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Abstract
Emergency medical services (EMS) aims to deliver timely ambulatory care to inci-
dents in communities. However, the operations of EMS may contend with suddenly 
increasing demands resulting from unexpected disasters such as disease outbreaks 
(e.g., COVID-19) or hurricanes. To this end, it usually requires better strategical 
decisions to dispatch, allocate, and reallocate EMS resources to meet the demand 
changes over time in terms of demographic and geographic distribution of incidents. 
In this study, we focus on the operation of the EMS resources (i.e., ambulance dis-
patch) in response to a demand disruption amid the COVID-19 pandemic. Specifi-
cally, we present a analytical framework to (1) analyze the underlying demographic 
and geographic patterns of emergency incidents and EMS resources; (2) develop a 
mathematical programming model to identify potential demand gaps of EMS cover-
age across different districts; and (3) provide a remedial reallocation solution to the 
EMS system with the existing ambulance capacity. The proposed method is vali-
dated with emergency response incident data in New York City for the first COVID-
19 surge from March to April 2020. We found that it takes a long incident response 
time to scenes which reflects unexpected incident demands during COVID-19 surge. 
To cover such disruptive demands, ambulances need to be reallocated between ser-
vice districts while meeting the response time standard. The proposed framework 
can be potentially applied to similar disruptive scenarios in the future and other 
operational systems disrupted by other disasters.

Highlights 
• We propose an analytical framework using optimization modeling and simula-

tion techniques for EMS resource allocation in response to a demand disruption 
amid the COVID-19 pandemic.

• We propose mathematical programming models to identify potential demand 
gaps of EMS coverage across different districts.

• We provide a remedial reallocation solution to the EMS system with the existing 
ambulance capacity.
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1 Introduction

As the first responder to critically ill patients, emergency medical services (EMS) 
aims to deliver timely critical prehospital care with necessary treatment and support 
to life-threatening incidents in communities [1]. The operations of EMS may con-
tend with suddenly increasing demands resulting from unexpected disasters such as 
disease outbreaks (e.g., COVID-19) or hurricanes. Accordingly, the EMS response 
time for emergency medical personnel to arrive at the scene of “life-threatening” 
cases has significantly increased in recent years [2, 3]. In particular, large popula-
tions could make EMS systems more vulnerable to such unexpected disasters.

As the most populous and densely populated city in the United States, New York 
City (NYC) needs to provide an EMS system to serve more than 8.2 million peo-
ple. In the early stage of the COVID-19 outbreak in March 2020, the number of 
diagnosed coronavirus cases increased exponentially with the accompanying surge 
in ambulance demand. The NYC’s EMS received 30,000 more calls in one month, 
from March 16 to April 15, 2020, compared to the same period last year. On March 
30, 2020, there was a 60% increase in calls compared to the same date last year. 
The unprecedented number of emergency calls led to a surge in EMS response 
time, which result in insufficient ambulances to serve these demands, and there-
fore patients had to wait. According to the reported statistics [4], the average daily 
ambulance response time during the peak demand period (March 16 to April 15) of 
COVID-19 in NYC increased from 10.4 min to 17.8 min, 7 min slower than in 2019. 
The average response time for high-risk calls increased by 3  min, while for low-
risk calls it increased by 11 min. NYC’s EMS, facing with high demand for emer-
gency calls, arrived too late for ambulances to reach patients, which might not save 
some patients with life-threatening conditions, especially cardiac arrest and chok-
ing patients [5, 6]. In previous studies of cardiac arrest, ambulance response time 
even had a significant impact on patient hospital discharge time [7]. Patients with 
a response time of more than 8 min are twice as likely to eventually die as patients 
with a response time of less than 8 min [8]. The difference between a minute or two 
of response time may be the difference between survival and death. The success rate 
and survival rate of resuscitation patients are inversely proportional to the length of 
the ambulance response time [7].

