
Vol.:(0123456789)

Operations Research Forum (2023) 4:62
https://doi.org/10.1007/s43069-023-00242-3

1 3

RESEARCH

Computational Evaluation of Cut‑Strengthening
Techniques in Logic‑Based Benders’ Decomposition

Aigerim Saken1 · Emil Karlsson2,3 · Stephen J. Maher1,4 · Elina Rönnberg2

Received: 23 February 2023 / Accepted: 24 July 2023 / Published online: 4 August 2023
© The Author(s) 2023

Abstract
Cut-strengthening techniques have a significant impact on the computational effec-
tiveness of the logic-based Benders’ decomposition (LBBD) scheme. While there
have been numerous cut-strengthening techniques proposed, very little is understood
about which techniques achieve the best computational performance for the LBBD
scheme. This is typically due to implementations of LBBD being problem specific,
and thus, no systematic study of cut-strengthening techniques for both feasibility
and optimality cuts has been performed. This paper aims to provide guidance for
future researchers with the presentation of an extensive computational study of five
cut-strengthening techniques that are applied to three different problem types. The
computational study involving 3000 problem instances shows that cut-strengthening
techniques that generate irreducible cuts outperform the greedy algorithm and the
use of no cut strengthening. It is shown that cut strengthening is a necessary part
of the LBBD scheme, and depth-first binary search and deletion filter are the most
effective cut-strengthening techniques.

Keywords  Logic-based Benders’ decomposition · Cut strengthening · Feasibility
cuts · Optimality cuts · Irreducible cuts · Benders’ cuts

 *	 Aigerim Saken
	 as1392@exeter.ac.uk

	 Emil Karlsson
	 emil.karlsson1@saabgroup.com

	 Stephen J. Maher
	 stephen@sjmsolutions.co.uk

	 Elina Rönnberg
	 elina.ronnberg@liu.se

1	 Department of Mathematics, University of Exeter, Stocker Rd, Exeter EX4 4PY, UK
2	 Department of Mathematics, Linköping University, Linköping SE‑581 83, Sweden
3	 Saab AB, Linköping SE‑581 88, Sweden
4	 Quantagonia GmbH, Bad Homburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s43069-023-00242-3&domain=pdf

	 Operations Research Forum (2023) 4:62

1 3

62  Page 2 of 53

1  Introduction

Logic-based Benders’ decomposition (LBBD) is a generalisation of classical Benders’
decomposition. Removing the requirement of linear programming subproblems in classical
Benders’ decomposition, LBBD extends this popular mathematical programming approach
to be applied to problems where the subproblem is an optimisation problem of any form.
First proposed by Hooker and Ottosson [1], LBBD handles this generalisation by making
use of logical deductions from subproblem solutions to generate Benders’ cuts. This is
particularly useful when integrating mathematical optimisation and constraint programming.
Logical deductions from solving a constraint program can be used to generate cuts in the
form of no-good inequalities for addition to a mathematical optimisation problem. While
no-good inequalities are general in their application, they are typically weak—causing
slow convergence of the LBBD scheme. Numerous cut-strengthening techniques have
been proposed to address this limitation of the LBBD scheme. However, no systematic
investigation into the effectiveness of cut-strengthening techniques of both feasibility and
optimality no-good Benders’ cuts has previously been performed.

The computational effectiveness of the LBBD is strongly dependent on the cuts
generated during the search procedure. The number of cuts and their quality has an
impact on the solution times for the master problem and the number of LBBD itera-
tions [2]. Numerous works have shown that the use of cut-strengthening techniques
significantly improves the computational effectiveness of the LBBD scheme. A sys-
tematic analysis performed by Karlsson and Rönnberg [3]—covering a selection of
cut-strengthening techniques and application areas—highlighted the computational
benefits to the LBBD scheme when applying cut strengthening to feasibility cuts.
An important result from Karlsson and Rönnberg [3] is that there is no single best
technique for all problem types. However, the greedy cut-strengthening approach
was typically outperformed by most of the other considered techniques.

This paper aims to act as a guide for future researchers applying LBBD and
cut-strengthening techniques. To this end, the main contributions are as follows:

•	 An indepth discussion and evaluation of cut-strengthening techniques applied
to both feasibility and optimality cuts.

•	 An investigation into the computational effectiveness of five cut-strengthen-
ing techniques commonly used to enhance the LBBD scheme. In particular,
the greedy algorithm, deletion filter, additive method, additive/deletion filter,
and the depth-first binary search will be evaluated.

•	 Detailed computational experiments covering three different problem types—
cumulative facility scheduling with fixed costs, single-facility scheduling with
a segmented timeline, and vehicle routing with location congestion—will pro-
vide a broad overview of the cut-strengthening techniques.

•	 The first systematic investigation into how the efficacy of cut-strengthening
techniques is strongly correlated to the problem type.

•	 The code related to the LBBD schemes for each of the problem types and the
cut-strengthening techniques is freely available.

1 3

Operations Research Forum (2023) 4:62	 Page 3 of 53  62

This paper is structured as follows: An overview of the literature related to the
strengthening of feasibility and optimality cuts in LBBD will be presented in Sect. 2.
Section 3 presents a brief introduction to LBBD and describes the cut-strengthening
techniques investigated and evaluated in this paper. The problem types under inves-
tigation will be presented in Sect. 4. In addition to no-good optimality cuts, analytic
Benders’ cuts are also generated for the considered problem types. A brief deriva-
tion of the analytic Benders cuts is presented in Sect. 5. The main contributions of
this paper are the results from computational experiments. Section 6 demonstrates
the effectiveness of the cut-strengthening techniques by evaluating the solution run
times and the average size of the generated cuts. Finally, concluding comments are
given in Sect. 7.

2 � Literature Background

Cut strengthening is one of the most common acceleration techniques for Benders-
like algorithms [4]. The benefit of applying cut strengthening in an LBBD scheme
has been demonstrated in Karlsson and Rönnberg [3, 5], Lam et al. [6], Lindh
et al. [7], Hooker [8, 9], Riedler and Raidl [10], Benini et al. [11], and Sadykov [12].
The literature shows that applying cut strengthening reduces the computational time
of the solution process.

Both feasibility and optimality cuts can be generated in an LBBD scheme.
Strengthening feasibility cuts in the context of LBBD can be described as finding
a subset of master variables that cause infeasibility of the subproblem in the cur-
rent solution. Strengthening optimality cuts within LBBD means finding a subset of
variables that contribute to the optimal value of the subproblem.

A greedy approach to strengthen feasibility cuts is used by Hooker [9], Benini
et al. [11], and Coban and Hooker [13]. Hooker [9] solves a cumulative facility schedul-
ing problem, where the master problem assigns jobs to facilities and the subproblem
schedules them. A single-facility scheduling problem with a segmented timeline is
solved in Coban and Hooker [13], where the master problem assigns jobs to time seg-
ments and the subproblem schedules them. Our paper evaluates the greedy algorithm,
solving both problems from Coban and Hooker [13] and Hooker [9] for different objec-
tive types. While fast and easy to implement, our computational experiments will show
that the greedy approach is often outperformed by other cut-strengthening techniques.

Riedler and Raidl [10] and Lam et al. [6] apply a cut-strengthening algorithm that
has the same structure as a deletion filter. Riedler and Raidl [10] solve a selective
dial-a-ride problem and suggest using the cut-strengthening algorithm twice, the
second time in reverse order, in an effort to increase chances of obtaining a strength-
ened feasibility cut of smaller cardinality. Lam et al. [6] present results from apply-
ing the deletion filter algorithm to strengthen feasibility cuts to a range of problems,
including planning and scheduling, vehicle routing with location congestion, and
facility location. The vehicle routing with location congestion problem is used for
the computational study in this paper, where we show that deletion filter is one of
the best-performing techniques.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 4 of 53

Lindh et al. [7] apply cut strengthening in their LBBD scheme to solve a
short-term scheduling problem for a cut-and-fill mine. The paper presents two
algorithms for finding irreducible feasibility cuts and both of them rely on first
using a greedy strategy for finding a strengthened cut, and thereafter applying
a deletion filter to obtain an irreducible cut. In the first algorithm, the greedy
strategy is inspired by an additive/deletion filter. In the second algorithm, the
greedy strategy is problem-specific and designed to quickly find a rather strong
cut that can then be further strengthened.

Karlsson and Rönnberg [5] use the depth-first binary search (DFBS) to
strengthen feasibility cuts. The authors propose a new acceleration technique for
an LBBD scheme to solve an avionic scheduling problem. The acceleration tech-
nique extends the use of DFBS to aid the heuristic search for feasible solutions.
The output of the cut-strengthening technique is an irreducible cut containing
the variables that cause infeasibility. This information is used to select the sub-
sets of variables that were not included in the strengthened cut and can be part
of a feasible solution. Our computational evaluation demonstrates that the DFBS
algorithm is one of the best-performing cut-strengthening algorithms.

Cambazard et al. [14] use the iterative conflict detection algorithm QuickX-
plain [15] to strengthen feasibility cuts. QuickXplain first identifies an irreduc-
ible set of constraints, from which the set of variables needed to form a no-good
cut is extracted. QuickXplain has limited use when the infeasibility of the sub-
problem is caused by a global constraint. If a global constraint is in the obtained
irreducible set of the constraints, all variables connected to a global constraint
are included in the no-good cut, making the strengthened cut less effective.

Sadykov [12] proposes a branch-and-bound-type algorithm to strengthen no-
good cuts. The proposed algorithm is a modified version of the Carlier algo-
rithm [16]. The algorithm is implemented within a hybrid branch-and-check [17]
scheme to solve a scheduling problem to minimise the weighted number of late
jobs on a single machine. The limitation of the modified Carlier algorithm is
that the feasibility checks used by the algorithm are only valid for the single-
machine scheduling problem. Our study is focused on general cut-strengthening
techniques, therefore the modified Carlier algorithm is not within the scope of
this paper.

In the conference paper [3], Karlsson and Rönnberg evaluate various cut-
strengthening techniques on feasibility cuts within an LBBD scheme. The authors
provide computational results based on three different problem formulations,
including cumulative facility scheduling with fixed costs, single machine schedul-
ing with sequence-dependent setup times and multiple time windows, and vehicle
routing with location congestion. The DFBS, deletion filter, and the greedy algo-
rithms are evaluated. The computational results, based on over 2000 instances,
show that applying the DFBS algorithm and the deletion filter algorithm achieves
the best computational time for the chosen applications. Our paper extends the
contribution in Karlsson and Rönnberg [3] by including the strengthening of opti-
mality cuts and considering additional problem formulations.

1 3

Operations Research Forum (2023) 4:62	 Page 5 of 53  62

3 � Logic‑Based Benders’ Scheme and Cut Strengthening

The cut-strengthening techniques evaluated in this paper can be applied to a variety
of LBBD schemes. To facilitate the general discussion of cut-strengthening tech-
niques, we present a generic problem formulation and decision scheme. Further-
more, this formulation will be used in the mathematical description of applications,
highlighting the general nature of the evaluated approaches.

3.1 � Logic‑Based Benders’ Decomposition

LBBD can be applied to problems of the form

The feasible set of the problem is given by constraint sets A(x), H(y), and
C(x, y) and the domains of the variables x and y, given by Dx and Dy , respectively.
An important characteristic of problem (1) is that upon fixing the values of x, the
remaining problem, which is only with respect to y, becomes ‘easy’ to solve. The
resulting problem, denoted by [SP(x̄) ], is termed the subproblem, where x̄ is a fixed
solution for x.

The subproblem takes the form

To obtain a bound on f (x̄, y) an inference dual of the subproblem is defined and
solved. The inference dual is the problem of obtaining the tightest possible lower
bound on f (x̄, y) from C(x̄, y),H(y) , and Dy:

where A
P

⟹ B means that proof P deduces B from A, and P is a family of proofs.
The solution of the dual is a proof P, that gives the tightest possible bound v̄ on
f(x, y) when x = x̄ ; for details, see Hooker [9]. Since there are no restrictions on the

(1)

[P] min f (x, y),

s.t. A(x),

H(y),

C(x, y),

x ∈ Dx,

y ∈ Dy.

[SP(x̄)] min f (x̄, y),

s.t. C(x̄, y),

H(y),

y ∈ Dy.

max v

s. t.

C(x̄, y),

H(y),

y ∈ Dy,

⎫⎪⎬⎪⎭

P

⟹ f (x̄, y) ≥ v,

v ∈ ℝ,

P ∈ P

	 Operations Research Forum (2023) 4:62

1 3

62  Page 6 of 53

type of the constraints C(x, y) and H(y), and the function f(x, y), the inference dual
can be obtained for any kind of optimisation problem. When the function f(x, y) is
restricted to depend only on the variables x, the objective function f (x̄, y) of the sub-
problem [SP(x̄ )] becomes a constant, making the subproblem a feasibility problem.
When function f(x, y) depends on both variables x and y, the subproblem is an opti-
misation problem.

