6) and (7).

Constraint (8) states that each patient is scheduled in exactly one time window for 
each fraction. Constraint (9) ensures that all treatments fit within each time window. 
The first term sums the session duration of all patients scheduled in window w on 
machine m on day d, except if it is the first fraction (since it will then evaluate to 
zero). The second term sums the durations of first fractions for patients starting their 
treatment in window w on machine m on day d. The sum of all scheduled patients’ 
durations plus the already occupied time slots Sm,d,w in that window should be less 
than or equal the window length Lw.

For two patients with the same treatment protocol, the one with shorter day limit 
should start treatment first. Constraint (10) enforces this by multiplying the variable 
qp,m,d,1 with the day to get the start day, and force the ordering of the start days. Note 
the abuse of notation, where p + 1 denotes the next entry in Ph.

Objective Function The objective functions (i)–(vi) presented in Section 3 are for-
mulated. An offset set to 1 is included to enable computation of the relative gap also 
when the optimal value is zero. The different objectives are combined with weights 
�1,… , �6 in (1).

Objective (i) is to minimize a weighted sum of the waiting times, which is formu-
lated in (20). The number of waiting days after dmin,p , the earliest day to be sched-
uled for patient p, are linearly penalized with weight cp corresponding to the priority 
group of patient p.

Objective (ii) is to minimize a weighted sum of the violations of the waiting time 
targets, formulated in objective (21). The days past the waiting time target dL,p are 
linearly penalized with weight cp.

(18)vp,f =
∑

m∈M

∑

d∈Dw

qp,m,d,f�(m∉Mpref
p

), ∀p ∈ P, f ∈ Fp

(19)
x ∈ {0, 1}, q ∈ {0, 1}, y ∈ {0, 1}, z ∈ {0, 1}, u integer, s ∈ {0, 1}, v ∈ {0, 1}

(20)f1,p = cp

∑

m∈M

Dw∑

d=dmin,p

qp,m,d,1(d − dmin,p)

(21)f2,p = cp

∑

m∈M

Dw∑

d=dL,p

qp,m,d,1(d − dL,p)
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Objective (iii) is to minimize the number of time window switches for each 
patient. Therefore, the variable yp,d,w is defined according to Equations (11) and 
(12), stating that if patient p is scheduled on day d, yp,d,w = 1 only for the window 
where p is scheduled. Every time window switch between two days is computed by 
|yp,d,w − yp,d+1,w| ∀p ∈ P, d ∈ Dw,w ∈ W . To avoid having the absolute value in 
the objective function, the variable zp,d is instead defined according to Constraints 
(13) and (14) and used in the objective function (22).

To form the objective corresponding to (iv), the variable up,d is defined by Con-
straints (15) and (16). The time preference violation is zero if the patient does not 
have a preference, and is otherwise measured by the deviation from the preference 
on each day the patient is scheduled. Summing all violations gives (23).

Objective (v) is to minimize the number of fractions scheduled on a non-preferred 
machine stated by the treatment protocol. Therefore, the variable vp,f  is introduced 
and (18) is used to compute the fractions where a patient is scheduled on a non-
preferred machine. The preference violations are summed in (24).

There is a cost for switching to a machine that is only a partially beam-matched, 
which should be minimized according to objective (vi). If fraction f is scheduled on 
a machine in a group of completely beam-matched machines, but f + 1 is not, then 
it must be scheduled on a partially matched machine by (2). The variable sp,f  is one 
if there is a switch to a partially matched machine, enforced by constraint (17). All 
machine switches to partially matched machines are summed in (25).

4.2  Column Generation IP Model
The problem is reformulated as a set covering model, where the decision variables 
represent schedules for each patient. Each patient has an associated index set Kp of 
feasible schedules, and the variable ap,i = 1 if schedule i ∈ Kp is allocated to p ∈ P , 
and 0 otherwise. Since generating all feasible schedules would be too expensive, a 
column generation model is presented, which consists of a (restricted) master prob-
lem and one subproblem for each patient p ∈ P . The master problem is the schedule 

(22)f3,p =
∑

d∈Dw

zp,d

(23)f4,p =
∑

d∈Dw

up,d

(24)f5,p =
∑

f∈Fp

vp,f

(25)f6,p =

Fp−1∑

f=1

sp,f
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selection problem, which is solved to make the overall schedule feasible and opti-
mal. In the subproblems, for each patient a new schedule is generated that fulfills all 
medical and technical constraints, and the sets of feasible schedules are dynamically 
updated by the column generation procedure presented in Algorithm 1. The algo-
rithm gives a nearly optimal solution, but since the problem is converted from a lin-
ear program to an IP in the last step, some schedules not generated by the procedure 
could potentially improve the integer solutions. The algorithm to generate the initial 
schedules is presented in Algorithm 2. The number of initial schedules is set to 75, 
as a larger number does not seem to decrease solution times. 

\

(26)minimize 1 +
∑

p∈P

∑

i∈Kp

cp,iap,i

(27)subject to
∑

i∈Kp

ap,i = 1 ∀p ∈ P

(28)

∑

p∈P

∑

i∈Kp

ap,i

(
(xi

p,m,d,w
− ti

p,m,d,w
)durp + ti

p,m,d,w
durp0

)

+ Sm,d,w ≤ Lw,

∀m ∈ M, d ∈ Dw,

w ∈ W

(29)

∑

i∈Kp

ap,i

∑

d∈Dw

d
∑

m∈M

∑

w∈W

ti
p,m,d,w

≤

∑

i∈Kp+1

ap+1,i

∑

d∈Dw

d
∑

m∈M

∑

w∈W

ti
p+1,m,d,w

∀h ∈ H,

p ∈ Ph where dL,p ≤ dL,p+1

(30)ap,i ∈ {0, 1} ∀p ∈ P, i ∈ Kp

Algorithm 1  Column generation
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Master Problem Model (26)–(30) is the master problem: the restricted master problem 
is made of a subset K′

p
⊂ Kp of feasible schedules for each p ∈ P . A column in the 

master problem corresponds to a feasible schedule i ∈ Kp for patient p ∈ P . The pure 
IP variables are now parameters: xi

p,m,d,w
 , ti

p,m,d,w
 , qi

p,m,d,f
 , yi

p,d,w
 , zi

p,d
 , ui

p,d
 , vi

p,f
 , and si

p,f
 

for p ∈ P,m ∈ M, d ∈ Dw, f ∈ Fp,w ∈ W have fixed values that satisfy the sched-
uling constraints presented in Section 4.1. Each schedule has an associated (fixed) cost 
cp,i that is computed using (20)–(25) with weights �1 , … , �6 according to (31):

The objective function (26) states that the aim is to minimize the total cost of the 
chosen schedules, plus an offset of 1 to make it equivalent with the other models. 
Constraint (27) states that exactly one schedule is chosen for each patient. Constraint 
(28) ensures that all chosen schedules will fit in the schedule. Constraint (29) states 
that the start day of a patient with shorter day limit should always be before or equal 
to the start day of a patient with longer day limit if they have the same treatment 
protocol, by multiplying the master variable with the start day of the corresponding 
schedule. Note the abuse of notation, where p + 1 denotes the next entry in Ph.