In this study, our goal is to analyze the NYC’s EMS operating system (i.e., EMS 
dispatch time and location) in response to huge incident demands COVID-19 pan-
demic. Among four major impacts on the response time including (1) people issues; 
(2) operational practices (e.g., dynamic deployment planning and matching of sup-
ply and demand); (3) performance information; and (4) supporting materials [9], we 
mainly focus on operational practices, including ambulance allocation-reallocation 
and ambulance storage that can match supply and demand. Specifically, we formu-
late the EMS resources allocation and reallocation as optimization problems and 
provide an analytical framework using mathematical programming and simulation 
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analysis techniques, which aims to narrow the gap between huge demand and short 
supply within acceptable response time. Firstly, we develop a mathematical model 
to minimize the gap between EMS supply and incident demand through allocating 
sufficient and optimal EMS resources to the EMS stations in units of ambulance 
dispatch with the minimum travel distance. Furthermore, we implement scenario 
analysis, including priorities, consideration of the five boroughs as a whole versus 
taking each borough separately, and different measures of travel time. Subsequently, 
we develop an assignment model to determine the shortage of dispatches between 
boroughs and stations with the minimum travel distance to meet the optimal dis-
patch solution. Finally, we employ simulation analysis to identify the number of 
ambulances each station should be equipped to match the optimal dispatch alloca-
tion within acceptable response time.

Our contributions are to (1) comprehensively study NYC’s EMS operations dur-
ing COVID-19 by analyzing emergency incidents (from NYC Open Data) and EMS 
resources; (2) propose an analytical framework for jointly considering EMS resource 
allocation and response time; and (3) come up with strategical allocation and reallo-
cation implementation in the face of suddenly increasing incident demands based on 
the number of additional ambulances needed and response time priorities.

The organization of this paper is as follows. In Sect. 2, we give a brief literature 
review on EMS allocation analysis. In Sect.  3, we describe the NY EMS dataset, 
including data characteristics and data analysis. In Sect. 4, we present the analyti-
cal framework to analyze the EMS dispatch operations by allocation/reallocation 
optimization and dispatch simulation analysis. In Sect.  5, we discuss the scenario 
analysis of the allocation model and display all the results of our framework com-
pared with real EMS dispatch. In Sect. 6, we conclude the work and mention pos-
sible future work.

2  Literature Review of Related Work

Many studies on ambulances discussed the impact of priorities on EMS sys-
tem operations and the role of priority in ambulance assignment and ambulance 
response time problems is of great importance [10–12]. Marla et  al. [11] pointed 
out that compared with low-priority patients, high-priority patients are more likely 
to abandon their rescue requests while waiting for EMS. Singer and Donoso [13] 
indicated that to improve ambulance response time, service could be denied for less 
serious calls, fleet size could be increased or cycle time could be reduced, and aver-
age ambulance travel time could be reduced. Acuna et al. [14] displayed a strategy 
to focus on patients with travel times longer than 15 min, proposing a bi-objective 
model to minimize the maximum time for priorities with travel times longer than 
15 min. Based on the above studies, the role of priority in ambulance assignment 
and ambulance response time problems is of great importance. In the paper, we dis-
cuss the impact of priority on EMS operations in our scenario analysis of the ambu-
lance allocation model and how it can be applied in our framework.

Ahmadi et  al. [15] conducted a study on relief dispatching in critical disasters 
with the same consideration of disaster severity and priority, and in which equity of 
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distribution is taken into account. Djamel et al. [16] discussed vehicle dispatching 
in a disaster, but differs from an ambulance as ordinary rescue vehicles in a disaster 
usually need to consider the maximum capacity of the vehicle, while ambulances 
usually can only aid one patient at a time and require strict sanitary conditions and 
medical accessories. Ordinary rescue vehicles can travel to and from multiple loca-
tions at once, while ambulances need to return to the hospital for follow-up opera-
tions, such as sterilization, after completing a rescue. Khalili-Damghani et al. [17] 
discussed the difficulty of nighttime EMS operations, as the cost of nighttime res-
cue operations is higher than daytime. In the simulation analysis section, we used a 
24-hour call rate to cover the difference between daytime and nighttime.

For the main objective function, previous studies aimed to solve in mathemati-
cal model of EMS operation. Acuna et al. [14] minimizes the transfer and waiting 
time, and minimizes the maximum time by priority class when patients travel more 
than 15 min. Boutilier et al. [18] uses a robust optimization method with minimizing 
travel time to optimize the location and route of the ambulance under different trans-
portation patterns considering uncertainty. In our mathematical model, our objective 
function also focuses on minimizing the ambulance travel time while minimizing 
the total number of resources allocated, the total cost of reallocating resources, and 
the balance between the gaps on accumulated travel time over boroughs.