A lower bound on f(x, y) can be provided by a bounding function Bx̄(x) , that is
defined using a proof P. The main idea of LBBD is to apply the reasoning used for
obtaining the value v̄ to deduce the bounding function Bx̄(x) on f(x, y) for any values
of x. The subscript x̄ indicates the solution used to obtain the bounding function.
The bounding function Bx̄(x) has two properties [9]:

Property 1  Bx̄(x) provides a valid lower bound on f(x, y) for any given x ∈ Dx . That
is, f (x, y) ≥ Bx̄(x) for any feasible (x, y) in problem (1).

Property 2  Bx̄(x̄) = v̄.

It is convenient to regard v̄ as an infinite value if the subproblem [SP(x̄) ] is infeasible.
Using this assumption, a strong duality property holds for the dual: the optimal value of
the subproblem is always equal to the optimal value of its inference dual [1].

3.1.1 � Solution Procedure

The solution procedure iterates between solving the master problem and the subprob-
lem. The master problem is solved to obtain trial values of x, and the subproblem is
solved to give feedback in the form of cuts. Let z∗ and v̄k be the optimal objective
values of the master problem and the subproblem, respectively, in iteration k. In any
iteration of the solution procedure, z∗ provides a lower bound on the objective value
of (1), and v̄ = min{v̄1, ..., v̄k−1} provides an upper bound. The value of z∗ increases
monotonically for each iteration, while values v̄k can increase or decrease. The algo-
rithm repeats until z∗ is equal to v̄.

The master problem in iteration k of the solution procedure is

where x1, ..., xk−1 are the solutions of the master problem in iterations 1, ..., k − 1 .
The inequalities z ≥ Bxi (x) are Benders’ cuts added to the master problem in itera-
tions i = 1, ..., k − 1 . The inclusion of [Valid inequalities] in [MPk ] highlights that
it may be possible to strengthen the master problem with appropriate inequali-
ties. In the applications considered in this paper, the [Valid inequalities] include

[MPk] min z,

s.t. A(x),

z ≥ Bxi (x), i = 1, ..., k − 1,

[Valid inequalities],

x ∈ Dx,

z ∈ ℝ,

1 3

Operations Research Forum (2023) 4:62	 Page 7 of 53  62

relaxations of constraints present in the subproblems, but also auxiliary variables
and constraints.

3.1.2 � Problem Structure

The cut-strengthening techniques investigated in this paper assume a problem struc-
ture where (i) the master problem variables are binary and (ii) only the variable val-
ues xj = 1 , j ∈ J = {j|xj = 1} enforce constraints C(x, y) on variables y. Constraints
C(x, y) then take the form

meaning that a value xj = 1 enforces constraints Cj(y) on variables y. When the value
of an xj is changed to 0, constraints Cj(y) no longer restrict variables y. This allows
to obtain a relaxation of the subproblem by changing the value of an xj to 0. There-
fore, the constraints facilitate cut-strengthening techniques based on the evaluation
of subproblem relaxations obtained by iteratively changing variable values xj = 1 ,
j ∈ J = {j|xj = 1} to xj = 0 . When constraints Cj(y) are connected through master
variables only, the subproblem can be separated.

To simplify notation, we use the objective function formulation given by

The formulation allows to separate the objective functions of the master problem
and the subproblem.

3.1.3 � Cut Generation

Let xk be the master problem solution in iteration k. Based on the subproblem solu-
tion, Benders’ cuts are generated for both infeasible and feasible subproblems. If the
subproblem is infeasible, the assignment xk is eliminated by the following disjunction:

This disjunction can be formulated as a Benders’ feasibility cut in the form of a
linear inequality, also commonly referred to as a no-good cut

where J(xk) is a subset of J  , such that J(xk) = {j ∈ J|xk
j
= 1}.

If the subproblem has an optimal solution, the optimality cuts, referred to as
value cuts, can also be formulated analogous to no-good cuts. Let v∗ = h(xk) + v(y∗) ,
be the optimal value of the subproblem in iteration k, where y∗ is the optimal solu-
tion to the subproblem for xk . Then, a value cut z ≥ Bxk (x) must bound f(x, y) for any
solution x by the value Bxk (x

k) = v∗ . The no-good formulation of this cut is given by

xj = 1 → Cj(y), j ∈ J,

f (x, y) = h(x) + v(y).

∨j∈J(xk)x
k
j
≠ 1.

(2)
∑

j∈J(xk)

(1 − xj) ≥ 1,

	 Operations Research Forum (2023) 4:62

1 3

62  Page 8 of 53

The right-hand side of the inequality (3) is a bounding function Bxk (x) . The
function Bxk (x) satisfies Property 1 because for any feasible solution (x, y), it pro-
vides a valid lower bound on f(x, y) [1, 9]. The lower bound is valid only because
the optimal solution f(x, y) is positive. The function Bxk (x) satisfies Property 2
because Bxk (x

k) = v∗ . Any feasible solution (x, y) of the problem then satisfies
f (x, y) ≥ Bxk (x) . The inequality (3) provides the tightest bound when all the values
of xj for j ∈ J(xk) are equal to 1.

3.1.4 � Subproblem Separation

Subproblem separation is a common strategy used to accelerate the LBBD
scheme. Separation is possible when problem exhibits a bordered block diagonal
structure, such that the master variables define the border. Fixing variables x to
trial values makes blocks separable. The subproblem [SP(xk )] then decouples into
a separate problem [SPi(x

k) ] for each such block i:

Solving subproblem i generates cuts that only include variables from Ji . It has
been highlighted in Karlsson and Rönnberg [3] and Ciré et al. [2] that separating
the subproblem significantly improves the runtime of the LBBD scheme. Not all
of the problems considered in this study are separable.

3.2 � Cut‑Strengthening Techniques

The cut-strengthening algorithms presented in this section attempt to strengthen
feasibility and optimality cuts by reducing the number of variables included in
the corresponding constraint. The main idea behind all of the algorithms is to
find a subset of J(x̄) , denoted by J(x̂) , where the corresponding variables induce
a subproblem with an optimal objective equal to v̄ . The set J(x̂) is identified by
systematically solving subproblem [SP(x̄ )] with trial values corresponding to dif-
ferent subsets of J(x̄) . Different trial values lead to different relaxations of sub-
problem [SP(x̄)]. The problem structure described in Sect. 3.1 allows to obtain a
relaxation of the subproblem by changing trial values of decision variables to 0.
The choice of trial values depends on the cut-strengthening algorithm.

Cut-strengthening techniques can be divided into two groups by the types of
the cuts that they provide, irreducible or not. The cuts are categorised using the
following definition [3].

(3)z ≥ v∗
(
1 −

∑
j∈J(xk)

(1 − xj)
)
.

[SPi(x
k)] min f (xk, y),

s.t. Cj(y), {j ∈ Ji|xji = 1},

y ∈ Dy.

1 3

Operations Research Forum (2023) 4:62	 Page 9 of 53  62

Definition 1  Let v̄ be the optimal value of subproblem [SP(x̄) ]. A subset J(x̂) of J(x̄)
is irreducible if subproblem [SP(x̂) ] has an optimal value v̂ , such that v̂ = v̄ , and if
for each x̃ such that J(x̃) ⊂ J(x̂) , it holds that [SP(x̃) ] has an optimal value ṽ < v̂.

Note that there can be multiple sets J(x̂) meeting the irreducibility criteria, and
the sets often share overlapping subsets J(x̃) . Hence, an irreducible cut does not
need to be of smallest cardinality, and it is typically possible to derive more than one
irreducible cut from a single master problem solution.

In the following, we present the greedy algorithm, deletion filter, additive
method, additive/deletion filter, and the DFBS cut-strengthening algorithms. The
deletion filter, additive method, additive/deletion filter, and the DFBS algorithm
will ensure that the strengthened cut is irreducible, while the greedy algorithm will
not. The cut-strengthening algorithms are described for the strengthening of value
cuts. The same search principle can be applied to strengthening feasibility cuts. The
special case of feasibility cuts is treated in Karlsson and Rönnberg [3].

Note that most cut-strengthening algorithms can be tailored to a specific problem
by specifying the order in which the variables (x̄j)j∈J(x̄) get selected to form subsets.
To maintain generality in our comparison, we do not exploit this possibility and rely
on using a random order.

3.2.1 � Greedy Algorithm

The greedy algorithm searches for a subset of variables by evaluating a single index
at a time until the objective value of the relaxed subproblem becomes less than v̄ ,
and the search stops. An index j ∈ J(x̄) is selected in each iteration, and the assign-
ment x̄j = 0 is made, for the indices that have not been selected the assignments
remain equal to 1. The subproblem is then solved. If the optimal objective value of
the relaxed subproblem is equal to v̄ , the assignment x̄j = 0 becomes permanent, and
the next iteration is performed. Otherwise, if the optimal objective value is less than

Algorithm 1   The greedy cut-strengthening algorithm

	 Operations Research Forum (2023) 4:62

1 3

62  Page 10 of 53

v̄ , the value of xj is restored to 1 and the greedy algorithm terminates. Thereafter, the
resulting cut is returned. The resulting cut is not guaranteed to be irreducible since
the algorithm does not evaluate all of the indices. The pseudo-code for the greedy
algorithm is given in Algorithm 1.

3.2.2 � Deletion Filter

The deletion filter is a cut-strengthening algorithm that returns an irreducible
cut. The algorithm is based on the deletion filter for finding an IIS in linear pro-
grams [18]. There is one iteration for each j ∈ J(x̄) where the subproblem with the
assignment x̄j = 0 is evaluated. If the optimal value of the subproblem is equal to
v̄ , the assignment x̄j = 0 is made permanent in the remaining iterations and in the
final subset. If the optimal value of the subproblem is not equal to v̄ , the assign-
ment is permanently changed to x̄j = 1 , both in the remaining iterations and in
the final subset. Since there can be more than one irreducible subset, the order in
which the assignments are evaluated determines the resulting subset [18]. A pseudo-
code for the deletion filter algorithm that finds an irreducible value cut is given in
Algorithm 2.

3.2.3 � Additive Method

The additive method was introduced for detecting IIS in linear programming by
Tamiz et al. [19]. Chinneck [20] provided a simplified version of the algorithm that
can be applied to a general set of constraints.

The search starts with three sets. An empty set I is introduced to store variables
that are identified to belong to an IIS. An initially empty set T is a test set that com-
prises the set I and the candidate variables in each iteration. The set S is equal to
the set of all variables at the start of the search. Then, in each iteration, one vari-
able x̄j = 1 , j ∈ S is added to the set T and subproblem [SP(T)] is evaluated, where

Algorithm 2   The deletion filter algorithm

1 3

Operations Research Forum (2023) 4:62	 Page 11 of 53  62

[SP(T)] is a subproblem relaxation corresponding to assignments x̄j = 1 , j ∈ T  . If
the optimal value of subproblem is less than v̄ , the variable is added to the set T, and
the next iteration starts. Otherwise, the variable is added to the set I and removed
from the set S. Subproblem [SP(I)] is then evaluated. If the optimal value of sub-
problem [SP(I)] is equal to v̄ , the search terminates with an irreducible subset of var-
iables I; otherwise, the next iteration starts with T equal to the set I. A pseudo-code
for the additive method that finds an irreducible value cut is given in Algorithm 3.

3.2.4 � Additive/Deletion Filter

The additive/deletion filter is a hybrid method based on an additive method and a
deletion filter. The algorithm returns an irreducible cut. The additive/deletion filter
can be considered as a way of removing a large set of assignments before applying
a deletion filter. The first step of the additive part of the algorithm is to make the
assignment x̄j = 0 for all j ∈ J(x̄) . Then, in each iteration, the assignment x̄j = 1 is
made for one index j until the optimal value of the subproblem is equal to v̄ . Thus,
some of the assignments not contributing to the optimal value are removed. The

Algorithm 3   The additive method algorithm

	 Operations Research Forum (2023) 4:62

1 3

62  Page 12 of 53

resulting subset is denoted as x̄′ . The deletion filter is then applied to x̄′ . A pseudo-
code for the additive/deletion algorithm is presented in Algorithm 4.

3.2.5 � Depth‑First Binary Search (DFBS)

The DFBS cut-strengthening algorithm is similar to the deletion filter algorithm, but
instead of evaluating only a single index at a time, subsets of indices are evaluated.

The output from the search is an irreducible subset of variables I that defines an
irreducible cut. The search starts with the set I being empty. Let vk be the optimal
value of the subproblem in iteration k. The set of variables that are the current can-
didates for being included in I is denoted by T and initially T = J(x̄) . The variables
that are not among the current candidates are stored in an auxiliary set S. Initially, S
is an empty set. In each iteration, the goal is to identify a single index to add to set
I by reducing set T until it contains only one index. Set T is split into sets T1 and T2
in each iteration. The algorithm then evaluates [SP(T1 ∪ I ∪ S)] , if the optimal value
is equal to the original value, the indices that belong to set T2 are not considered in
the subsequent iterations and the update T = T1 is made. Otherwise, T is set to be
equal T2 , S stores T1 . Whenever an index is added to I, [SP(I)] is evaluated and if the
optimal value of [SP(I)] is equal to vk the algorithm terminates. Otherwise, the next
iteration is performed.