Relaxing the integer assumption and solving the LP yields the dual variables �p 
associated with (27), �m,d,w associated with (28) and �h,p associated with (29).

Subproblems One subproblem is formed for each patient p ∈ P , with the aim to 
generate a new feasible schedule to add to i ∈ K

�
p
 , i.e., as a column to the restricted 

master problem. The constraints are the same as the pure IP model (2)–(8), (11)–
(19). The schedule availability constraint (9) is replaced by (32), since the subprob-
lems only deal with one patient at a time.

The subproblem objective function (33) is the cost of the schedule defined by 
(31), minus the master dual variables �p , �mdw and �h,p multiplied by the coefficients 

(31)cp,i = �1f
i
1,p

+ �2f
i
2,p

+ �3f
i
3,p

+ �4f
i
4,p

+ �5f
i
5,p

+ �6f
i
6,p
.

(32)
(xi

p,m,d,w
− ti

p,m,d,w
)durp+

ti
p,m,d,w

durp0 + Sm,d,w ≤ Lw,
∀m ∈ M, d ∈ Dw,w ∈ W

Algorithm 2  Schedule generation procedure
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given from their respective constraints in the master problem. The dual variable �h,p 
associated with (29), with h being the protocol of patient p, is partly shared between 
patient p and p + 1 for p ∈ Ph , because of the formulation of (29) (using the same 
abuse of notation).

Since the subproblems are isolated from each other, constraint (32) can be satis-
fied as long as the input schedule Sm,d,w together with the current patient’s duration 
do not require more than the entire window capacity Lw . From this point of view, the 
subproblems are very easy to solve. On the other hand, the optimization is exclu-
sively guided by the values of the dual variables which might lead to a larger num-
ber of iterations.

4.3  Constraint Programming Model
In [32], the authors found that the CP model that used bin packing constraints was 
more efficient than the CP model that used scheduling constraints for the RT patient 
scheduling problem. Therefore, we present a CP model that uses a global bin pack-
ing constraint. The variables in the CP model are presented in Table 5. The aim is to 
assign a start_dayp , a machinep,d , and a time windowp,d to each patient p ∈ P for 
each day d ∈ Dw using the formulation (34)-(44). The variable machine_groupp is a 
function of machinep,start_dayp.

Constraints Constraint (35) states that each patient must start on an allowed start 
day. Constraint (36) states that the treatment must be scheduled on a machine 
allowed for that patient. Constraint (37) and (38) make all fractions scheduled on 
machines from a group of beam-matched machines. Constraint (39) limits the earli-
est start day and that the start day for each patient should be at least Fp days from the 
end of the planning horizon. Equation (40) states that the variable windowp,d should 
be nonzero if and only if treatment has started but not ended. The active machine 
days should be the same as the active window days, which is stated in (41). The 
number of active machine days should be the same as the number of fractions and 
is stated in (42). This is a redundant constraint, as it is already enforced by (40) and 
(41), but added as it helps performance during search.

(33)

minimize cp,i − �p −
∑

m∈M

∑

d∈Dw

∑

w∈W

�m,d,w

(
(xi

p,m,d,w
− ti

p,m,d,w
)durp + ti

p,m,d,w
durp0

)

− (�h,p−1 − �h,p)
∑

m∈M

∑

d∈Dw

∑

w∈W

ti
p,m,d,w

d

(34)minimize 1 +
∑

p∈P

(�1k1,p + �2k2,p + �3k3,p + �4k4,p + �5k5,p + �6k6,p)

(35)subject to start_dayp ∈ Ap ∀p ∈ P
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To ensure that the patients fit in each window, a global bin packing constraint 
[44] is used. In (43), the first line states that the capacity of window 0 is infinite 
(corresponding to not being scheduled). Window 1,… ,W have capacity L1,… , LW . 
In (43), the bin choice and required allocation are created together as a list of pairs 

(36)machinep,d ∈ Mp ∀p ∈ P, d ∈ Dw

(37)machine_groupp = bM if machinep,start_dayp ∈ bM ∀p ∈ P, bM ∈ BM

(38)machinep,d ∈ machine_groupp ∀p ∈ P, d ∈ Dw

(39)dmin,p ≤ start_dayp ≤ Dw − Fp + 1 ∀p ∈ P

(40)
windowp,d > 0 ⟺ d ≥ start_dayp ∧ d < start_dayp + Fp ∀p ∈ P, d ∈ Dw

(41)machinep,d > 0 ⟺ windowp,d > 0 ∀p ∈ P, d ∈ Dw

(42)
∑

d∈Dw

machinep,d = Fp ∀p ∈ P

(43)

���_�������([∞,L1,… , LW ],

[for each p ∈ P ∶

if m = machinep,d ∧ d = start_dayp then

(windowp,d, durp0)

else if m = machinep,d then

(windowp,d, durp)

else (0, 0)] + +

[for each w ∈ W ∶ (w, Sm,d,w)])

∀m ∈ M, d ∈ Dw

(44)start_dayp ≤ start_dayp+1 ∀h ∈ H, p ∈ Ph where dL,p ≤ dL,p+1

Table 5  Variables in the CP model

windowp,d ∈ {0,… ,W} Window patient p ∈ P is scheduled in on day d ∈ Dw , where 0 
represents patient p not being scheduled day d

machinep,d ∈ {0,… ,M} Machine patient p ∈ P is scheduled on day d ∈ Dw , where 0 
represents patient p not being scheduled day d

start_dayp ∈ Dw Start day for patient p ∈ P

machine_groupp ∈ BM Group of beam-matched machines patient p ∈ P is scheduled on
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(bin, size) for each patient. The first value in the pair corresponds to the bin, here the 
windowp,d , and the second is the size of the item, which corresponds to the duration 
of the treatment. If the patient is not scheduled on the particular machine, window 0 
is chosen with item size 0. This list is concatenated (using the ++ operator) with a 
list of pairs used to include already occupied timeslots Sm,d,w in window w.