Using a simulation-based optimization approach, Marla et  al. [11] suggested 
that increasing ambulance vehicle fleet size and redesigning base locations can 
increase patient willingness to wait, thus increasing the probability of a successful 
ambulance service and minimizing the waste of resources caused by callers 
abandoning. Bélanger et al. [19] use a recursive simulation optimization framework 
to jointly solve the ambulance localization and real-time scheduling problems for 
static information. Singer et  al. [13] quantified key performance indicators (e.g., 
average number of busy ambulances and average service rate) in association with 
queuing theory and evaluated options for improving ambulance response time. 
Wang [20] introduced an M/M/m queuing framework in the multi-period mixed 
integer programming model to calculate the response time based on the demand 
arrival and service rates for each area and the number of ambulances allocated to the 
affected area, where the demand rate follows an independent and identical Poisson 
distribution and the service rate follows an exponential distribution. In our study, 
using simulation analysis based on queue theory, we jointly consider allocation-
reallocation, station capacity issues along with response time. In our simulation 
analysis, we inferred the minimum number of ambulances should be allocated to 
each area to meet the ambulance response time within an acceptable threshold based 
on the hourly demand arrival rate and service rate for each area, where the demand 
rate follows an independent and identical Poisson distribution and the service rate 
follows a normal distribution.

When Boutilier and Chan [18] considered travel time uncertainty, they use the 
random forest approach to predict the travel time for each path of different transpor-
tation modes. We consider travel path between EMS station and incidents locations. 
For the travel time measurements, we used the median of the historical travel time, 
as well as the estimated driving duration provided by Google Maps. According to 
Cookson et al. [21], EMS research needs to be associated with a focus on seriously 
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ill patients, with special attention to the urgency or the identification of the individ-
ual. In addition, the performance of the method should be considered important. Our 
model considers the importance of each ambulance call and focuses on seriously ill 
and at-risk patients, i.e., high-priority patients.

Doan and Shaw [22] and Khalili-Damghani et al. [17] use stochastic optimization 
techniques to allocate resources in response to simultaneous disasters. Jagtenberg 
et al. [23] performed offline dispatching modeling (assuming that all incidents are 
known in advance ) and online ambulance dispatching (deciding the optimal ambu-
lance to send to an incoming incident) for a realistic EMS system in the Netherlands. 
They demonstrated that when the online ambulance model dispatched the nearest 
idle vehicle to each incident, the EMS system obtained a late arrival ratio close to 
2.7 times higher than the optimal offline policy. The main disadvantage of the near-
est distance dispatch policy is that it possibly causes no nearest idle ambulance dis-
patches to upcoming incidents, leading to sub-optimal response time for the entire 
dispatch system. In this paper, we focus on the dynamic allocation of ambulances 
for the coming day or week, by assuming that daily ambulance demand calls and 
demand locations for the coming day or week are known in advance, and that we 
dispatch nearest ambulances to incidents with the shortest travel time. Thus, the 
nearest dispatch policy, we used in this paper, is optimal for the entire system in 
terms of response time.

3  EMS Data Description and Analysis

This study mainly focuses on the EMS dispatch operations in New York City in 
response to the COVID-19 pandemic. The analysis and modeling in this study are 
based on the EMS Incident Dispatch Data, including incident location, incident 
start-time, incident types, incident travel time, incident response time (referred to as 
“response time”), total incident time, ambulance departure areas (i.e., ambulance sta-
tions), and ambulance arrival areas (boroughs) from the New York Open Data [24]. 
In particular, we retrieve the EMS data from 2015 to 2020, for which the data before 
the COVID-19 pandemic suddenly spread out in March 2020 is used as a baseline.

According to the monthly incident volumes and response time, as shown in 
Fig. 1, COVID-19 pandemic caused a significant increase in EMS demands from 
March to April in 2020, which reached a high peak among the past six years, as 
well as ambulance response time (equivalently, patient wait time), overall medical 
service time, etc. For instance, the average response time between January and May 
from 2015 and 2019 is 8.24 min, whereas the average response time between March 
and April in 2020 is 9.82 min. Therefore, considering the given EMS capacity as 
usual, the ambulance supplies in NYC’s five boroughs do not sufficiently cover the 
incident demands in this sudden disaster surge. This motivates us to investigate the 
EMS operation preparedness in response to COVID-19.

In the following sections, we provide the details of geographic and demographic 
data analysis of EMS incidents and ambulance dispatch.
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3.1  Timeline of EMS Response to Incidents

In Fig. 2, there are five time stamps defined as follows: t0 : the time of the incident is 
created; t1 : the time of the first ambulance is assigned; t2 : the time of an ambulance 
arrives at the location of the incident; t3 : the time of an ambulance arrives at the hos-
pital; and t4 : the time of the incident is closed. Then, we define relevant time-interval 
variables as follows: dispatch response time [t0 , t1] , travel time [t1 , t2] , incident response 
time [t0, t2 ], service time [t2, t4] , and total time [t0, t4] . It is observed that response time 
and dispatch response time are highly correlated with a coefficient = 0.8.