The final subset is guaranteed to be irreducible. By exploring a subset of vari-
ables at a time, there is a possibility to decrease the number of subproblems that
need to be solved. Note that the way T is split into two subsets is not specified by
the algorithm. Defining the strategy of splitting the set can influence the practical
performance of the algorithm. The pseudo-code for DFBS is given in Algorithm 5,
and it is based on the presentation in [21] for finding an IIS for a mathematical pro-
gram. This type of algorithm is one of the components of the infeasibility analyser
QuickXplain, described in Junker [22], and is used to strengthen cuts in Cambazard
et al. [14].

Algorithm 4   The additive/deletion algorithm

1 3

Operations Research Forum (2023) 4:62	 Page 13 of 53  62

Example 1  The example presented in Fig. 1 illustrates DFBS applied to the set
J = {1, 2, 3, 4, 5, 6, 7, 8} . Let v be the objective value of [ SP(J) ]. Set T is initially
equal to J  , and sets S and I are empty. Set T is randomly split into T1 = {3, 4, 5, 6}
and T2 = {1, 2, 7, 8} . First, we evaluate the objective value v′ of [SP(T1 ∪ I ∪ S)] .
Since v′ is equal to the original objective v, set T1 is stored as the new set T and
set T2 is not considered in the following iterations. Next, T = {3, 4, 5, 6} is

Algorithm 5   The DFBS cut-strengthening algorithm

Fig. 1   DFBS example: T
1
 = ,

T
2
 = , S = , I =

	 Operations Research Forum (2023) 4:62

1 3

62  Page 14 of 53

again randomly split into T1 = {3, 4} and T2 = {5, 6} . The objective value v′ of
[SP(T1 ∪ I ∪ S)] is not equal to v, therefore set T1 is stored as set S, and set T2 is the
new set T. Next, set T = {5, 6} is split into T1 = {5} and T2 = {6} . The objective
value of [SP(T1 ∪ I ∪ S)] = [SP(3, 4, 5)] is equal to v, therefore T1 is stored as a new
set T = {5} . In the following iteration, since T = only contains a single index, the
index is permanently added to I = {5} . The objective value of [SP(I)] is not equal to
v, hence the search continues. The values of S = {3, 4} are first stored in T, then set
S is emptied. Set T = {3, 4} is then split into T1{3} and T2 = {4} , and the objective
value of [ SP(T1 ∪ I ∪ S) ] is evaluated and is equal to v. Therefore, set T now stores
T1 = {3} . In the next iteration, set T containing a single index is permanently added
to I. The objective value of [SP(I)] = [SP({3, 5})] is equal to v; hence, the irreduc-
ible subset is found. The search is complete with I = {3, 5}.

4 � Problems and Modelling

The cut-strengthening techniques are evaluated using problems arising from manufac-
turing and supply chain management contexts. Specifically, we consider the cumulative
facility scheduling, single-facility (disjunctive) scheduling, and vehicle routing problems.
An important feature of these problems is that they can be separated into assignment
and scheduling components. LBBD is well suited for these kinds of problems since the
assignment problem, which is routinely solved as a MIP, forms the master problem, and
the scheduling problem, which is particularly amenable to CP, forms the subproblem.

4.1 � Cumulative Facility Scheduling with Fixed Costs

An LBBD scheme for cumulative facility scheduling with fixed costs was introduced in
Hooker [9]. The problem is to first allocate a set of jobs J = {1, ..., n} to a set of facili-
ties F where the jobs are then scheduled for processing. Each job j ∈ J is assigned to
exactly one facility f ∈ F  . It takes processing time pjf to finish job j at facility f and
uses resources at the rate cjf  . The scheduled jobs can run simultaneously within one
facility, but their total resource consumption at facility f cannot exceed capacity Cf at
any time. Each job can only be scheduled to start after its release time rj , and the job
must be finished before its deadline dj.

Let the variable xjf take the value 1 if job j is assigned to facility f, and 0 otherwise.
Let yjf be the start time of job j at facility f. The cumulative facility scheduling problem,
in the form of problem (1), is given by

(4)min h(x) + v(y),

(5)s.t.
∑
f∈F

xjf = 1, j ∈ J,

(6)CUMULATIVE((yjf |j ∈ J), (pjf |j ∈ J), (cjf |j ∈ J), Cf), f ∈ F,

1 3

Operations Research Forum (2023) 4:62	 Page 15 of 53  62

Constraints (5), corresponding to A(x) in problem (1), ensure that each job is assigned
to exactly one facility. Constraints (6) correspond to H(y), and Constraints (7) correspond
to C(x, y). Constraints (6) control the resource consumption, and Constraints (7) ensure
that the jobs are processed within a specified time window. The domain Dx is given by
Constraints (8), and domain Dy is given by Constraints (9).

The master problem in iteration k is given by the following assignment problem:

Let xk
jf
 be the solution of the master problem in iteraiton k. The subproblem is

then given by a scheduling problem

which can be separated into a scheduling problem for each facility f ∈ F .
Different objective functions are considered for the cumulative scheduling prob-

lem by defining the two components h(x) and v(y) of the objective function (4): min-
imising the total cost of production, minimising the makespan of jobs, and minimis-
ing total tardiness of jobs. In the case where the objective function comprises only
master variables, the subproblem is a feasibility problem; otherwise, it is solved as
an optimisation problem.

4.1.1 � Minimising the Total Cost

Assigning job j to facility f incurs cost Fjf  . The total cost in the context of a cumu-
lative scheduling problem is the cost of assigning all of the jobs j to facilities. The
objective function that minimises the total cost is given by the two components:

(7)xjf → rj ≤ yjf ≤ dj − pjf , j ∈ J, f ∈ F,

(8)xjf ∈ {0, 1}, j ∈ J, f ∈ F,

(9)yjf ∈ [rj, dj], j ∈ J, f ∈ F.

(10)

min z,

s.t.
∑
f∈F

xjf = 1, j ∈ J,

z ≥ Bxi (x), i = 1, ..., k − 1,

[Valid inequalities],

xjf ∈ {0, 1}, j ∈ J, f ∈ F.

(11)

min v(y),

s.t. CUMULATIVE((yjf |j ∈ J), (pjf |j ∈ J), (cjf |j ∈ J), Cf), f ∈ F,

xk
jf
= 1 → rj ≤ yjf ≤ dj − pjf , j ∈ J, f ∈ F,

h(x) =
∑
j∈J

∑
f∈F

Fjf xjf and v(y) = 0.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 16 of 53

The objective function is present only in the master problem, and the subproblem
checks the feasibility of the assignments with respect to the facility capacity and time
window constraints.

Hooker [9] shows that it is important to include a relaxation of the subprob-
lem (11) in the formulation of the master problem (10). In this case, the [Valid ine-
qualities] in problem (10) contain a relaxation of constraints (6)–(7) as follows. Let
J(t1, t2) =

{
j ∈ J|t1 ≤ rj, dj ≤ t2

}
 be a set of jobs with time windows that fit in a

given time interval (t1, t2) . Since the capacity of facility f per time unit is Cf  , the total
amount of resource available at facility f in the interval (t1, t2) is Cf (t2 − t1) . Therefore,
the total resource consumption

∑
j∈J(t1,t2)

pjf cjf of jobs assigned to facility f cannot
exceed Cf (t2 − t1) . This can be formulated as

Only feasibility Benders’ cuts are generated for this problem formulation, which are
constructed as follows. Let xk be the master problem solution in iteration k, if subprob-
lem (11) is feasible, then (xk, yk) is the optimal solution to the original problem. Other-
wise, let Jkf = {j|xk

jf
= 1} be the set of jobs assigned to facility f in iteration k and

define Benders’ cut in the form of a no-good inequality (2) as

4.1.2 � Minimising Makespan

In the cumulative scheduling problem, the makespan is defined as the time the last job
ends across all facilities. The objective function for minimising makespan is given by
the components

The objective function v(y) is linearised by introducing auxilary variables M and
Mf  , that denote the makespan over all facilities and makespan of each facility f, respec-
tively. The master problem minimises the makespan M. Each subproblem minimises
Mf  , and constraints

are enforced. The variables Mf provide a bound on the variable M through inequali-
ties M ≥ Mf , f ∈ F added to the master problem.

The master problem is strengthened by [Valid inequalities] that provide a
lower bound on the makespan M based on the total resource consumption of jobs
assigned to facility f. These are given by

(12)
1

Cf

∑
j∈J(t1,t2)

pjf cjf xjf ≤ t2 − t1.

∑
j∈Jkf

(1 − xjf) ≥ 1.

h(x) = 0 and v(y) = max
j∈J

(yjf + pjf).

Mf ≥ yjf + pjf , j ∈ Jf

1 3

Operations Research Forum (2023) 4:62	 Page 17 of 53  62

Since the objective function contains subproblem variables, the subproblem is an
optimisation problem. As such, the subproblem generates two types of Benders’
cuts. If the subproblem for facility f is infeasible, a feasibility cut in the form of
no-good inequality (2) is generated. Otherwise, if the subproblem is feasible and has
an optimal makespan M∗

kf
 , an optimality cut

is generated. The cut (13) provides the tightest bound on M when all of the jobs in
Jkf are assigned to facility f.

4.1.3 � Minimising Total Tardiness

Tardiness is defined as the time by which a job overruns its deadline. The objective
function that defines the total tardiness of all jobs is given by the objective components

The objective function can be linearised by introducing auxiliary variables T
and Tf that denote the total tardiness across all facilities and tardiness of each
facility f, respectively. The total tardiness is minimised in the master problem
with the following constraint enforced:

The master problem can be strengthened by [Valid inequalities]. For each job
i ∈ J  , let J(0, di) be the set of jobs that finish before its deadline di . Based on
the resource consumption of the jobs, the total tardiness Tf of jobs j ∈ J(0, di)
assigned to facility f is bounded below by

[Valid inequalities] can be derived from the bound (14). These are given by

M ≥
1

Cf

∑
j∈J

cjf pjf xjf , f ∈ F.

(13)M ≥ M∗
kf

(
1 −

∑
j∈Jkf

(1 − xjf)
)

h(x) = 0 and v(y) =
∑
j∈J

max{yjf + pjf − dj, 0}.

T ≥
∑
f∈F

Tf .

(14)max

{
1

Cf

∑
j∈J(0,di)

pjf cjf − di, 0

}
, i ∈ J.

Tf ≥
1

Cf

∑
j∈J(0,di)

pjf cjf xjf − di, f ∈ F, i ∈ J,

Tf ≥ 0, f ∈ F.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 18 of 53

[Valid inequalities] can also include a second relaxation of the subproblem given
by

where Tfi is a tardiness of job i on facility f and Ufi is the big-M term. These inequali-
ties provide a valid bound only when the jobs are indexed in the order of increasing
deadlines d1 ≤ ... ≤ dn , and � is the permutation of indices so that p

�(1) ≤ ... ≤ p
�(n) ;

see details in Hooker [9].
Generation of optimality cuts is based on the same principle as the cuts given by

inequality (13). Let T∗
fk

 be the minimum tardiness on facility f in iteration k when the
jobs in Jfk are assigned to it. Then, Benders’ cut in iteration k is given by

Benders’ cut can be generated for each facility f ∈ F and added to the master problem.

4.2 � Single‑Facility Scheduling with a Segmented Timeline

A single-facility scheduling problem is a problem of assigning start times yj to a
set of jobs J to run at a single facility. Each job j ∈ J has a processing time pj
and must be processed within its time window defined by a release time rj and a
deadline dj . This problem does not decompose naturally. Therefore, the time horizon
is divided into segments to decompose the problem into assignment and schedul-
ing components. We study a variation of a single-facility scheduling problem with a
segmented timeline that is presented in Coban and Hooker [13]. The main difference
to the formulation in Coban and Hooker [13] is that not all of the jobs have to be
scheduled. First, the jobs are assigned to the segments, then scheduled within each
segment. The time horizon is divided into m segments with the start and end times
[as, as+1] for s ∈ S = {1, ...,m} . Let xjs take the value 1 if job j is assigned to segment
s and 0 otherwise, and let yj be the start time of job j. Note that there is a penalty for
not processing a job. Since the problem is to minimise an objective function, if a job
j ∈ J is not processed, a term 2pj with the corresponding processing time is added
to the objective. We introduce an auxiliary variable uj , which takes value 1 if job is
not processed and 0 otherwise.

The single-facility scheduling problem can be formulated in a form correspond-
ing to (1) as

T ≥
∑
f∈F

∑
i∈J

Tfi,

Tfi ≥
1

Cf

∑
j∈J

p
�f (j)f

c
�f (j)f

xjf − di − (1 − xfi)Ufi, f ∈ F, i ∈ J,

Ufi =
1

Cf

∑
j∈J

p
�f (j)f

c
�f (j)f

− di,

Tf ≥ T∗
kf

⎛⎜⎜⎝
1 −

�
j∈Jkf

(1 − xjf)

⎞⎟⎟⎠
, Tf ≥ 0.

1 3

Operations Research Forum (2023) 4:62	 Page 19 of 53  62

Constraints (16) correspond to A(x) and ensure that all jobs are assigned to no
more than one segment. Constraint (17) corresponds to H(y) and ensures that jobs
do not overlap and run sequentially. Constraints (18)–(19) correspond to C(x, y).
Constraints (18) ensure the time windows of jobs are observed. Constraints (19)
ensure jobs are processed within the time segments. The domains Dx and Dy are
given by Constraints (20) and (22) respectively.