The same dominance breaking as in the IP model is included: if two patients have 
the same treatment protocol, the one with shorter treatment target should start treat-
ment first, which is stated in Constraint (44), using the same abuse of notation as 
before, i.e., p + 1 denotes the next entry in Ph.
Objective Function Equation (34) shows the generalized objective function, which 
is divided into six parts k1,… , k6 according to Section 3, and combined with weights 
�1,… , �6 . An offset of 1 is included to make it equivalent to the IP objective function (1).

Objective (i) is to minimize a weighted sum of the waiting times, which is done in 
(45) by penalizing the number of days between the first allowed start day dmin,p and the 
start day, multiplied with weight cp corresponding to the priority group of patient p.

Objective (ii), to minimize a weighted sum of the violations of the waiting time 
targets, is formulated in (46). The target violation is zero if the start day is before the 
waiting time target, and otherwise penalized linearly.

Objective (iii) is to minimize the number of window switches. Therefore, a pen-
alty of value one is added each time the window is switched. Since only the days 
when treatment has started but not finished are relevant, i.e., when windowp,d ≠ 0 , 
we let the active treatment days form a set Da ⊂ Dw and compute the number of 
window switches on that set in (47). Note the abuse of notation, where d + 1 denotes 
the next entry in Da.

Objective (iv) is to minimize the violations of the window preferences, which is 
formulated in (48) for p ∈ P

pref  (otherwise k4,p = 0).

Objective (v), to minimize the fractions scheduled on a non-preferred machine, is 
formulated in (49).

(45)k1,p = cp(start_dayp − dmin,p)

(46)k2,p = cp max(0, start_dayp − dL,p)

(47)k3,p =
∑

d∈Da

(windowp,d ≠ windowp,d+1)

(48)k4,p =
∑

d∈Da

|windowp,d − wpref
p

|

(49)k5,p =
∑

d∈Da

(machinep,d ∉ M
pref
p

)
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Objective (vi), to minimize the number of switches to a machine that is only par-
tially beam-matched, is formulated in (50). It states that if machinep,d+1 is in the set 
of partially beam-matched machines pM for the next day after machinep,d , then there 
has been a switch between day d and d + 1.

Search Heuristic In CP, the solvers rely on backtracking algorithms that are used in the 
tree search-based heuristics. When using backtracking search, a sequence of decisions 
are made regarding what variable to branch on next, and which value to assign to the 
variable. It is well known that the choice of variable and value ordering, also called 
search heuristic, can be crucial to solving a problem efficiently, see e.g. [45, 46].

For the CP model in this paper, many different choices of variable and value 
orderings were investigated. Our initial experiments showed that randomization and 
restarts are necessary to obtain good results: the restart search helps avoid getting 
stuck in a non-productive area of the search tree [47]. Several restart strategies were 
evaluated, and the strategy with best performance was the Luby restart strategy [48], 
which gives a specific scheme for when search is restarted.

When deciding what variables to assign random values in the search heuristic, 
the best performing search heuristic was shown to be tightly related to the objective 
function (34). It is obvious that assigning the start_dayp variable a random value 
will not result in good quality solution, whereas assigning machinep,d a random 
value will give the benefit of a wider search tree. The search heuristic is described in 
Algorithm 3. Large Neighborhood Search [49] was also tested but did not improve 
overall performance. 

(50)k6,p =
∑

d∈Da

(machinep,d+1 ∈ p
machinep,d

M
)

Algorithm 3  CP Search Heuristic
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4.4  Combined CP/IP Method

For difficult MIP problems, providing the solver a good quality input solution ("warm 
start") can improve performance. The solver processes the input solution before start-
ing branch-and-cut to get a lower/upper bound to use during the optimization, which 
allows it to eliminate parts of the search space. For this reason, the CP model is used to 
find a feasible solution to use as a warm start in the IP model. The first feasible solu-
tion found by the CP model is generally of good quality because of the search heuristic, 
which gives the MIP solver a useful upper bound during branch-and-cut. The CP solu-
tion is transformed to the format of the IP x-variables by letting xp,m,d,w = 1 if and only 
if w = windowp,d and m = machinep,d for p ∈ P,m ∈ M, d ∈ Dw,w ∈ W . This is 
provided to the MIP-solver using the built-in functionality for advance starting.

5  Experimental Setup

This section presents the setup for the experiments. Section 5.1 presents how the time hori-
zon is computed. Section 5.2 describes the historical patient data from Iridium Netwerk 
and how the problem instances are generated. Section 5.3 presents the objective functions.

The experiments are run on a Windows 10 machine with an  Intel® Core™ 
i9-7940X X-series processor and 64 GB of RAM. The patient arrival model used 
when generating benchmarks is built with Python 3.8. The IP models are solved 
using the MIP solver of CPLEX 12.10 in the Python API with the default param-
eters. The CP model is written in MiniZinc 2.5.5 [50], and uses the Gecode 6.3.0 
solver [51]. Other CP solvers were tested, such as the lazy clause generation solver 
Chuffed [52], but Gecode gave the best overall results on the tested problem 
instances. The maximum allowed CPU time was set to 1 h per run.

5.1  Computing the Time Horizon D
w

The models all depend on the number of days in the time horizon. Dw should be large 
enough to schedule all treatments, but a larger Dw may weaken performance due to 
larger problem dimensions. A heuristic to compute Dw is presented in Algorithm 4. 

Algorithm 4  Time Horizon Heuristic
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A random schedule is computed, and the value of Dw is set to the last utilized day 
out of all patients, plus 30 days that are added to augment the search space. 

5.2  Generating Problem Instances using Historical Clinic Data

In 2020, 4070 patients received 5500 treatments at Iridium Netwerk, with each treat-
ment following a treatment protocol. From the historical data, the empirical distribu-
tion of the 72 different treatment protocols can be computed. Each protocol states the 
machines that are equipped for treating the particular tumor, what machines that are 
preferred for treating the target, and the duration for the first and subsequent fractions. 
The average number of fractions for each treatment protocol is computed from histori-
cal data. Furthermore, each treatment protocol is given a priority (A, B or C) by a radia-
tion oncologist (MD) at Iridium, which will give an equivalent patient priority. In 2020, 
Iridium Netwerk operated 10 linacs and 255 days were used to treat the 4070 patients, 
resulting in an average arrival rate of 16 patients per working day. No records were kept 
over the patients’ time window preferences, but the booking administrators estimate 
that 80% of the patients have a preference, of which 65% prefer a treatment before noon 
and 35% prefer the afternoon, and that 20% of the patients have no preference.