3.2  EMS Incident Geographical Analysis

The EMS incidents occur across five boroughs: {Brooklyn, Bronx, Manhat-
tan, Queens, Staten Island} in New York, shown in Fig.  3a. There are in total 
EMS 39 stations where ambulances are located and dispatched: 7 in Brooklyn 
{ K1,K2,K3,K4,K5,K6,K7 }; 5 in Bronx { B1,B2,B3,B4, B5 }; 9 in the Manhattan 
{ M1,M2,M3,M4,M5,M6,M7,M8,M9 }; 7 in Queens { Q1,Q2, Q3,Q4, Q5,Q6,Q7 }; 3 
in Staten Island { S1, S2, S3 }; and 8 backup stations { CW, T1, T2, X1,X2,X3,X4,X5 } 
that do not belong to any borough. Since the exact location of EMS stations is 
inferred from zip codes covered by the service. We assume that the destination units 
of EMS services are the boroughs (Bronx, Brooklyn, Manhattan, Queens, and Staten 
Island) and the departure units are the EMS stations (referred as “stations”).

(a) (b)

Fig. 1  Trends of monthly average EMS response time and number of incidents from 2015 to 2020

Fig. 2  Timeline of EMS response to incidents
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For the travel time calculation, in this paper, we employ the following travel time 
measures to determine the trip distance: (1) median real travel time based on the 
last 5 months (January-May 2020); (2) median real travel time based on the past 
year (January-May 2019); and (3) real driving distance estimated based on zip codes 
using Google Maps.

Based on our analysis, we consider ambulance dispatch to be classified into three 
categories: same-area dispatch, cross-area dispatch, and backup dispatch. Among 
them, same-area dispatch is the primary dispatch method in EMS operations as 
shown in Fig. 3b. Specifically, we focus on the incidents pertaining same-area dis-
patch and cross-area dispatch in this study. For stations, we exclude the 8 backup 
stations in our study, since {CW, T1, T2,X1,X2,X3,X4,X5} have a very limited num-
ber of dispatch records throughout the year. Thus, in our further discussion, there 
are 31 stations in total. Figure 3a shows the incident area according to zip codes in 
New York City and the stations with coverage for ambulances dispatched in March 
and April 2020. Note that a zip code may be covered by more than one station while 
a single station may cover several zip codes. We then assume that the station cov-
ers the nearest group of zip codes, i.e., the shortest distance. This weighted group 
of covered zip codes is considered to be the approximate zip code of a station; thus 
allowing to obtain the “relative distance” between stations and boroughs. However, 
it does not indicate the exact distance between the station and the district, and is 
mainly used to compare the travel time between different stations and districts. 
Thus, we can assign available ambulances with the shortest travel time. There are 
two facts that support how to determine the availability of trips from stations to bor-
oughs. The first is the number of free and activable ambulances at stations. The sec-
ond is based on the most recent 2020 dispatch records that should have the same trip 
records to ensure trips are now available. Besides, we only consider dispatch records 
with response time less than its 97.5th percentile and total times less than its 97.5th 
percentile. We also consider calls canceled with their response time greater than its 
2.5th percentile or total time greater than its 2.5th percentile. The data are summa-
rized in Table 1.

Table 1  The summary of incident response time and total time (in minutes)

Year (March 
and April)

2.5th 97.5th Mean 
(Initial)

Standard 
Deviation 
(Initial)

Mean (Less 
than 97.5th 
Percentile)

Standard Deviation 
(Less than 97.5th 
Percentile)

Response 
Time

2015–2019 2.13 29.13 9.18 8.23 8.07 4.42

2020 2.40 66.24 13.98 26.79 9.82 6.82
Total Time 2015–2019 10.93 120.35 65.52 28.72 63.12 25.84

2020 12.08 148.00 68.96 39.13 64.08 27.69
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(a)

(b)

(c)
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3.3  Type of EMS Incidents