The master problem in iteration k is given by

The master problem is augmented by [Valid inequalities] that contain the relaxation
described in Coban and Hooker [13]. The relaxation ensures that jobs running in time
interval [t1, t2] have a total processing time of no more than t2 − t1 . For each segment
s ∈ S , it is sufficient to enumerate all distinct intervals [rj, di] with rj < di for i, j ∈ J  .
In order to obtain a tight inequality, we consider effective bounds of the intervals within
a time segment. If the given release time rj is in the interval [as, as+1] , the effective
release time is equal to the given release time. If rj < as , the effective release time is

(15)min h(x) + v(y) + 2
∑
j∈J

pjuj,

(16)s.t.
∑
s∈S

xjs + uj = 1, j ∈ J,

(17)DISJUNCTIVE((yj|j ∈ J), (pj|j ∈ J)),

(18)xjs → rj ≤ yj ≤ dj − pj, s ∈ S, j ∈ J,

(19)xjs → as ≤ yj ≤ as+1 − pj, s ∈ S ⧵ m, j ∈ J⇔

(20)xjs ∈ {0, 1}, j ∈ J, s ∈ S,

(21)uj ∈ {0, 1}, j ∈ J,

(22)yj ∈ [rj, dj], j ∈ J, s ∈ S.

(23)

min z + 2
∑
j∈J

pjuj,

s.t.
∑
s∈S

xjs + uj = 1, j ∈ J,

z ≥ Bxi (x), i = 1, ..., k − 1,

[Valid inequalities] ,

xjs ∈ {0, 1}, j ∈ J, s ∈ S,

uj ∈ {0, 1}, j ∈ J.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 20 of 53

as . Otherwise, if rj > as+1 , the effective release time is as+1 . The effective deadline is
defined by a similar logic. The effective bounds of interval [rj, di] on segment s are
given by

The [Valid inequalities] are then defined as follows:

where J(rj, di) is the set of jobs whose time windows fall within time interval [rj, di].
The subproblem decomposes into a scheduling problem for each segment:

Depending on the objective function h(x) + v(y) , the subproblem is either solved as
an optimisation problem or a feasibility problem. Our study includes finding a feasible
schedule, minimising makespan, and minimising tardiness.

4.2.1 � Finding a Feasible Schedule

The problem to find a feasible schedule results in master and subproblems that are
both feasibility problems. Since unassigned jobs are penalised, the objective function
h(x) + v(y) is replaced by the penalty term 2

∑
j∈J pjuj . Similar to cumulative facility

scheduling (), the master problem is an assignment problem.
Let xk be the master problem solution in iteration k. If the subproblem has a solution

yk , then the pair (xk, yk) is the solution to problem defined by Eqs. (15)–(22). Other-
wise, feasibility cuts are generated for each segment s. Let Jks = {j|xk

js
= 1} be the set

of jobs that are assigned to segment s in iteration k. The feasibility cuts are given by

4.2.2 � Minimising Makespan

The objective function to minimise makespan, similar to the one presented for
cumulative scheduling, is given by the components

and the penalty term 2
∑

j∈J pjuj . The penalty term adds 2pj to the objective value
for each unassigned job j. To linearise the objective function, we introduce auxiliary

r̃sj = max{min{rj, as+1}, as} and d̃si = min{max{di, as}, as+1}.

(24)
∑

l∈J(rj,di)

plxls ≤ d̃si − r̃sj, s ∈ S, ∀ distinct [rj, di],

(25)

min v(y)

s.t. DISJUNCTIVE((yj|i ∈ J), (pj|i ∈ J)),

xjs → rj ≤ yj ≤ dj − pj, s ∈ S, j ∈ J,

xjs → as ≤ yj ≤ as+1 − pj, s ∈ S ⧵ m, j ∈ J.

(26)
∑
j∈Jks

(1 − xjs) ≥ 1, s ∈ S.

h(x) = 0 and v(y) = max
j∈J

(yj + pj),

1 3

Operations Research Forum (2023) 4:62	 Page 21 of 53  62

variables Ms , which denote the makespan for each segment s, and auxiliary variable
M, which denotes the makespan over all segments.

In addition to [Valid inequalities] (24), the master problem for the minimis-
ing makespan can be strengthened by the following bound for each distinct rj and
each segment s

The subproblem can be separated into an optimisation problem for each seg-
ment s. If the subproblem is infeasible, feasibility cuts in the form of (26) are
generated. If the subproblem in iteration k has a solution and M∗

ks
 is the minimum

makespan for segment s, an optimality cut is given by

The cut indicates that the makespan M cannot be lower than M∗
ks

 unless at least
one job is removed from Jks.

4.2.3 � Minimising Total Tardiness

The objective function to minimise tardiness is given by the components

and the penalty term 2
∑

j∈J pjuj . We introduce auxiliary variables Ts to linearise the
objective function. Variables Ts denote the total tardiness for each segment s, and the
total tardiness over all segments T =

∑
s∈S Ts is minimised in the master problem.

Since the deadlines are now due dates, the time window constraints (18) are
modified to

The [Valid inequalities] in the master problem (23) contain a modified ver-
sion of the relaxation (24), where the effective deadline is replaced by the end
of a segment. Let r̃sj be the effective release time of job j on segment s, and let
J(rj,∞) be the set of jobs with time windows after release time rj of job j. The
[Valid inequalities] require the total processing time of jobs j ∈ J(rj,∞) that are
assigned to segment s to not exceed as+1 − r̃sj . The inequalities are given by

M ≥ r̃sj +
∑

l∈J(rj,∞)

plxls, s ∈ S, j ∈ J.

M ≥ M∗
ks

(
1 −

∑
j∈Jks

(1 − xjs)
)
.

h(x) = 0 and v(y) =
∑
j∈J

max{yj + pj − dj, 0},

xjs → rj ≤ yj, s ∈ S, j ∈ J.

∑
l∈J(rj,∞)

plxsl ≤ as+1 − r̃sj, s ∈ S, j ∈ J.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 22 of 53

The master problem can also be strengthened by the following bound for tardiness:

Since the subproblem is an optimisation problem, either a feasibility cut in the
form of (26) or an optimality cut is generated. If the subproblem has an optimal
solution in iteration k, let T∗

ks
 be the minimum tardiness on segment s. If T∗

ks
> 0 ,

we have the following optimality cut:

4.3 � Vehicle Routing Problem with Location Congestion

The problem is to deliver goods from a central depot to various locations using a
set of vehicles subject to vehicle capacity and location congestion constraints. The
vehicle routing problem with location congestion was introduced in Lam and Van
Hentenryck [23], and a LBBD scheme for solving it was derived in Lam et al. [6].

Let R be the set of requests for goods and let L be the set of locations. Each
request i ∈ R is to be delivered to one location li ∈ L within a time window
defined by a release time and a deadline, denoted by ri and di , respectively. The
set Rl = {i ∈ R|li = l} is the set of all requests at location l ∈ L . Each request
i ∈ R has weight qi , and the maximum weight a vehicle can carry is Q. Each vehi-
cle requires the use of one piece of equipment for processing time pi to unload
the goods. Each location has a fixed set of equipment, and the total number is
denoted by Cl . As such, there is a limited capacity at each of the locations.

This vehicle routing problem decomposes into routing and scheduling compo-
nents. A graph G = (N,A) is defined to model the routing component of the prob-
lem. The set of nodes N = R ∪ {O−,O+} includes the central depot and the set of
requests with the location information, where O− and O+ respectively denote the
artificial start and end nodes that correspond to the central depot. All vehicles
must return to the central depot before time T. The set A = {(i, j) ∈ N ×N|i ≠ j}
denotes the arcs connecting the nodes. The master problem identifies a set of
vehicle routes that satisfy all delivery requests. The variables xij equal 1 if a vehi-
cle travels along arc (i, j), and 0 otherwise. Traversing arc (i, j) takes cij time
units. There are two continuous subproblem variables at each node i ∈ N  . The
variables ystart

i
 and yweight

i
 are equal to the time a vehicle starts unloading goods

and the total accumulated weight of delivered goods, respectively.
The vehicle routing problem with location congestion formulation is given by

T ≥
∑
s∈S

(
as + pjxjs − dj − (1 − xjs)(as − dj)

)
.

T ≥ T∗
ks

(
1 −

∑
j∈Jks

(1 − xjs)
)
.

(27)min h(x) + v(y),

1 3

Operations Research Forum (2023) 4:62	 Page 23 of 53  62

Constraints (28)–(29), which correspond to A(x) in problem (1), ensure that each
request is assigned to exactly one vehicle. The Cumulative Constraints (30) cor-
respond to H(y) and enforce capacity limit at each location. Constraints (31)–(32)
correspond to C(x, y) in problem (1). The vehicle weight limits are enforced by
Constraints (31). Constraints (32) ensure that vehicles start unloading goods within
arrival time windows corresponding to each request. Since all of the vehicles are
identical and each node has exactly one incoming and outgoing arc, there is no need
to represent the vehicles explicitly. The number of the arcs outgoing from (or incom-
ing to) the central depot gives the number of vehicles used in a solution.

The master problem in iteration k is given by

The [Valid inequalities] comprise Constraints (31)–(32). They state that for a vehi-
cle that travels along arc (i, j), the accumulated weight of goods delivered after request
j cannot be smaller than the accumulated weight after request i. Similarly, unloading at
node j cannot start before unloading at node i. Note that [Valid inequalities] are added
to the master problem regardless of the type of the objective function.

(28)s.t.
∑

i∶(i,j)∈A

xij = 1, j ∈ R,

(29)
∑

j∶(i,j)∈A

xij = 1, i ∈ R,

(30)CUMULATIVE((ystart
i

|i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl),Cl), l ∈ L,

(31)xij → y
weight

i
+ qj ≤ y

weight

j
, (i, j) ∈ A,

(32)xij → ystart
i

+ pi + cij ≤ ystart
j

, (i, j) ∈ A,

(33)xij ∈ {0, 1}, (i, j) ∈ A,

(34)ystart
i

∈ [ri, di], i ∈ N,

(35)y
weight

i
∈ [qi,Q], i ∈ N.

min z

s.t.
∑

i∶(i,j)∈A

xij = 1, j ∈ R,

∑
j∶(i,j)∈A

xij = 1, i ∈ R,

z ≥ Bxi (x), i = 1, ..., k − 1,

[Valid inequalities].

	 Operations Research Forum (2023) 4:62

1 3

62  Page 24 of 53

Let xk be the master problem solution in iteration k, then the subproblem is given by

4.3.1 � Minimising Total Travel Time

The goal is to minimise the total time all of the vehicles use to deliver goods and
return to the central depot. The objective function is given by the components

Since the objective function does not depend on the subproblem variables, the sub-
problem is solved as a feasibility problem. Therefore, only feasibility cuts are gener-
ated. Let Jk = {(i, j) ∈ A|xk

ij
= 1} be the set of arcs that were selected in the master

problem solution in iteration k. A feasibility cut is given by

4.3.2 � Minimising Makespan

The goal is to minimise the time the last vehicle delivers goods and returns to the
central depot. The objective function is given by

The objective function can be linearised by introducing the auxiliary variable M
that denotes makespan, which is minimised in the master problem.

Using the solution to the subproblem, either an optimality or feasibility cut is
generated. If the subproblem is infeasible, a feasibility cut in the form of inequality
(36) is generated. If the subproblem has an optimal solution with objective value M∗

k

in iteration k, an optimality cut similar to inequality (13) is generated. This cut is
given by

min v(y)

s.t. CUMULATIVE((ystart
i

|i ∈ Rl), (pi|i ∈ Rl), (1|i ∈ Rl),Cl), l ∈ L,

xk
ij
= 1 → y

weight

i
+ qj ≤ y

weight

j
, (i, j) ∈ A,

xk
ij
= 1 → ystart

i
+ pi + cij ≤ ystart

j
, (i, j) ∈ A.

h(x) =
∑

(i,j)∈A

cijxij and v(y) = 0.

(36)
∑

(i,j)∈Jk

(1 − xij) ≥ 1.

h(x) = 0 and v(y) = max
i∈R

(yi + pi).

M ≥ M∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
.

1 3

Operations Research Forum (2023) 4:62	 Page 25 of 53  62

4.3.3 � Minimising Total Tardiness

The tardiness of a request is defined as the time by which the delivery overruns its
deadline, and the total tardiness is the total time by which all of the requests over-
run their delivery deadlines. Since the requests are allowed to be delivered past their
deadlines, the deadlines are replaced by due dates. The objective function to mini-
mise the total tardiness is given by the components

An auxiliary variable T, which denotes the total tardiness, is introduced to lin-
earise the objective function. The variable T is minimised in the master problem.

Using the solution to the subproblem, either an optimality or feasibility cut is
generated. If the subproblem is infeasible, the feasibility cut (36) is generated. Oth-
erwise, if the subproblem has an optimal solution with objective value T∗

k
 in iteration

k, an optimality cut similar to the one for minimising the makespan is generated.
This optimality cut is given by

The optimality cut provides a tight bound T∗
k
 on the total tardiness T when all of

the arcs (i, j) ∈ Jk are added to the route.