Literature shows the majority of patients find it reasonable to receive a notification 
of the treatment three days in advance [43]. Therefore, in this paper the duration of 
notice is three days for priority B and C patients, while priority A patients are noti-
fied immediately. All fractions are communicated and cannot be re-planned, as this is 
the current practice at Iridium Netwerk. The schedule can change until being commu-
nicated; booking decisions are postponed to the next day for patients scheduled after 
the notification period. The notification period length is straightforward to change.

Problem Generation A model for patient arrivals is developed. The goal is to mimic sched-
uling behavior to generate realistic problem instances based on the historical data from 
Iridium Netwerk. Each problem instance should represent different scenarios, altering the 
number of patients to be scheduled and the partially occupied input schedule. The problem 
generation algorithm simulates each day at the clinic; the patients arriving, and the result-
ing schedules. An overview of the steps during each simulated day can be seen in Fig. 2.

In the first step, new patients are assumed to arrive according to a Poisson pro-
cess based on historical arrival rates. Each patient is randomly assigned a treatment 
protocol from the empirical distribution of protocols. Secondly, priority A and B 
patients that are expected to arrive in the coming four weeks are added to the prob-
lem as placeholder (dummy) patients. Their treatment target dates and earliest start 
day are set from when they are expected to arrive. Thirdly, Algorithm 4 is run to 
determine the time horizon. Next, the IP model is run to generate a schedule (but 
any model could be used in the problem generation phase). The schedule assigns 
each patient a machine, treatment days, and time windows. Next, the results are 
post-processed. Patients that start treatment within the duration of notice are fixed 
to the schedule, whereas the booking decisions are postponed to the next day for 
patients that are scheduled more than three days away. Finally, the schedule is saved 
and is given together with the list of unscheduled patients as input to the next day.
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Problem Benchmarks In order to evaluate how well the models scale to different 
problem sizes, the problem instance generator is used for four setups: two average 
arrival rates, � = {16, 18} , and two different number of time windows, W = {2, 4} . 
When W = 2 , the time window preferences from Iridium Netwerk are used. For 
W = 4 , an estimation is that 25% prefer the first window, 25% prefer the last window, 
and 50% have no preference. For each setup, 20 days are randomly chosen between 
day 50 and 300 in the simulation to form the problem benchmarks. These instances 
represent different scenarios, altering the patient flow and the partially occupied 
input schedule.

In the generated problem benchmarks, the number of patients to schedule, 
including expected future arrivals as placeholder patients, varies. When � = 16 , 
P ∈ [225, 239] with an average of 230.2, and when � = 18 , P ∈ [250, 268] with an 
average of 256.5. The time horizon Dw also varies; Dw ∈ [79, 89] when � = 16 , and 
Dw ∈ [78, 94] when � = 18 . The average occupancy on all machines except M10 
(which is specialized and always has a lower occupancy) of the first day is 65.7% for 
� = 16 and 73.5% when � = 18 . All problem instances used in this paper are pub-
licly available.1

5.3  Objective Functions

As presented in Section 3, there are several objectives considered: (i) is to mini-
mize a weighted sum of the waiting times, (ii) is to minimize a weighted sum of 
the violations of the target dates, (iii) is to minimize the number of time window 
switches, (iv) is to minimize violations of time window preferences, (v) is to min-
imize the number of fractions scheduled on non-preferred machines, and (vi) is to 
minimize the number of times a patient switches between machines that are only 
partially beam-matched. These objectives are combined into different objective 
functions using weights �1,… , �6 as presented in (1), (31) and (34). The differ-
ent combinations that form the objective functions used in the experiments are 
presented in Table 6.

Fig. 2  Problem generation algorithm. Each day i, the patient arrivals are simulated and a schedule is 
computed. The resulting schedule and list of unscheduled patients are saved as input to day i + 1

1 Access through this link: https:// osf. io/ 45qw2/? view_ only= 4a0a6 7e21c b542d f8f9a 0f742 41de8 25

https://osf.io/45qw2/?view_only=4a0a67e21cb542df8f9a0f74241de825
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The objective functions are designed to mimic the scheduling policies at dif-
ferent clinics. For example, in some countries there are no official treatment tar-
get dates, and therefore objective (ii) is not active in objective functions #3 and 
#4. Some clinics do not consider the patients’ preferences of treatment time of 
the day, which is why objective (iv) is not included in #1 and #3. For clinics 
that do not have multiple hospitals, it is unlikely that the problem with machine 
switches to partially beam-matched machines exists, hence objective (vi) is irrele-
vant and therefore not included in #2 and #3. Some clinics may not state preferred 
machines, thus (v) is not included in objective function #2.

The waiting time has a large negative effect on the patient outcome, especially 
for acute patients, see e.g. [2]. Therefore, both objective (i) and (ii) also have the 
weight cp for each patient (see (20) and (21)), which reflects the severeness of 
delaying treatment start for the different priority groups. In objective functions #1 
and #2, the weights of �1 and �2 show that if the patients are of the same priority 
group, it is never desirable to minimize a patient’s waiting time at cost of another 
patient missing their treatment target date. However, if one patient is priority A 
and one is priority C, the latter is allowed to violate the treatment target date if it 
means the priority A patient gets a shorter waiting time. Furthermore, the weights 
of �5 and �6 compared to �2 in objective function #1 indicate that it is preferred 
for a patient to start their treatment earlier at the cost of either switching linacs 
or scheduling on non-preferred linacs. Finally, the weight of �3 is lower than the 
rest; if possible, all fractions should be scheduled in the same time window, but 
never at the cost of any of the other objectives.