There are 10 incident dispositions indicating the final outcome of incidents, as 
showed in Fig. 4, during March and April 2020. Among them, the two cases of “82: 
Transporting Patient” and “93: Refused Medical Aid” take 60.58% and 21.20% of 
the entire population, respectively. Besides, we refer other five incident disposi-
tions “83: patient pronounced dead”, “87: cancelled”, “90: unfounded”, “93: refused 
medical aid”, and “96: patient gone on arrival” to “failure service calls” or “failure 
calls”. The remaining five incident dispositions “82: transporting patient”, “91: con-
dition corrected”, “92: treated not transported”, “94: treated and transported”, and 
“95: triaged at scene no transport” are referred to as “successful service calls” or 
“successful calls”. In addition, we define cancel service calls with response time 
less than 2.5 percentile, total time less than 2.5 percentile, dispatch response time of 
0, and incident disposition of “87: cancelled”. Figure 4 shows successful calls in red 
and failure calls in black.

We identify the emergency type using incident severity level code classification, 
where level 1 is the most severe and level 7 is least severe according to Table  2 
[25]. We classify level 1 as “high-priority call” and others as “low-priority call”. 
As shown in Table 3, no significant difference in cancel call rates for priority, but a 
higher rate of failure calls for high priority than for low priority.

Fig. 3  EMS incident dispatch distribution in New York City▸

Fig. 4  Incident type distribution in March and April 2020
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3.4  EMS Incident Service Duration

We define the total time as the time from the time of the incident was created to the 
end of the accident in Sect. 3.1. Figure 5a and b show the total time of EMS ser-
vice duration is nearly normally distributed with mean values the standard deviation 
shown in Table 4. Similarly, we define the service time as the time from the ambu-
lance arrival at the accident scene to the end of the accident in Sect. 3.1. Figure 5c 
and d show that the EMS service time is near normally distributed, for which mean 
service time and standard deviation are provided in Table 4.

3.5  Ambulance Travel Time Measurement and Trip Availability

In this study, we propose three ways to compute the ambulance travel time, which is 
defined as a time interval between the times of an ambulance first assigned and on scene: 

1. Firstly, we consider the median travel time between the first ambulance assign-
ment time and the first on scene based on incidents from January to May 2020. 
In Table 5, we present those median travel times between subregions in five dif-
ferent boroughs. We observed that travel times were greatly reduced due to the 
city lockdown from late March 2020 and travel times for some EMS dispatches 
were not recorded in March and April. Therefore we consider the median travel 
time from January to May 2020 to be the estimated travel time. In addition, we 
consider the high priority travel time and low priority travel time recorded in 2020 
shown in Tables A17 and A18, respectively, in the Appendix.

2. Secondly, we consider the median travel time between the first assignment time 
and the first on scene in 2019, as shown in Table A19 in the Appendix because 
the ambulance travel time is in an ordinary circumstance without COVID 19.

3. Lastly, based on our assumption mentioned in Sect. 3.2, a station will cover the 
zip code group within the shortest distance, and the weighted combination of 
this group of zip codes is considered as the estimated zip code of the station. 
We then use zip code information to calculate driving distance and driving dura-

Table 2  Mean and median 
values of response time by 
incident severity level codes 
2015–2020

Severity Level 1 2 3 4 5 6 7

Mean Value 5.11 6.85 6.77 8.56 8.92 9.21 11.08
Median Value 4.78 6.37 6.27 7.47 7.77 8.07 9.95

Table 3  Frequency of calls and failure rate by priority in March and April 2020

Emergency Type Cancel Call 
Frequency

Cancel Rate Failure Call 
Frequency

Failure Rate

High Priority 0.033 0.068 0.051 0.778
Low Priority 0.967 0.058 0.949 0.417
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tion between boroughs and stations, as shown in Tables 6 and A16. The driving 
distance and driving duration are “relative distance” and is not equal to the exact 
distance between stations and boroughs. They are mainly used to compare the 
travel times between different stations and boroughs.

Firstly, we use zip code of incidents to find the latitude and longitude (geo-
graphic coordinates). Secondly, we use those geographic coordinates to calculate 
the weighted mean value of each borough and each station, and align them with 
zip codes. In some cases, the weighted mean value seams incorrect due to some 
cross dispatches, we use mode value of zip codes instead. Thirdly, as Google Map 
provides a good approximation of the driving distance between two zip codes in 
New York City, we use Google Map to gain driving distance and driving duration 
between borough zip codes and station zip codes. Note that the zip code of station 
is not exact location of stations, and the EMS data contains only the zip code of the 
accidents, not the zip code of the stations. We use the zip code information covered 
by the stations to approximately estimate the zip codes and location of the stations. 
Later, we use these information to measure the distance between stations and bor-
oughs. Although, this measurement of ambulance travel distance might have a bias 
from the actual ambulance travel time, it helps us accurately estimate the distance 
relationship between stations and boroughs.