5 � Analytic Benders’ Cuts

It is possible to generate a type of Benders’ cut that is based on the subproblem
structure, termed analytic Benders’ cuts. The aim of analytic Benders’ cuts is to
address the limitation of optimality cuts of form (3), where a tight bound is only
given when each variable in J has the value 1. In contrast, analytic Benders’ cuts
improve the bound when some of the decision variables change their values from
1 to 0. The analytic cuts can be generated by analysing how changing the values
of the decision variables affects the objective value. These cuts can be used along
with the optimality cuts of type (3) or as an alternative. The analytic cuts can also
be strengthened using the cut-strengthening techniques described in Sect. 3.2. Nec-
essary assumptions to use analytic Bender’s cuts are given in the following. All of
the analytic cuts used in this study are based on the derivation given in Hooker [9]
and in Coban and Hooker [13]. We expect that it is possible to generate analytic
Benders’ cuts for the vehicle routing problem with local congestion. However,
since no such cuts have been previously presented in the literature, and the deriva-
tion of new types of cuts is out of the scope of this paper, no results are presented.

h(x) = 0 and v(y) =
∑
i∈R

max{yi + pi − di, 0}.

T ≥ T∗
k

(
1 −

∑
(i,j)∈Jk

(1 − xij)
)
, T ≥ 0.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 26 of 53

5.1 � Cumulative Scheduling

Let Jfk be the set of tasks assigned to facility f in iteration k, and M∗
fk

 be the cor-
responding minimum makespan. In the derivation of these cuts, it is assumed that
all of the release times are equal to 0 and that the deadlines have different values.
If one or more job assignments are removed from facility f, the resulting mini-
mum makespan Mf is bounded by

The bound complies with the properties of the bounding function outlined in
Sect. 3.1. When the supbroblem has an optimal solution with the minimum
makespan M∗

fk
 , an analytic Benders’ cut of form (37) can be generated instead of

or alongside an optimality cut of form (13).
Analytic Bender’s cuts for the minimum tardiness problem are derived based

on the same principle as the analytic cuts (37) for the minimising makespan prob-
lem. Let T∗

fk
 be the minimum tardiness corresponding to Jfk . An analytic cut that

bounds the total tardiness T over all facilities is given by

5.2 � Disjunctive Scheduling

Let Jsk be the set of jobs assigned to segment s in iteration k and let M∗
sk

 be the
corresponding minimal makespan. Define J̃sk =

{
j ∈ Jsk|rj ≤ as

}
 as the set of

jobs in Jsk with release times before segment s. If one or more jobs from J̃sk are
no longer assigned to segment s in the subsequent iterations, a lower bound on
the resulting makespan Ms is provided by an analytic cut:

The second sum in the left-hand side takes care of the case when jobs from
Jsk∖J̃sk are removed from segment s; see details in Coban and Hooker [13].

For the minimising tardiness problem. Let

be the last release time of jobs assigned to segment s, or the start time of the seg-
ment as , whichever is greater. Note that, if all the jobs assigned after the greatest
release time are processed before the next segment, i.e., if

(37)Mf ≥ M∗
fk
−

∑
j∈Jfk

pjf (1 − xjf) −max
j∈Jfk

{dj} +min
j∈Jfk

{dj}.

(38)T ≥
�
f∈F

⎛⎜⎜⎝
T∗
fk
−

�
i∈Jfk

max
��

j∈Jfk

pjf − di, 0
�
(1 − xif)

⎞⎟⎟⎠
.

(39)
Ms ≥ M∗

sk
−
∑

j∈J̃sk
pjs(1 − xjs) −maxj∈J̃sk

{dj}

+minj∈J̃sk
{dj} −M∗

sk

∑
j∈Jsk�J̃sk

(1 − xjs).

rmax
s

= max
{
max

{
rj|j ∈ Js

}
, as

}

1 3

Operations Research Forum (2023) 4:62	 Page 27 of 53  62

holds, the problem is feasible. Based on inequality (40), the analytic Benders’ cut for
minimising tardiness on segment s is

where T∗
sk

 is the minimal tardiness on segment s in iteration k. The total tardiness
over all segments is then bounded by

6 � Computational Evaluation

The effectiveness of the cut-strengthening techniques, described in Section 3.2,
is evaluated in a series of computational experiments. The first experiment
solves the cumulative scheduling problem for three objective functions given in
Sect. 4.1. The experiment runs the LBBD solution scheme applying each cut-
strengthening technique separately for all of the problems. The second and third
experiments similarly solve the single-facility scheduling 4.2 and vehicle rout-
ing 4.3 problems, respectively.

Each experiment comprises one problem that only generates feasibility cuts and two
problems that generate both feasibility and value cuts. We extend the computational
experiments from the conference paper [3] by adding an analysis of problems that gen-
erate value cuts. Moreover, two types of value cuts are analysed—strengthened opti-
mality cuts and analytic Benders’ cuts. Each corresponding problem is solved twice
with respect to the type of generated value cuts. The cut-strengthening techniques are
applied to both types of cuts. In the case when the subproblem can be separated into
independent problems, we also make a comparison between solving these independent
problems individually and solving them together as one large problem, referred to as
solving the split or no-split subproblem, respectively.

The comparison of cut-strengthening techniques will be performed by evaluating
the run time and the size of the strengthened cuts.

The LBBD scheme is implemented in Python 3.8, and the MIP and CP mod-
els are solved using Gurobi Optimizer version 9.1.2 and IBM ILOG CP Optimizer
version 20.1, respectively. All tests have been carried out on a computer with two
Intel Xeon Gold 6130 processors (16 cores, 2.1 GHz each) and 96 GB RAM. Each
instance was given a total time of 20 min, and the MIP-gaps are set to 0 for the
master problems.

(40)rmax
s

+
∑
j∈Js

pjs ≤ as+1

Ts ≥

⎧
⎪⎨⎪⎩

�
T∗
sk
−
∑

i∈Jsk

�
rmax
s

+
∑

j∈Jsk
pjs − di

�+

(1 − xjs)

�
, if (40) holds

�
T∗
sk
−
�
1 −

∑
i∈Jsk

(1 − xjs)
��

, otherwise,

T ≥
∑
s∈S

Ts.

	 Operations Research Forum (2023) 4:62

1 3

62  Page 28 of 53

6.1 � Instances

The instances are either taken from the literature or generated in line with descrip-
tions in the literature, but with new parameter settings. All instances can be
accessed, either directly or via reference, from our repository1. For the cumula-
tive facility scheduling problem with fixed costs, referred to as Problem 4.1, we
use 336 instances from Hooker [9]. For the single machine scheduling problem
with sequence-dependent setup times and multiple time windows, referred to as
Problem 4.2, we use instances generated based on the description in Coban and
Hooker [13]. For the vehicle routing problem with location congestion, referred to
as Problem 4.3, we use 450 instances from Lam et al. [6].

6.2 � Computational Effectiveness

To evaluate the effectiveness of the cut-strengthening techniques, we first look at
their impact on the run time of the LBBD scheme. We then look at the average size
of the cuts generated by the cut-strengthening techniques. Additional data is pro-
vided in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 in Appendix 2.

For the run time plots, the horizontal axis gives the time, and the vertical axis
gives the percentage of solved instances. A point (x, y) on the curve means that y%
of instances can be solved in less than x seconds. The cut size figures are histo-
grams, a point (x, y) means average cut size x has frequency y, where the frequency y
is the number of generated cuts. Since the type of a value cut does not influence the
size of the cut, we only differentiate the histograms by the type of the subproblem.
In the figures below, the additive/deletion filter and no cut strengthening are referred
to as adel and none, respectively.

The experiments evaluating the effect of cut strengthening on analytic cuts show
results very similar to results for strengthened optimality cuts. For the sake of brevity,
the results and discussion related to analytic cuts have been moved to Appendix 1.

6.2.1 � Minimising Makespan for Cumulative Facility Scheduling Problem

It can be seen in Fig. 2a for the split subproblem that the most instances are solved
to optimality when applying the deletion filter and DFBS. Specifically, 65.48% and
64.29% of instances, respectively. This result is closely followed by additive/dele-
tion filter and greedy method with very similar profiles in Fig. 2a and the respective
percentages of solved instances of 63.99% and 63.39%. An analysis of the experi-
ment data shows that the additive/deletion filter and DFBS spend more time solving
subproblems than deletion filter. The additive/deletion filter and DFBS respectively
spend 107.05 s and 113.21 s of run time, while deletion filter spends 81.17 s. This
might suggest that the random order of variables is negatively affecting the efficiency
of DFBS and additive/deletion filter. Since the deletion filter checks every variable,

1  https://​gitlab.​liu.​se/​eliro​15/​lbbd_​insta​nces.

https://gitlab.liu.se/eliro15/lbbd_instances

1 3

Operations Research Forum (2023) 4:62	 Page 29 of 53  62

it is not affected by randomness. Similar to deletion filter, the greedy method spends
84.19 s. However, Fig. 3 shows that the greedy method generates cuts of higher den-
sity, which lead to a master problem that is harder to solve.

Interestingly, applying cut-strengthening techniques to the no-split subproblem
has the same impact on the results as splitting the subproblem with no cut strength-
ening. The DFBS, deletion filter, additive/deletion filter, and additive method used
for the no-split subproblem, with the respective percentages of solved instances of
58.93%, 54.17%, 56.25%, and 54.46%, achieve similar results to splitting the sub-
problem and applying no cut strengthening with 54.46% of solved instances. The

(a) Split (b) No-split

Fig. 2   Cumulative scheduling: percentage of solved instances for minimising makespan problem for with
strengthened optimality cuts

Fig. 3   Cumulative scheduling: average size of optimality cuts for the minimising makespan problem with
split subproblem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 30 of 53

weak effectiveness of the greedy algorithm for the no-split subproblem can be
explained by the high density of the cuts, as can be seen in Fig. 4. The cuts gener-
ated by the greedy algorithm are less sparse compared to other techniques. They
substantially increase the number of iterations and the master problem run time. In
other words, the time spent strengthening the cuts using the greedy algorithm does
not pay off.

6.2.2 � Minimising Tardiness for Cumulative Facility Scheduling Problem

The first thing to notice in the run time Fig. 5 is that the split subproblem gives
significantly higher results than the no-split subproblem. The best effectiveness
for the no-split subproblem is shown in Fig. 5b by the deletion filter with 7.44% of
solved instances. However, this result is considerably different to effectiveness when
splitting the subproblems, with the lowest result of 25.6% of solved instances that
corresponds to no cut strengthening. The deletion filter shows the best result when
splitting the subproblem with 37.2% of instances solved. This result is followed by
additive/deletion, DFBS, and additive with 36.31%, 36.12%, and 35.71% of solved
instances, respectively. The greedy algorithm with 30.36% of solved instances is
notably behind other algorithms. The results in Fig. 6 show that all of the algorithms
except for the greedy method are similar in terms of the average size of the cuts.
The median values of number of variables per cut for DFBS, additive/deletion filter,
additive, and deletion filter are 3.30, 3.31, 3.32, and 3.37, respectively. Whereas,
the greedy method and no cut strengthening have respective median values of 4.44

Fig. 4   Cumulative scheduling: average size of optimality cuts for the minimising makespan problem for
with no-split subproblem

1 3

Operations Research Forum (2023) 4:62	 Page 31 of 53  62

and 4.65 variables per cut. Similarly, the greedy algorithm generates the most dense
cuts for the no-split subproblem, as can be seen in Fig. 7. The nature of the objective
function is likely to be the reason of the poor performance of the greedy algorithm.
Since total tardiness is the sum of lateness of each job, it is likely to be affected by
the removal of an assignment. This is different from the total makespan. Since the
total makespan is the time the last job ends, removing one assignment is not as likely
to decrease the objective. The greedy algorithm does not remove many assignments
in the search process before tardiness of the subproblem decreases. This leads to the

(a) Split (b) No-split

Fig. 5   Cumulative scheduling: percentage of solved instances for minimising tardiness problem with
strengthened optimality cuts

Fig. 6   Cumulative scheduling: average size of optimality cuts for the minimising tardiness problem with
split subproblem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 32 of 53

cut not having reduced its size. The generated dense cuts then lead to the increased
number of Bender’s iterations.

The relative effectiveness for each of the strengthening technqiues is similar for
both the strengthened and analytic cuts. However, the results presented in Appen-
dix 2 demonstrate that analytic cuts for the split subproblem perform relatively
poorly with less instances solved to optimality compared to strengthened optimality
cuts, an observation that is also reported by Hooker [9].