Objective function number #4 is most similar to what is used at Iridium Netwerk 
today. There are no official treatment target dates in Belgium, therefore objective (ii) 
is not active. Minimizing waiting times is by far the most important objective, thus 
the weight of this objective, cp�1 , is the largest. It is more important to fulfill the 
patient preferences regarding time windows than to schedule them in the same time 
window every day, thus 𝛼3 < 𝛼4 . At Iridium, the current practice is to never sched-
ule patients with switches between partially beam-matched machines. However, the 
staff at Iridium agrees that this should be allowed if it will lead to a minimized wait-
ing time. Therefore, the penalty for scheduling patients on a non-preferred machine 
is the same as for scheduling patients with machine switches between partially 
beam-matched machines. If a treatment starts on a non-preferred machine, the aim 
is to switch to a preferred machine as soon as possible. This is true also in #4: the 

Table 6  The different objective function combinations

Objective 
function number

Combination Weights

#1 (i) + (ii) + (iii) + (v) + (vi) �1 = 50 , �2 = 100 , �3 = 1 , �4 = 0 , �5 = 10 , �6 = 10

#2 (i) + (ii) + (iii) + (iv) �1 = 50 , �2 = 100 , �3 = 1 , �4 = 1 , �5 = 0 , �6 = 0

#3 (i) + (iii) + (v) �1 = 100 , �2 = 0 , �3 = 1 , �4 = 0 , �5 = 10 , �6 = 0

#4 (i) + (iii) + (iv) + (v) + (vi) �1 = 100 , �2 = 0 , �3 = 1 , �4 = 5 , �5 = 10 , �6 = 10
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cost of switching to a partially beam-matched preferred machine will be lower when 
there is more than one fraction left to schedule, since the switch is a one-time cost.

6  Results

The four different setups ( � = {16, 18} , W = {2, 4} ) are run with the four objective 
functions presented in Table 6, giving a total of 16 different combinations that have 
20 problem instances each.

6.1  Computational Efficiency

The models in Section 4 are run for the 20 problem instances for each of the 16 com-
binations. Table 7 presents the mean, median and cumulative CPU times. Table 8 
presents the quality of the solutions; it shows the mean and median of the relative 
optimality gap, i.e., the mean or median of (x − y)∕y , where x is the current best 
objective value and y is the proven optimal value. The table also presents the propor-
tion of the problem instances without a feasible solution at timeout over the 20 runs, 
with the time limit set to 1 h.

Table 7 shows that the IP model often times out without having found a feasible 
incumbent solution. This happens in all setups except the easiest, when � = 16,W = 2 . 
When � = 18,W = 4 , this occurs almost all the time for the IP model for objective #1 
and #4, and also in a non-negligible proportion of instances for the CP model and the 
combined CP/IP approach.

The results in Table  8 show that the CP model has the worst performance 
in almost all setups with regard to relative optimality gap after 1 h. This can be 
expected: both [32] and [33] showed that CP is good at finding feasible solutions 
for the RT scheduling problem, but not as efficient at finding an optimal solution. 
For all objectives and setups, the CP model frequently times out without proving 
optimality within the time frame. However, columns A-B in Table 8 show that the 
relative optimality gap is often small.

For � = 16 , the IP model often outperforms the Combined CP/IP model, sug-
gesting the IP solver does not benefit from being warm started with a feasible CP 
solution in these cases. For more complicated instances ( � = 18 ), the results are 
the opposite; the Combined CP/IP methodology gives shorter average CPU time 
and fewer instances that time out without having found a feasible solution than 
the pure IP model.

When altering the number of time windows, Table 8 shows that W = 2 gives 
smaller relative optimality gaps and fewer instances without feasible solutions 
before timeout than for W = 4 . Moreover, Table  7 shows the average solution 
times are also much shorter when W = 2 than when W = 4 , likely due to the 
smaller problem dimensions. This difference in performance is largest for the IP 
model and smallest for the CG-IP model.
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Overall, the CG-IP model has the smallest variance in solution times. Thus, 
the CG-IP model seems more robust to model size changes than the other models. 
This can also be seen when increasing the arrival rate from � = 16 to � = 18 , as 
this increase has the smallest effect on the CG-IP model. Furthermore, the solu-
tion times are shortest for the CG-IP model, and the quality of solution is the best 
for this model.

The heuristic used to compute the time horizon, Algorithm  4, also generates 
a feasible schedule. Table  9 presents the results as means over all the problem 
instances, including the solution from the time horizon heuristic. The heuristic is 
much faster than any of the other models, but the solution quality is very poor, espe-
cially for the larger problem instances where it has a mean relative optimality gap of 
more than 100%.

Table 7  Computational time results

For each combination of arrival rate, number of time windows, objective function and model, column A 
shows the average CPU time, column B presents the median CPU time, and column C shows the cumula-
tive CPU time for the 20 instances. The timeout is set to 1 h of CPU time. Bold text indicates best column

Arrival rate Number 
of time 
windows

Objective 
function 
number

A: Average CPU time, B: Median CPU time, C: Cumulative 
CPU time (all in minutes)

IP CP CG-IP Combined 
CP/IP

A B C A B C A B C A B C

� = 16 W = 2 #1 7 7 155 21 11 435 2 2 51 12 7 247
#2 2 2 57 51 60 1039 2 2 53 12 5 249
#3 2 3 56 30 16 600 2 2 47 14 4 285
#4 5 5 113 52 60 1046 3 3 63 14 12 289

W = 4 #1 42 40 856 24 15 482 3 3 70 33 38 672
#2 6 6 136 60 60 1200 8 6 163 28 36 560
#3 5 5 111 42 40 843 3 3 78 8 7 173
#4 45 53 900 60 60 1200 9 8 182 47 50 955

� = 18 W = 2 #1 17 13 359 36 34 724 4 3 81 33 41 661
#2 6 3 121 59 60 1192 3 2 78 18 6 375
#3 7 3 143 45 46 910 6 3 128 20 17 405
#4 14 8 287 57 60 1149 4 3 91 27 35 547

W = 4 #1 60 60 1200 40 41 816 8 7 165 49 60 985
#2 28 25 570 60 60 1200 48 60 963 40 43 818
#3 9 6 192 54 60 1093 10 6 204 10 8 207
#4 60 60 1200 60 60 1200 55 60 1114 60 60 1200
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6.2  Objective Function Evaluation

Evaluating the different objective functions, the results in Tables 7-8 suggest that for 
the IP model, objective functions #1 and #4 are much harder to solve than objec-
tive functions #2 and #3. This can be seen both for the mean relative optimality gap, 
the proportion of instances with no feasible solution and the CPU times. In objec-
tive function #1 and #4, objective (vi) is active, i.e., minimization of the number 
of switches to partially beam-matched machines. This seems to make the IP model 
much more complex, and the time for solving the root node relaxation alone increases 
from 200 − 300 seconds for objective function #2, to 700 − 800 seconds for objective 
function #4, although the problem dimensions are approximately the same.

For the CP model, it is instead objective functions #2 and #4 that are more dif-
ficult than objective functions #1 and #3. In objective functions #2 and #4, objective 
(iv) is active, i.e., minimization of time window preferences. This objective makes 
it more difficult for the CP search heuristic to find the optimal solution, or even a 
feasible solution within the time limit.

Table 8  Solution quality results

For each combination of arrival rate, number of time windows, objective function and model, column 
A shows the mean relative optimality gap, column B presents the median relative optimality gap, and 
column C shows the proportion of instances that did not have a feasible incumbent solution at timeout for 
the 20 instances. The timeout is set to 1 h of CPU time. Bold text indicates best column

Arrival 
rate

Number of 
time  
windows

Objective 
function 
number

A: Mean relative optimality gap at timeout (%), B: Median relative 
optimality gap at timeout (%), C: Proportion with no feasible solution 
at timeout (%)

IP CP CG-IP Combined CP/IP

A B C A B C A B C A B C

� = 16 W = 2 #1 0.0 0.0 0 0.1 0.0 0 0.0 0.0 0 0.0 0.0 0
#2 0.0 0.0 0 0.9 0.0 0 0.0 0.0 0 0.0 0.0 0
#3 0.0 0.0 0 0.1 0.0 0 0.0 0.0 0 0.0 0.0 0
#4 0.0 0.0 0 1.2 0.2 0 0.0 0.0 0 0.0 0.0 0

W = 4 #1 0.2 0.0 0 0.7 0.0 0 0.0 0.0 0 0.0 0.0 0
#2 0.0 0.0 0 8.0 7.5 5 0.0 0.0 0 0.0 0.0 0
#3 0.0 0.0 0 0.7 0.0 0 0.0 0.0 0 0.0 0.0 0
#4 0.3 0.0 30 16.5 14.6 0 0.0 0.0 0 0.3 0.0 5

� = 18 W = 2 #1 0.0 0.0 10 0.5 0.0 0 0.0 0.0 0 0.5 0.0 5
#2 0.0 0.0 0 2.0 0.9 30 0.0 0.0 0 0.0 0.0 0
#3 0.0 0.0 0 0.8 0.0 20 0.0 0.0 0 0.1 0.0 0
#4 0.0 0.0 10 6.1 6.4 0 0.0 0.0 0 0.0 0.0 5

W = 4 #1 46.4 46.4 95 4.1 0.0 0 0.0 0.0 0 6.8 3.9 0
#2 0.0 0.0 0 17.4 15.0 25 0.4 0.2 0 0.0 0.0 0
#3 0.0 0.0 0 5.5 2.8 0 0.0 0.0 0 0.0 0.0 0
#4 - - 100 40.0 44.3 30 0.2 0.0 0 44.2 46.7 40
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The CG-IP model is the only one that never times out without having found a 
feasible solution. This is expected, since the initial schedules generated by the heu-
ristic in Algorithm 2 are all feasible. The time results in Table 7 show that the CG-IP 
model is also less sensitive to objective function changes than the other models. The 
results indicate that objective function #1 may be less complicated since its solution 
times are shorter, but the difference to the other objective functions is smaller than 
the differences between objective functions for the other models.

To evaluate the weights of the objective functions presented in Table 6, Fig.  3 
shows different costs from the CG-IP solutions for the different objective functions 
and different arrival rates. Each subplot i. to iv. represents the key indicator of each 
of the objectives (i) to (vi). From plot i. to the upper left, one can see that the mean 
waiting time does not change much between the different objective functions, which 
is the expected result since objective (i) is present in all objective functions. How-
ever, the waiting times increase as the arrival rate increases from � = 16 to � = 18 
patients per day. The plot of the mean violations of treatment target times, ii., shows 
that this violation is always close to zero. This indicates that the addition of objec-
tive (ii) (to minimize the violation of treatment target dates) does not have a large, or 
any, effect when simultaneously minimizing the waiting times.

To minimize the number of window switches, objective (iii), is present in 
all objective functions. Subplot iii. in Fig.  3 shows the mean number of window 
switches, and this value is very low for all objective functions. Objective (iv), to 
minimize the violation of the time window preferences, is active in objective func-
tion #2 and #4. Subplot iv. shows that this is reflected in the results; this violation is 
much higher in objective function #1 and #3. To minimize the machine preference 
violations, objective (v), is present in #1, #3 and #4, which agrees with the results 
in subplot v. Finally, objective (vi), to minimize the number of switches to partially 
beam-matched machines, is present in objective function #1 and #4, and although 
subplot vi. shows that the mean value for the number of switches is low also for #2 
and #3, it is lower for #1 and #4.

In total, this shows that the weights for the objective functions presented in 
Table 6 are well reflected in the resulting schedules computed by the CG-IP model. 
It also shows that when the capacity is more limited due to a higher arrival rate, all 
the objectives are more difficult for the model to achieve.

6.3  Sensitivity Analysis

The parameters �1,… , �4 are included in the sensitivity analysis. Objectives (v) and 
(vi) (relating to machine preferences and machine switches) are not relevant for clin-
ics with a homogeneous machine setup. Therefore, the sensitivity analysis is focused 
on objective function #2, for which �5 = �6 = 0.

In Table 10, the base case used in the previous experiments and setups S1–S6 are 
presented. Due to the medical consequences, it is always more important to mini-
mize waiting times for treatment start (i) (thereby also minimizing the violations of 
the treatment time targets (ii)) than to achieve a better patient experience [53, 54], 
in this case by maximizing the time consistency in treatments (iii) and minimizing 
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the violations of the patient wishes on treatment times (iv). This is reflected in the 
weights in the sensitivity analysis for all cases but one. In S6, it is instead prioritized 
to minimize the violation of the waiting time targets, and secondly to fulfill time 
consistency between appointments and to fulfill the patients time window prefer-
ences. Thirdly, the waiting times should be minimized.