6.2.3 � Minimising Total Cost for Cumulative Facility Scheduling Problem

Similar to the previous experiments, a considerable rise in computational effective-
ness of the LBBD scheme comes from splitting the subproblem, as can be seen in
run time Fig. 8. At the same time, applying cut-strengthening to the split subprob-
lem still gives a significant boost to the results: the deletion filter, DFBS, additive/
deletion filter, and the greedy algorithm with the respective percentages of 74.70%,
74.11%, 72.91%, and 72.32% outperform no cut strengthening and additive method
with 65.17% and 65.47% of solved instances, respectively. Interestingly, Fig. 9
shows that DFBS, deletion filter, and additive/deletion filter have very similar histo-
grams of average cut sizes with the same median value of 4. The median values for
the additive method, greedy method, and no cut strengthening are 5.67, 6.38, and
7.52 variables per cut, respectively. Although the greedy algorithm generates denser
cuts than the additive method, the number of subproblems it performs is lower.
The greedy algorithm and the additive method solve 59.3 and 163.1 subproblems,

Fig. 7   Cumulative scheduling: average size of optimality cuts for the minimising tardiness problem with
no-split subproblem

1 3

Operations Research Forum (2023) 4:62	 Page 33 of 53  62

respectively. This is likely to be the reason of the relatively good performance of
the greedy algorithm. Overall, the results for the most of the cut-strengthening tech-
niques for the split-subproblem do not differ much in terms of run time.

In contrast to the split subproblem, the difference in effectiveness is more pro-
nounced for the no-split subproblem. The additive/deletion method for the no-split
subproblem outperforms all other cut-strengthening techniques with 63.39% of
instances solved to optimality. The additive/deletion filter, DFBS, and the deletion
filter have similar sparsity of the feasibility cuts, as shown in Fig. 10. However,
additive/deletion filter has a lower number of subproblems solved per instance com-
pared to the deletion filter and DFBS. This indicates that additive/deletion filter is

(a) Split (b) No-split

Fig. 8   Cumulative scheduling: percentage of solved instances for minimising total cost problem with
strengthened feasibility cuts

Fig. 9   Cumulative scheduling problem: average size of feasibility cuts for the minimising total cost with
split subproblem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 34 of 53

successful in removing variables not contributing to infeasibility early on. The effec-
tiveness of the additive/deletion filter also compares to the split subproblem with no
cut strengthening.

6.2.4 � Minimising Makespan for Disjunctive Scheduling Problem

The run time results in Fig. 11a show that using cut-strengthening techniques does
not accelerate the LBBD scheme for the split subproblem. In fact, using the greedy
method or no cut strengthening outperforms all of the other techniques. The results

Fig. 10   Cumulative scheduling: average size of feasibility cuts for the minimising total cost problem with
no-split subproblem

(a) Split (b) No-split

Fig. 11   Disjunctive scheduling: percentage of solved instances for minimising makespan with strength-
ened optimality cuts

1 3

Operations Research Forum (2023) 4:62	 Page 35 of 53  62

in Fig. 12 show that on average all of the techniques fail to reduce the size of the
cuts. This implies that master variables are already split into minimal subsets and
cannot be reduced further. Therefore, the time spent on cut strengthening is not
compensated, as can be seen in the run time profiles in Fig. 11a.

By contrast, Fig. 13 shows that all of the cut-strengthening techniques, except
for the greedy, give a significant rise in effectiveness for the no-split subproblem.
This can be explained by significant difference in the sparsity of the generated cuts.
The DFBS, deletion filter, additive/deletion filter, and the additive method have the
median of 2 for average cut size, compared to 38 and 75 for the greedy algorithm
and no cut strengthening, respectively. The sparsity of the irreducible cuts can be
explained by the fact that only one job at a time can be processed, and the subopti-
mality of the solution is likely to be caused by the few jobs with the greatest process-
ing end times. The greedy algorithm generates cuts that are stronger than the origi-
nal; however, they are not strong enough to compensate for the time spent on the
search. On the other hand, the DFBS is by far the best-performing cut-strengthening
technique. DFBS solves 95.41% of instances, which is about the same as 95.20%
using no cut strengthening for the split subproblem. This can be explained by the
low number of iterations and subproblems solved: DFBS solves 28.28 subproblems
in 4.91 iterations, compared to 49.38 subproblems in 5.14 iterations by additive/
deletion filter and 90.94 subproblems in 5.02 iterations by deletion filter. This result
suggests that the search strategy employed by the DFBS is more effective compared
to the deletion filter and the additive/deletion filter. The comparison of the split and
no-split results shows that DFBS can be used instead of splitting the subproblem,
and vice versa.

Fig. 12   Disjunctive scheduling: average size of optimality cuts for the minimising makespan problem
with split subproblem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 36 of 53

6.2.5 � Minimising Tardiness for Disjunctive Scheduling Problem

The most noticeable observation from the run time Fig. 14 is that cut strengthen-
ing is not an effective way to accelerate the solution. Only splitting the sub-
problem makes a meaningful impact on the ability to solve the instances. When
using no cut strengthening, splitting the subproblems solves 48.13% of the instances
to optimality. This is compared to 1.88% of instances solved to optimality when
no splitting of the subproblems is performed. Another striking observation is that the

Fig. 13   Disjunctive scheduling: average size of optimality cuts for the minimising makespan problem
with no-split subproblem

(a) Split (b) No-split

Fig. 14   Disjunctive scheduling: percentage of solved instances for minimising tardiness with strength-
ened optimality cuts

1 3

Operations Research Forum (2023) 4:62	 Page 37 of 53  62

results presented in Fig. 15 for the split subproblem are similar for all of the cut-
strengthening techniques including no cut strengthening. This suggests that, as in
the case for the minimising makespan problem, the master variables are already
split into minimal subsets. Similar to previous experiments, the greedy algorithm
reduces the cut density the least, as can be seen in Fig. 16. It can also be seen
that although the additive method generates sparse cuts, it fails to solve many
instances. This is due to the long time it takes to find the irreducible feasibility
cuts. The additive method solves 2075.5 subproblems on average, while other
methods solve in the range of 129.75−507.5 subproblems.

6.2.6 � Finding a Feasible Schedule for Disjunctive Scheduling Problem

It can be seen from the comparison of the run time in Fig. 17 that splitting the subprob-
lem is more effective in accelerating the solution process than cut strengthening. As in
the case for other objective functions, Fig. 18 shows that all of the cut-strengthening
techniques generate cuts of similar size for the split subproblem. Within 9.98 s, all
of the cut-strengthening techniques, including none, solve at least 87.7% of instances.
Nevertheless, cut-strengthening techniques still have a substantial impact on the solu-
tion process when the subproblem is not split. Similar to the results for the minimis-
ing makespan problem, all of the cut-strengthening techniques except for the greedy
method increase the percentage of solved instances compared to using no cut strength-
ening by at least 39.79%. The most effective algorithms for the no-split subproblem

Fig. 15   Disjunctive scheduling: average size of optimality cuts for the minimising tardiness problem
with split subproblem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 38 of 53

are DFBS and additive method with respective percentages of solved instances of
94.38% and 92.71%, compared to 47.92% with no cut strengthening. All of the cut-
strengthening techniques except for the greedy reduce the size of the cuts significantly,
as shown in Fig. 19. The DFBS tends to generate the most sparse cuts. The median
value of the average cut size for DFBS is 3.33 variables per cut, compared to 3.4 for
deletion filter and the additive method, and 3.44 for additive/deleton filter. The DFBS
also spends much less time on average solving the subproblem—only 31.34 s com-
pared to the next closest result of 62.22 s by the additive method. That implies that
DFBS detects an irreducible set of variables much faster than other techniques. This
result suggests that the search method used by DFBS is better suited for this problem
compared to the other techniques under investigation.

Fig. 16   Disjunctive scheduling: average size of optimality cuts for the minimising tardiness problem
with no-split subproblem

(a) Split (b) No-split

Fig. 17   Disjunctive scheduling: percentage of solved instances for finding a feasible schedule problem
with strengthened feasibility cuts

1 3

Operations Research Forum (2023) 4:62	 Page 39 of 53  62

6.2.7 � Minimising Makespan for Vehicle Routing Problem

The first thing to notice in Fig. 20a is that 53.11% of instances terminate after a sin-
gle iteration regardless of the cut-strengthening technique applied. The reason is that

Fig. 18   Disjunctive scheduling: average size of feasibility cuts for the finding a feasible schedule prob-
lem with split subproblem

Fig. 19   Disjunctive scheduling: average size of feasibility cuts for the finding a feasible schedule prob-
lem with no-split subproblem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 40 of 53

the instances either have an infeasible master problem or an infeasible subproblem.
The infeasibility of the master problem is detected before adding any feasibility cuts,
and the infeasibility of the subproblem is detected without any restriction on the
master problem variables. The subproblem infeasibility is checked before the ini-
tialisation of the LBBD scheme.

When using no cut strengthening, no instances are solved to optimality.
Although the greedy algorithm improves that result by solving 59.33% of instances
to optimality, it still performs poorly compared to other cut-strengthening tech-
niques. Interestingly, cut-strengthening techniques with similar search processes
show similar results. The additive/deletion filter and additive method solve 91.11%
and 88.89% of instances to optimality, respectively. The deletion filter and DFBS
are the most effective, solving 99.55% of instances to optimality. Figure 21 shows
that the average size of the generated cuts is similar for the deletion filter, DFBS,
additive/deletion filter, and the additive method. However, the deletion filter tends
to have fewer Bender’s iterations than other cut-strengthening techniques—30.68
iterations compared to 62.64, 65.27, and 65.73 by DFBS, additive/deletion filter,
and additive method, respectively. This suggests that the cuts generated by the dele-
tion filter are more effective. At the same time, DFBS has a smaller number of
subproblems solved—697.14 compared to 1344.53, 1475.92, and 2676.89 when
using additive/deletion filter, deletion filter, and additive method, respectively. That
implies that DFBS generates less effective cuts, but in a shorter time. Therefore,

(a) Makespan (b) Tardiness

(c) Total Travel Time

Fig. 20   Vehicle routing problem: percentage of solved instances for minimising makespan, minimising
tardiness, and minimising total travel time problems

1 3

Operations Research Forum (2023) 4:62	 Page 41 of 53  62

the time spent on a greater number of iterations is offset by smaller subproblem
solution time per iteration.

6.2.8 � Minimising Total Tardiness for Vehicle Routing Problem

As can be seen in Fig. 20b, the share of infeasible instances is smaller than for the
minimising makespan problem. This is due to jobs being allowed to run past their
deadlines. The job deadlines would otherwise cause infeasibility of valid inequali-
ties in the master problem. All of the 6.89% of instances that terminate after a sin-
gle iteration have an infeasible subproblem. When using no cut strengthening or
the greedy method, no instances are solved to optimality. DFBS, surprisingly, has
a small impact on the computational performance and solves 10.44% of instances.
Somewhat better results are shown by the additive method and additive/deletion fil-
ter, with both solving 20.67% of instances. However, the additive method has a bet-
ter run time profile than the additive/deletion filter. This is likely due to a greater
number of iterations performed by additive/deletion filter—197.71 compared to
61.71 by additive method. The deletion filter significantly boosts the performance
with 41.33% of instances solved. Figure 22 shows that the DFBS, deletion filter,
and the additive method have a similar average cut size. However, the deletion filter
solves fewer subproblems—820.79 compared to 3823.91 and 6036.35 by additive
method and DFBS, respectively. Moreover, the deletion filter performs the small-
est number of iterations—27.06 compared to 61.71, 165.76, and 197.91 by additive
method, DFBS, and additive/deletion filter, respectively. That implies that the dele-
tion filter generates stronger cuts, and its search method is the best suited for the
given instances.

Fig. 21   VRPLC: average size of feasibility cuts for the minimising makespan problem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 42 of 53

6.2.9 � Minimising Total Travel Time for Vehicle Routing Problem

Similar to the minimising makespan problem, 53.11% of instances are detected to
be infeasible after a single iteration. No other instances are solved to optimality
when using no cut strengthening, as can be seen in Fig. 20c. The greedy method
improves this result by 12.66% with 65.77% of solved instances. Notably, other
techniques under investigation show substantial improvement in computational
effectiveness. Namely, using DFBS solves 100% of the given instances. This
result is followed by deletion filter and additive method both solving 95.55% of
instances. Although the additive/deletion filter solves 91.55% of instances, it has
a better run time profile than the additive method. This is due to a lower number
of iterations and subproblems solved—20.99 iterations and 533.29 subproblems
compared to 26.36 and 1510.15 by the additive method. All of these four cut-
strengthening techniques have similar results in terms of the average cut size, as
can be seen in Fig. 23. We also note that these cut-strengthening techniques lead
to similar numbers of Benders’ iterations. This suggests that the generated cuts
have similar effectiveness. However, DFBS on average solves 286.65 of subprob-
lems—a much lower number than the other three techniques. That implies that
DFBS is more efficient in generating cuts of similar size. Overall, the marginal
difference in the run time of the cut-strengthening techniques is caused by the dif-
ferent efficiency of the search strategies.

Fig. 22   VRPLC: average size of optimality cuts for the minimising tardiness problem

1 3

Operations Research Forum (2023) 4:62	 Page 43 of 53  62

7 � Concluding Remarks

This paper investigates the impact of various cut-strengthening techniques on the
computational effectiveness of the LBBD scheme. Namely, the greedy algorithm,
deletion filter, additive method, additive/deletion filter, and the depth-first binary
search were evaluated. The evaluation is based on computational experiments that
solve the cumulative facility scheduling problem, the single-facility scheduling
with a segmented timeline problem, and the vehicle routing with local congestion
problem. The three types of problems with various objective functions have been
solved applying the cut-strengthening techniques within the LBBD scheme. The
previous work of Karlsson and Rönnberg [5] is extended by including problem
formulations that require generating both feasibility and optimality cuts. Addition-
ally, the cut-strengthening techniques were applied to two types of value cuts—
no-good optimality cuts and analytic Benders’ cuts. For the problem formulations
that allow subproblem separation, the comparison is made between applying the
cut-strengthening techniques to the separated subproblem and applying them to
one large subproblem.

When summarising the results, the following can be observed. The cut-strengthen-
ing techniques, such as DFBS, deletion filter, additive/deletion filter, and additive, that
generate irreducible cuts tend to outperform the greedy algorithm and no cut strength-
ening. This is mostly due to sparsity of the irreducible cuts. We also note that the

Fig. 23   VRPLC: average size of feasibility cuts for the minimising total travel time problem

	 Operations Research Forum (2023) 4:62

1 3

62  Page 44 of 53

effectiveness of the greedy algorithm depends on the type of the objective function.
Overall, DFBS and deletion filter have the best computational effectiveness. Although
DFBS and deletion filter generate cuts of the same size and strength as additive/dele-
tion filter and the additive method, they solve lower number of subproblems. Therefore,
DFBS and deletion filter have lower subproblem solution time. This implies that DFBS
and deletion filter are more efficient in identifying irreducible cuts.

Another observation is that the separation of the subproblem does not always
strongly dominate cut strengthening in terms of benefiting the solution process. In fact,
there are cases when splitting the subproblem and applying cut strengthening are inter-
changeable. Therefore, some of the techniques can benefit the solution process signifi-
cantly even if the subproblem is not separable. For example, the vehicle routing prob-
lem does not naturally separate the subproblem, and the computational results show
that it is imperative to use cut strengthening.

The results show that the difference in performance between the cut-strengthening
techniques comes from the efficiency of the search strategy. It would be relevant to
investigate the impact of the order of variables on the search strategy. Another obser-
vation is that the cut-strengthening techniques have different results depending on the
type of the objective function. It may also be worth analysing how the objective func-
tion could be exploited to improve the effectiveness of the techniques.

Appendix 1. Analytic cuts

Minimising Makespan for Cumulative Facility Scheduling Problem

As can be seen in Fig. 24a, the deletion filter and the greedy algorithm give the best
performance for the split subproblem with 66.7% of the instances solved to optimal-
ity for both methods. Similarly, the DFBS and the additive/deletion with respective
percentages of solved instances of 64.58% and 63.69% show better results than the

(a) Split (b) No-split

Fig. 24   Cumulative scheduling: percentage of solved instances for minimising makespan problem with
analytic optimality cuts

1 3

Operations Research Forum (2023) 4:62	 Page 45 of 53  62

additive method and no cut strengthening. Given that splitting the subproblem gives
the performance rise from 24.11 to 54.46% for no cut strengthening, we can tell that
substantial time improvement comes from the subproblem separation. Figure 24b
shows that all of the cut-strengthening techniques except for the greedy algorithm
used for the no-split subproblem either outperform or match the performance of the
split subproblem with no cut strengthening.

Minimising Tardiness for Cumulative Facility Scheduling Problem

It can be seen in Fig. 25b that the deletion filter shows the best performance for
the no-split subproblem with 7.4% of instances solved to optimality. This results is
notably lower than 10.71% of solved instances that correspond to no cut strengthen-
ing for the split subproblem. The deletion filter shows the best result for the split
subproblem with 27.67% of solved instances.

Minimising Makespan for Disjunctive Scheduling Problem

Using no cut strengthening for the split subproblem solves 94.79% for analytic
cuts. The additive/deletion filter, the best-performing algorithm for analytic cuts,
improves the results by 0.83% with 95.62% of solved instances. Another interesting
observation is that using the additive method for the split subproblem solves 93.13%
of instances, which is worse than no cut strengthening. The cut size Fig. 12 shows
that the additive method generates cuts of similar size to other cut-strengthening
techniques. However, it performs many more subproblems. As a results, it spends
much more time solving the subproblems.

All of the cut-strengthening techniques except for the greedy have a consider-
able impact on the computational performance. Using the DFBS for the no-split

(a) Split (b) No-split

Fig. 25   Cumulative scheduling: percentage of solved instances for minimising tardiness problem with
analytic optimality cuts

	 Operations Research Forum (2023) 4:62

1 3

62  Page 46 of 53

subproblem solves 95.62% of instances. This results matches the best performance
for the split subproblem Fig. 26.

Minimising Tardiness for Disjunctive Scheduling Problem

Using analytic cuts for the split subproblem solves 46.88% of instances compared
to 1.67% for the no-split subproblem. It appears that the impact of cut-strengthening
techniques does not differ much when comparing split and no-split results. For exam-
ple, the deletion filter gives a performance rise of 2.91% of instances solved for the
split subproblem and 2.71% of instances solved for the no-split subproblem Fig. 27.

(a) Split (b) No-split

Fig. 26   Disjunctive scheduling: percentage of solved instances for minimising makespan with ana-
lytic cuts

(a) Split (b) No-split

Fig. 27   Disjunctive scheduling: percentage of solved instances for minimising tardiness with ana-
lytic cuts

1 3

Operations Research Forum (2023) 4:62	 Page 47 of 53  62

Appendix 2. Tables with Additional Data

Table 1   Cumulative scheduling:
results for the variants of the
minimising makespan problem

The results are only compared for instances that were solved by all
of the methods

Problem cut_str Niter Nsub Tsub Tmas Ninst

no_str Greedy 64.58 366.13 179.93 1.93 62
DFBS 11.0 131.45 63.01 0.12 62
AdDel 11.0 75.45 52.68 0.13 62
Deletion 10.9 146.66 94.05 0.13 62
Additive 11.1 222.03 66.56 0.13 62
None 409.76 409.82 105.73 71.62 62

no_an Greedy 57.87 324.74 163.58 1.95 69
DFBS 10.33 118.93 54.78 0.12 69
AdDel 10.51 71.3 53.98 0.13 69
Deletion 10.33 139.52 81.34 0.13 69
Additive 10.55 206.46 65.85 0.13 69
None 337.23 337.3 93.08 56.84 69

sp_str Greedy 38.09 387.93 84.19 5.58 153
DFBS 17.38 679.6 107.05 1.48 153
AdDel 17.4 379.91 113.21 1.24 153
Deletion 17.32 417.82 81.17 1.36 153
Additive 17.38 1053.56 188.55 1.26 153
None 93.08 346.67 88.76 25.55 153

sp_an Greedy 32.38 364.7 70.92 10.1 160
DFBS 17.18 762.74 110.18 2.9 160
AdDel 17.2 431.67 116.72 2.94 160
Deletion 16.71 454.84 78.14 2.98 160
Additive 17.34 1204.62 187.64 3.15 160
None 67.84 267.49 57.31 29.43 160

	 Operations Research Forum (2023) 4:62

1 3

62  Page 48 of 53

Table 2   Cumulative scheduling:
results for the variants of the
minimising tardiness problem

The results are only compared for instances that were solved by all
of the methods

Problem cut_str Niter Nsub Tsub Tmas Ninst

no_str Greedy 125.71 330.57 175.1 4.23 7
DFBS 27.0 558.29 138.39 0.35 7
AdDel 27.0 265.0 140.39 0.36 7
Deletion 27.0 312.43 118.49 0.33 7
Additive 27.0 1047.0 121.04 0.35 7
None 122.14 122.43 63.84 7.11 7

no_an Greedy 125.71 330.57 175.26 4.44 7
DFBS 27.0 558.29 138.17 0.35 7
AdDel 15.86 156.57 99.52 0.2 7
Deletion 27.0 312.43 118.32 0.34 7
Additive 27.0 1047.0 120.76 0.36 7
None 122.14 122.43 63.69 7.2 7

sp_str Greedy 126.17 849.74 77.61 14.79 80
DFBS 54.2 1359.97 134.31 4.04 80
AdDel 52.33 720.12 131.07 3.93 80
Deletion 53.09 780.8 77.75 3.86 80
Additive 53.54 2032.7 164.37 3.84 80
None 268.38 864.85 74.12 52.96 80

sp_an Greedy 216.69 1289.53 124.14 27.27 32
DFBS 74.03 1612.75 167.22 5.78 32
AdDel 74.19 899.16 174.34 5.7 32
Deletion 74.09 947.22 102.24 5.67 32
Additive 74.38 2442.06 198.59 5.87 32
None 441.28 1239.97 105.48 105.21 32

Table 3   Cumulative scheduling:
results for the variants of the
minimising total cost problem

The results are only compared for instances that were solved by all
of the methods

Problem cut_str Niter Nsub Tsub Tmas Ninst

No-split Greedy 10.2 65.43 22.5 0.27 125
DFBS 3.98 45.0 22.31 0.04 125
AdDel 3.95 27.41 22.48 0.04 125
Deletion 4.21 50.93 22.62 0.04 125
Additive 6.08 88.03 22.55 0.09 125
None 36.02 37.02 22.82 2.53 125

Split Greedy 8.94 59.3 0.04 0.36 202
DFBS 5.49 104.21 0.04 0.14 202
AdDel 5.54 64.33 0.04 0.15 202
Deletion 5.49 70.66 0.04 0.14 202
Additive 7.74 163.1 0.04 0.24 202
None 17.03 57.79 0.04 0.81 202

1 3

Operations Research Forum (2023) 4:62	 Page 49 of 53  62

Table 4   Disjunctive scheduling:
results for the variants of the
minimising makespan problem

The results are only compared for instances that were solved by all
of the methods

Problem cut_str Niter Nsub Tsub Tmas Ninst

no_str Greedy 17.39 406.78 100.8 48.02 179
DFBS 4.91 106.79 28.28 25.64 179
AdDel 5.14 198.61 49.38 24.03 179
Deletion 5.02 375.66 90.94 19.93 179
Additive 4.99 541.09 79.74 20.56 179
None 30.91 31.91 5.92 73.96 179

no_an Greedy 17.39 406.78 100.03 48.05 179
DFBS 4.91 106.79 28.14 25.6 179
AdDel 5.14 198.61 88.95 23.93 179
Deletion 5.02 375.66 109.92 19.92 179
Additive 4.99 541.09 79.26 20.55 179
None 30.91 31.91 5.91 73.96 179

sp_str Greedy 7.14 242.47 21.63 30.21 428
DFBS 5.78 1046.75 92.84 26.23 428
AdDel 5.59 491.89 78.84 22.97 428
Deletion 5.69 506.39 45.41 25.83 428
Additive 5.68 1695.06 150.89 24.53 428
None 7.84 120.3 11.0 32.34 428

sp_an Greedy 6.83 234.42 20.91 24.24 425
DFBS 6.25 1144.71 101.71 26.39 425
AdDel 5.83 521.09 84.07 26.54 425
Deletion 6.09 555.2 49.93 24.91 425
Additive 5.78 1694.09 150.78 24.72 425
None 8.11 127.13 11.66 26.85 425

	 Operations Research Forum (2023) 4:62

1 3

62  Page 50 of 53

Table 5   Disjunctive scheduling:
results for the variants of the
minimising tardiness problem

The results are only compared for instances that were solved by all
of the methods

Problem cut_str Niter Nsub Tsub Tmas Ninst

no_str Greedy 111.25 500.5 142.42 80.86 4
DFBS 10.75 507.5 149.69 3.25 4
AdDel 10.75 347.5 182.08 3.23 4
Deletion 10.75 349.5 117.4 3.18 4
Additive 10.75 2075.5 591.15 3.23 4
None 128.75 129.75 44.37 96.23 4

no_an Greedy 104.0 372.0 118.44 49.56 3
DFBS 12.67 631.0 191.93 3.03 3
AdDel 12.67 381.0 214.07 3.07 3
Deletion 12.67 382.0 140.71 3.01 3
Additive 12.67 2522.67 748.05 3.09 3
None 119.67 120.67 45.54 62.23 3

sp_str Greedy 20.79 434.3 39.6 88.27 198
DFBS 18.14 939.87 83.73 71.51 198
AdDel 18.22 599.21 82.92 70.58 198
Deletion 18.38 626.41 56.48 72.53 198
Additive 18.02 1337.05 119.55 69.93 198
None 22.71 327.65 30.85 98.79 198

sp_an Greedy 19.13 386.86 35.05 71.2 195
DFBS 17.76 921.14 82.24 67.0 195
AdDel 17.87 581.02 80.99 67.33 195
Deletion 17.99 605.18 54.7 69.61 195
Additive 17.88 1337.76 119.81 67.14 195
None 20.82 282.62 26.17 78.06 195

Table 6   Disjunctive scheduling:
results for the variants of the
finding a feasible schedule
problem

The results are only compared for instances that were solved by all
of the methods

Problem cut_str Niter Nsub Tsub Tmas Ninst

No-Split Greedy 20.02 444.46 117.18 38.65 178
DFBS 5.79 111.52 31.34 29.65 178
AdDel 5.74 149.14 71.39 20.14 178
Deletion 6.01 392.45 127.21 26.95 178
Additive 5.48 472.69 62.22 23.12 178
None 42.41 43.41 7.86 74.47 178