The results for the different parameter settings using the CG-IP model are shown 
in Fig. 4. Since objectives (v) and (vi) are inactive in objective function #2, it can 
be expected that the results do not differ very much between the parameter setups, 
which is confirmed by the results. Furthermore, the waiting times and the violations 
of the treatment time targets are almost identical between the different parameter 
setups if excluding S6. The mutual order of �1 and �2 does not seem to matter as 
long as both are greater than �3 and �4 : in S4, �1 has a higher weight than �2 , which 
does not change the results in objectives (i) or (ii). The results for objective (iii) 
are similar for S1–S5, with differences only in the top 1% shown as outlier points, 
except for S6. In the results for objective (iv), S1 and S6 have a lower number of 
time window preference violations than the other parameter setups. This is likely 
caused by the objective weight �4 being higher relative to �3 than in the other setups. 
Since the other results are very similar for S1 in the other metrics, this shows that for 
a clinic with a different prioritization between the objectives, it is possible to adjust 
the weights to achieve the required order.

In S6, minimizing waiting time is no longer prioritized over minimizing time 
window switches and time window preference violations. This is probably not a rel-
evant clinical scenario, but can give some insights in how the composite objective 
function works. The results in Fig.  4 show that both the number of time window 
switches (iii), and the number of time window preference violations (iv) are indeed 
lower for this setup, however, at the cost of some very long waiting times (i).

Fig. 3  Measurements from the CG-IP solutions relating to objective (i)–(vi) in Table 6 are shown for the 
different objective functions when W = 4
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The solution times for the different parameter setups are very similar to the base 
case times presented in Table 7. Overall, the sensitivity analysis shows that the com-
posite objective function is not sensitive to the choice of the weights �1 − �6 , but 
their relative size order matters for the results.

6.4  Conflicting Objectives

The results of case S6 in the sensitivity analysis in Fig. 4 indicate there could be a 
conflict between objectives (i) and (iv), i.e., to minimize waiting time and to mini-
mize the violations of the patients’ time window preferences. Using the IP model 
and the weighted sum method for multi-objective optimization [55, 56], this is ana-
lyzed for three randomly selected problem instances when � = 18 , W = 4 . Figure 5 
shows the pareto optimal points for the three instances when optimizing only the 
objectives (20) and (23) (both summed over p ∈ P ). It shows that there is indeed 
a conflict between the objectives (i) and (iv); if only minimizing the waiting times, 
there are more violations of the time window preferences, and if minimizing the 

Table 10  Sensitivity analysis 
for objective function #2, where 
�5 = 0, �6 = 0

Case Weights

Base case �1 = 50 , �2 = 100 , �3 = 1 , �4 = 1

S1: Sensitivity 1 �1 = 10 , �2 = 100 , �3 = 1 , �4 = 5

S2: Sensitivity 2 �1 = 10 , �2 = 100 , �3 = 5 , �4 = 1

S3: Sensitivity 3 �1 = 50 , �2 = 50 , �3 = 1 , �4 = 1

S4: Sensitivity 4 �1 = 100 , �2 = 10 , �3 = 1 , �4 = 1

S5: Sensitivity 5 �1 = 5 , �2 = 10 , �3 = 1 , �4 = 2

S6: Sensitivity 6 �1 = 1 , �2 = 50 , �3 = 5 , �4 = 5

Fig. 4  Boxplots of the results in the different objectives in the sensitivity analysis using the CG-IP 
model. The weights of � for objective function #2 are varied according to Table  10. The top 1% are 
shown as outliers
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violations of time window preferences to optimality, the waiting time penalty will be 
much higher. Since there are severe medical consequences for having a longer wait-
ing time, the trade-off between these two objectives is easily managed; the weight �1 
for objective (i) should always be some magnitudes larger than �4 for objective (iv)

6.5  Clinical Implications

The majority of the problem instances represent realistic scenarios since they are 
generated from clinical data. Objective function #4 is most similar to what is used 
at Iridium Netwerk today, and � = 16 represent the average arrival rate at Iridium 
Netwerk. Therefore, this setup is used to analyze the clinical implications of using 
the CG-IP model for automatic scheduling.

Figure  6 shows the results for the 20 problem instances where � = 16 , W = 4 , for 
objective #4, where a total of 327 patients have been scheduled to start treatment. Each of 
the six objectives described in Section 3 has its own boxplot, and for the waiting times and 
violations of waiting time targets, the results are further divided by the priority groups.

The results demonstrate that the waiting times are always below one week. The 
exact clinical waiting times are not available, but the staff at Iridium Netwerk cer-
tify that they are often 2–4 weeks for priority B and C patients. These preliminary 
results show that there could potentially be large clinical benefit of using the CG-IP 
model for automatic schedule generation.

7  Discussion

This section discusses the computational results, followed by a discussion of the 
potential for clinical implementation and directions for future work.

Fig. 5  Pareto optimal points for displaying the trade-off between (i) and (iv) for three instances where 
� = 18 , W = 4
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7.1  Model Performance

The results show that the CG-IP model outperforms all other approaches in every 
aspect. It always finds feasible solutions and has the lowest mean optimality gap 
after one hour of run time. Table 7 shows these solutions are almost always found 
long before the time limit; when there is a nonzero mean optimality gap, it is most 
often because the optimal solution has not been generated by the column genera-
tion procedure. This can happen since the CG algorithm (Algorithm  1) does not 
guarantee the optimal solution to be found. Table 8 shows the mean deviation from 
the optimal value is always below 1% , which means the solutions are of very good 
quality. Furthermore, the solution times of the CG-IP algorithm can possibly be 
decreased by solving 200 − 300 independent subproblems in parallel.

The CP model is the slowest of all models, and frequently times out without having 
found a feasible solution. For the smallest cases, when � = 16 and W = 2 , the quality 
of the solution is very good although it often reaches the time limit. For � = 16 and 
W = 4 , it performs well for objective #1 and #3. The CP model could therefore be con-
sidered suitable for a clinical implementation if the clinic’s workload is not too high, 
and especially if the clinic does not try to fulfill the patients’ time window preferences.

The IP model performs very well when � = 16 and W = 2 . Both when � = 16,W = 4 
and when � = 18,W = 2 the IP model also performs well for objective function #2 and 
#3. If a clinic does not need to support partially beam-matched machines, the IP model 
could therefore be suitable for clinical implementation. However, it is not suited for Iridium 
Netwerk, or other clinics where specific machine switches is an objective to be minimized.