Split Greedy 1.0 21.54 1.49 4.79 477
DFBS 1.0 39.74 2.79 4.81 477
AdDel 1.0 29.16 2.85 4.79 477
Deletion 1.0 30.57 2.1 4.8 477
Additive 1.0 52.97 3.66 4.76 477
None 1.0 17.66 1.23 4.78 477

1 3

Operations Research Forum (2023) 4:62	 Page 51 of 53  62

Table 7   Vehicle routing
problem: results for the
minimising makespan problem

The results are only compared for instances that were solved by all
of the methods

cut_str Niter Nsub Tsub Tmas Ninst

DFBS 62.64 697.14 0.01 2.46 158
AdDel 65.27 1344.53 0.01 2.55 158
Deletion 30.68 1475.92 0.01 1.29 158
Additive 65.73 2676.89 0.01 2.67 158

Table 8   Vehicle routing
problem: results for the
minimising tardiness problem

The results are only compared for instances that were solved by all
of the methods

cut_str Niter Nsub Tsub Tmas Ninst

DFBS 3.0 117.5 0.06 0.04 16
AdDel 128.5 1266.0 0.07 1.88 16
Deletion 3.0 85.0 0.06 0.04 16
Additive 3.0 300.0 0.06 0.04 16

Table 9   Vehicle routing
problem: results for the
minimising tardiness problem

The results are only compared for instances that were solved or
timed out by all of the methods

cut_str Niter Nsub Tsub Tmas Ninst

DFBS 165.76 6036.35 0.07 5.03 34
AdDel 197.71 2283.91 0.07 3.61 34
Deletion 27.06 820.79 0.07 0.67 34
Additive 61.71 3823.91 0.07 1.47 34

Table 10   Vehicle routing
problem: results for the
minimising total travel time
problem

The results are only compared for instances that were solved by all
of the methods

cut_str Niter Nsub Tsub Tmas Ninst

DFBS 22.36 286.65 0.02 12.19 161
AdDel 20.99 533.29 0.02 9.04 161
Deletion 25.96 887.76 0.02 22.44 161
Additive 26.36 1510.15 0.02 12.93 161

	 Operations Research Forum (2023) 4:62

1 3

62  Page 52 of 53

Author Contributions  The paper is an extension of a conference paper by E. Karlsson and E. Rönnberg.
Design of the computational framework: A. Saken and E. Karlsson. Carried out the implementation: A.
Saken and E. Karlsson. Analysis and interpretation of results: A. Saken and S.J. Maher. A. Saken wrote
the manuscript with input from all authors. All authors reviewed the results and approved the final ver-
sion of the manuscript.

Funding  Emil Karlsson is funded by the Research School in Interdisciplinary Mathematics at Linköping
University. The work is also partly funded by the Center for Industrial Information Technology (CENIIT),
Project-ID 16.05. Computational experiments were performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) and National Academic Infrastructure for Supercomputing
in Sweden (NAISS).

Data Availability  All instances can be accessed, either directly or via reference, from our repository
https://​gitlab.​liu.​se/​eliro​15/​lbbd_​cut_​stren​gthen​ing_​evalu​ation.

Declarations 

Conflict of Interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hooker JN, Ottosson G (2003) Logic-based Benders decomposition. Math Program 96:33–60.
https://​doi.​org/​10.​1007/​s10107-​003-​0375-9

	 2.	 Ciré AA, Çoban E, Hooker JN (2016) Logic-based Benders decomposition for planning and
scheduling: a computational analysis. Knowl Eng Rev 31(5):440–451. https://​doi.​org/​10.​1017/​
S0269​88891​60002​54

	 3.	 Karlsson E, Rönnberg E (2021) Strengthening of feasibility cuts in logic-based Benders decomposi-
tion. In: Stuckey, P.J. (ed.) Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research, pp. 45–61. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​030-​78230-6_3

	 4.	 Rahmaniani R, Crainic TG, Gendreau M, Rei W (2017) The Benders decomposition algorithm: a
literature review. Eur J Oper Res 259:801–817. https://​doi.​org/​10.​1016/j.​ejor.​2016.​12.​005

	 5.	 Karlsson E, Rönnberg E (2022) Logic-based Benders decomposition with a partial assignment
acceleration technique for avionics scheduling. Comput Oper Res 146:105916. https://​doi.​org/​10.​
1016/j.​cor.​2022.​105916

	 6.	 Lam E, Gange G, Stuckey PJ, Van Hentenryck P, Dekker JJ (2020) Nutmeg: a MIP and CP
hybrid solver using branch-and-check. SN Oper Res Forum 1:22–12227. https://​doi.​org/​10.​1007/​
s43069-​020-​00023-2

	 7.	 Lindh E, Olsson K, Rönnberg E (2022) Scheduling of an underground mine by combining
logic-based Benders decomposition and a priority-based heuristic. In: Proceedings of the 13th
International Conference on the Practice and Theory of Automated Timetabling–PATAT, Leu-
ven, Belgium, pp. 2–30

	 8.	 Hooker JN (2019) In: Velásquez-Bermúdez JM, Khakifirooz M, Fathi M, (eds.). Logic-based
Benders decomposition for large-scale optimization, pp. 1–26. Springer, Cham. https://​doi.​org/​
10.​1007/​978-3-​030-​22788-3_1

	 9.	 Hooker JN (2007) Planning and scheduling by logic-based Benders decomposition. Oper Res
55:588–602. https://​doi.​org/​10.​1287/​opre.​1060.​0371

https://gitlab.liu.se/eliro15/lbbd_cut_strengthening_evaluation
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10107-003-0375-9
https://doi.org/10.1017/S0269888916000254
https://doi.org/10.1017/S0269888916000254
https://doi.org/10.1007/978-3-030-78230-6_3
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1016/j.cor.2022.105916
https://doi.org/10.1016/j.cor.2022.105916
https://doi.org/10.1007/s43069-020-00023-2
https://doi.org/10.1007/s43069-020-00023-2
https://doi.org/10.1007/978-3-030-22788-3_1
https://doi.org/10.1007/978-3-030-22788-3_1
https://doi.org/10.1287/opre.1060.0371

1 3

Operations Research Forum (2023) 4:62	 Page 53 of 53  62

	10.	 Riedler M, Raidl G (2018) Solving a selective dial-a-ride problem with logic-based Benders decom-
position. Comput Oper Res 96:30–54. https://​doi.​org/​10.​1016/j.​cor.​2018.​03.​008

	11.	 Benini L, Lombardi M, Mantovani M, Milano M, Ruggiero M (2008) Multi-stage Benders decom-
position for optimizing multicore architectures. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008:
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 36–50. Springer, Berlin, Heidelberg. https://​doi.​org/​10.​1007/​978-3-​540-​68155-7_6

	12.	 Sadykov R (2008) A branch-and-check algorithm for minimizing the weighted number of late jobs
on a single machine with release dates. Eur J Oper Res 189(3):1284–1304. https://​doi.​org/​10.​1016/j.​
ejor.​2006.​06.​078

	13.	 Coban E, Hooker JN (2013) Single-facility scheduling by logic-based Benders decomposition. Ann
Oper Res 210:245–272. https://​doi.​org/​10.​1007/​s10479-​011-​1031-z

	14.	 Cambazard H, Hladik PE, Déplance AM, Jussien N, Trinquet Y (2004) Decomposition and learning for
a hard real time task allocation problem. In: Wallace, M. (ed.) Principles and Practice of Constraint Pro-
gramming – CP 2004, pp. 153–167. Springer, Berlin. https://​doi.​org/​10.​1007/​978-3-​540-​30201-8_​14

	15.	 Junker U (2001) QuickXPlain: conflict detection for arbitrary constraint propagation algorithms. In:
IJCAI’01 Workshop on Modelling and Solving Problems with Constraints, vol. 4

	16.	 Carlier J (1982) The one-machine sequencing problem. Eur J Oper Res 11(1):42–47. https://​doi.​org/​
10.​1016/​S0377-​2217(82)​80007-6

	17.	 Thorsteinsson ES (2001) Branch-and-check: a hybrid framework integrating mixed integer program-
ming and constraint logic programming. In: International Conference on Principles and Practice of
Constraint Programming, pp. 16–30. Springer, Berlin

	18.	 Chinneck JW, Dravnieks EW (1991) Locating minimal infeasible constraint sets in linear programs.
ORSA J Comput 3(2):157–168. https://​doi.​org/​10.​1287/​ijoc.3.​2.​157

	19.	 Tamiz M, Mardle SJ, Jones DF (1996) Detecting IIS in infeasible linear programmes using tech-
niques from goal programming. Comput Oper Res 23(2):113–119. https://​doi.​org/​10.​1016/​0305-​
0548(95)​00018-H

	20.	 Chinneck JW (1997) In: Gal T, Greenberg HJ (eds.) Feasibility and viability, pp. 491–531. Springer,
Boston, MA. https://​doi.​org/​10.​1007/​978-1-​4615-​6103-3_​14

	21.	 Atlihan MK, Schrage L (2008) Generalized filtering algorithms for infeasibility analysis. Comput
Oper Res 35:1446–1464. https://​doi.​org/​10.​1016/j.​cor.​2006.​08.​005

	22.	 Junker U (2004) QuickXPlain: preferred explanations and relaxations for over-constrained prob-
lems. In: In Proceedings of AAAI-2004, pp. 167–172

	23.	 Lam E, Van Hentenryck P (2016) A branch-and-price-and-check model for the vehicle rout-
ing problem with location congestion. Constraints 21(3):394–412. https://​doi.​org/​10.​1007/​
s10601-​016-​9241-2

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1016/j.cor.2018.03.008
https://doi.org/10.1007/978-3-540-68155-7_6
https://doi.org/10.1016/j.ejor.2006.06.078
https://doi.org/10.1016/j.ejor.2006.06.078
https://doi.org/10.1007/s10479-011-1031-z
https://doi.org/10.1007/978-3-540-30201-8_14
https://doi.org/10.1016/S0377-2217(82)80007-6
https://doi.org/10.1016/S0377-2217(82)80007-6
https://doi.org/10.1287/ijoc.3.2.157
https://doi.org/10.1016/0305-0548(95)00018-H
https://doi.org/10.1016/0305-0548(95)00018-H
https://doi.org/10.1007/978-1-4615-6103-3_14
https://doi.org/10.1016/j.cor.2006.08.005
https://doi.org/10.1007/s10601-016-9241-2
https://doi.org/10.1007/s10601-016-9241-2

	Computational Evaluation of Cut-Strengthening Techniques in Logic-Based Benders’ Decomposition
	Abstract
	1 Introduction
	2 Literature Background
	3 Logic-Based Benders’ Scheme and Cut Strengthening
	3.1 Logic-Based Benders’ Decomposition
	3.1.1 Solution Procedure
	3.1.2 Problem Structure
	3.1.3 Cut Generation
	3.1.4 Subproblem Separation

	3.2 Cut-Strengthening Techniques
	3.2.1 Greedy Algorithm
	3.2.2 Deletion Filter
	3.2.3 Additive Method
	3.2.4 AdditiveDeletion Filter
	3.2.5 Depth-First Binary Search (DFBS)

	4 Problems and Modelling
	4.1 Cumulative Facility Scheduling with Fixed Costs
	4.1.1 Minimising the Total Cost
	4.1.2 Minimising Makespan
	4.1.3 Minimising Total Tardiness

	4.2 Single-Facility Scheduling with a Segmented Timeline
	4.2.1 Finding a Feasible Schedule
	4.2.2 Minimising Makespan
	4.2.3 Minimising Total Tardiness

	4.3 Vehicle Routing Problem with Location Congestion
	4.3.1 Minimising Total Travel Time
	4.3.2 Minimising Makespan
	4.3.3 Minimising Total Tardiness

	5 Analytic Benders’ Cuts
	5.1 Cumulative Scheduling
	5.2 Disjunctive Scheduling

	6 Computational Evaluation
	6.1 Instances
	6.2 Computational Effectiveness
	6.2.1 Minimising Makespan for Cumulative Facility Scheduling Problem
	6.2.2 Minimising Tardiness for Cumulative Facility Scheduling Problem
	6.2.3 Minimising Total Cost for Cumulative Facility Scheduling Problem
	6.2.4 Minimising Makespan for Disjunctive Scheduling Problem
	6.2.5 Minimising Tardiness for Disjunctive Scheduling Problem
	6.2.6 Finding a Feasible Schedule for Disjunctive Scheduling Problem
	6.2.7 Minimising Makespan for Vehicle Routing Problem
	6.2.8 Minimising Total Tardiness for Vehicle Routing Problem
	6.2.9 Minimising Total Travel Time for Vehicle Routing Problem

	7 Concluding Remarks
	Appendix 1. Analytic cuts
	Minimising Makespan for Cumulative Facility Scheduling Problem
	Minimising Tardiness for Cumulative Facility Scheduling Problem
	Minimising Makespan for Disjunctive Scheduling Problem
	Minimising Tardiness for Disjunctive Scheduling Problem

	Appendix 2. Tables with Additional Data
	References