The results for the combined CP/IP methodology are better than the pure IP 
model, with fewer timeouts and better quality solutions. The disadvantage of devel-
oping and maintaining two separate models is however significant. Every time a 
constraint were to be altered or added, it would have to be done for both models, 

Fig. 6  Performance metrics for CG-IP for � = 16 , W = 4 , with the top 1% shown as outlier points
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which also means trying out different formulations to optimize performance, and 
possibly change the CP search heuristic. Although the combined CP/IP methodol-
ogy may not be maintainable in practice, it shows the potential for warm starting the 
IP model for difficult cases. A similar advantage could possibly be gained by warm 
starting the IP from the feasible schedule computed when calculating the time hori-
zon (see Section 5.1), which would require fewer computations and no extra model.

7.2  Potential for Clinical Implementation

The CG-IP model is considered most suitable for clinical implementation since it gives 
good quality solutions in a reasonable time, and is most robust to different setups. Robust-
ness is crucial if the model should be generally applied to RT centers of different sizes.

The clinical staff does not necessarily know anything about mathematical pro-
gramming. Thus, for a clinical implementation a user interface is needed, where the 
computations can be performed in the background. For the CG-IP to work in a gener-
alized clinical setting, a number of constraints and objectives should be implemented 
in the model, with the possibility to activate them in the user interface by a simple 
click. Furthermore, different trade-offs between the objectives should be available 
depending on the clinic’s needs, which will correspond to alterations in the � values.

The models have been developed to capture the medical and technical constraints 
at Iridium Netwerk, but the results should be generalizable. The majority of the con-
straints presented in Section 3 are applicable at other RT clinics as well, such as treat-
ments on consecutive weekdays, specific allowed start days, specific machines suited 
for the treatments, different fraction durations, and machine capacity limits. When an 
objective is inactive in an objective function (by setting that particular �i = 0 ), the 
variables relating to that objective are free to take any values and do not contribute to 
the solutions. It is possible that a clinic has some other medical or technical constraint 
that is not implemented in the models, but related literature (e.g. [14, 16, 18, 25, 33]) 
show that the majority of the collaborating RT centers have similar constraints. The 
largest difference is likely the scheduling strategy; some clinics require the patients to 
be scheduled immediately at arrival, which would not work with the presented models 
as they all require multiple patients in a batch to be scheduled. The objective function 
evaluation and the sensitivity analysis also indicate that the models are generalizable: 
if a clinic has a different prioritization order among the objectives, it is straightforward 
to change the weights to acquire the preferred order. As long as the weights differ in 
some orders of magnitude, the models are not sensitive to their exact values.

7.3  Future Work

The models have so far been compared to each other. To further evaluate the CG-IP 
model, the automatically generated schedules should be compared to manually con-
structed schedules from Iridium Netwerk. The schedules obtained from the models 
also need to be assessed for their practical feasibility by the clinical staff.
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There are various obstacles to implementing an automatic scheduling algorithm 
clinically. The first has been discussed above; a user interface is needed for a clinical 
implementation. Another is that the models do not support non-conventional treat-
ments, such as multiple fractions per day, or treatments on non-consecutive days. At 
Iridium Netwerk, these are approximately 10% of all treatments, so for an automated 
scheduling algorithm to work in practice this extension would be necessary. Further-
more, sometimes a linac is unavailable because of maintenance or software upgrades 
or holidays, which is not taken into account in the models. When modeling machine 
unavailability, constraints on the minimum number of fractions per week are impor-
tant for the treatment outcome. Finally, the patient protocols and the patient prefer-
ences regarding treatment time of the day would have to be registered instead of 
communicated verbally.

The method of using placeholder patients to account for expected future patients 
should be evaluated. Perhaps it is adequate to reserve time on the linacs each day for 
future patients instead, which would decrease the solution times. If not, a potential 
improvement of the stochastic aspect of the models is to use scenario-based prob-
abilities instead of expected values. Another method would be to use a data-driven 
approach to predict future machine utilization.

Since there are multiple objectives to be optimized, multi-objective optimization 
could be considered. It is possible that a multi-objective approach could be relevant at 
some clinics, but not at Iridium Netwerk; one of the main objectives with automatic 
schedule creation is to minimize the manual work, and there is no desire from the 
clinical staff to be able to navigate trade-offs in several generated schedules. Further-
more, the computational time to generate the schedule cannot be too long for it to 
work in clinical practice, which makes multi-objective optimization unfit for the task.

A future extension of the automatic scheduling approach would be to be able to opti-
mize schedules for the whole appointment series of each patient, including not only 
the linac scheduling, but also meetings with physicians and RTTs, the duration of the 
treatment planning, CT scans, and more. It would be interesting to study the trade-off 
between treatment plan quality and waiting time - when is it beneficial for the patient to 
have a longer waiting time in order to be treated on a more advanced machine, and when 
is a less advanced machine with shorter waiting time to prefer? Perhaps the toxicity effect 
of assigning patients to non-preferred machines could be incorporated in the scheduling 
models. To optimize the use of resources and the treatment plans simultaneously could 
potentially have a great impact on both the clinics and the individual patients.

8  Conclusions

As the incidences of cancer increase, the demand for RT grows. To better use 
resources in RT, algorithms can be used to automatically create patient schedules, 
a task that today is done manually in almost all clinics. The main contribution of 
this paper is to serve as a decision support tool when implementing a scheduling 
algorithm in practice. We present an extensive study of exact optimization technolo-
gies that can be used to model the RT scheduling problem. The output of the models 
is the assignment of all fractions of the patients to both linacs and specific time 
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windows, while including all the constraints necessary for the scheduling to work 
in practice. The models developed include an IP model, a CG-IP model, and a CP 
model, as well as a method combining the CP and IP models.

The models are tested using historical data from Iridium Netwerk in Antwerp, 
Belgium. Different cancer centers may have different intentions when creating the 
RT schedules, and in order to study the suitability of the different models for various 
cancer centers, each model is solved using multiple different objective functions. 
This is to evaluate if some particular optimization model is better suited to solve a 
certain objective.

The results demonstrate that the CG-IP model is the most robust, and that the 
mean optimality gap of the method is well below 1% for all the different setups and 
objective functions after one hour of computation time. The CP and IP models could 
have potential for clinical implementation depending on the size of the clinic, and 
more importantly, depending on their objective of scheduling.

The proposed methodology provides a tool for automated scheduling of RT treat-
ments on linacs, and can be generally applied to RT centers. This would allow the RT 
staff to save time, and at the same time create optimized patient schedules that take 
medical and technical constraints into account. Designing more efficient schedules could 
potentially save lives by shortening waiting times and improving patient outcomes.
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