We use a non-zero travel time record in 2020 as an available dispatch trip from 
each station to each borough shown in Table 7. We consider the maximum daily dis-
patch volume record in 2020 as the maximum dispatch volume that can be served by 
the station per day shown in Table 8.

(b) (c) (d)(a)

Fig. 5  Histograms of total time and service time (in minutes) from 2015 to 2020

Table 4  The average total time and service time (in minutes) in March and April in 2015–2020

Mean Value Standard 
Deviation

Mean Value Standard 
Deviation

Service Time (2015–2019) 55.05 25.56 Service Time (2020) 54.26 26.93
Total Time (2015–2019) 63.12 25.84 Total Time (2020) 64.08 27.69
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4  Analytical Framework for EMS Dispatch Operations

In this section, we present an analytical approach to model and analyze the EMS 
incident dispatch operations such as resource allocation and reallocation problems. 
Specifically, we aim to provide an optimal EMS resource (ambulance) redistribution 
strategy to alleviate long ambulance response time in the disruptive EMS dispatch 
operations during the surge of COVID-19. The proposed framework is shown in 
Fig. 6. First, we develop mixed-integer linear optimization models to determine the 
EMS resource allocation (e.g., how many ambulances to be dispatched per time unit 
at individual EMS stations) in order to meet incident demands within their service 
areas. We assume the time unit is 24 h per day and 7 days per week. We count the 
total number of ambulance dispatches or runs in a day. It is noted that the ambulance 
response time is limited by the standard requirement (e.g., 5 min for high-priority 

Table 6  Driving duration (in minutes)

B1 B2 B3 B4 B5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 S1 S2 S3

Bronx 14 13 13 16 18 45 31 25 25 24 21 23 45 45 50
Brooklyn 44 40 42 45 45 45 41 38 31 30 27 40 35 38 43
Manhattan 22 18 24 28 24 56 43 37 32 34 28 34 42 41 46
Queens 30 29 22 25 32 31 21 10 17 11 20 22 43 46 51
Staten Island 46 42 48 52 47 42 48 42 44 48 40 53 12 1 13

K1 K2 K3 K4 K5 K6 K7 M1 M2 M3 M4 M5 M6 M7 M8 M9

Bronx 47 44 44 32 38 35 31 31 26 27 20 19 18 15 18 13
Brooklyn 30 24 14 22 11 14 21 24 36 37 37 37 46 35 38 40
Manhattan 48 42 48 44 43 37 36 26 15 15 16 14 12 21 20 12
Queens 33 42 30 17 26 32 28 32 36 32 30 29 36 24 27 29
Staten Island 29 27 41 40 43 34 40 33 39 35 44 45 43 45 44 38

Table 7  Trip availability in 2020

B1 B2 B3 B4 B5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 S1 S2 S3

Bronx 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1
Brooklyn 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1
Manhattan 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0
Queens 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0
Staten Island 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1

K1 K2 K3 K4 K5 K6 K7 M1 M2 M3 M4 M5 M6 M7 M8 M9

Bronx 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
Brooklyn 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
Manhattan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Queens 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1
Staten Island 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0
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case). Subsequently, we conduct extensive data analysis to estimate the real EMS 
arrival and service patterns (i.e., hourly arrival rate and average service time) as 
well as simulation analysis to capture the underlying ambulance volume based on 
the standard response time for individual EMS stations. By esimating the number 
of ambulances within an acceptable response time of 7 min at each station, we fur-
ther estimate the daily average runs per ambulance, as well as the “real” number of 
ambulances at each station based on the real dispatch volume. Finally, we develop a 
mixed-integer linear optimization model to strategize EMS reallocation, that is, how 
to move around the dispatch volume and the number of ambulances across stations 
to meet the unexpected incident demand for different boroughs.

4.1  Optimization Models for EMS Resource Allocation

In this section, we formally formulate the EMS resource allocation problem as an 
mixed-integer optimization model. The objective is to determine the optimal ambu-
lance dispatch volume during the time period T of COVID-19 onset. Suppose there 
are |I| boroughs and |Ki| stations in borough i. The notations of the sets, parameters, 
and variables are shown in Table 9.

Table 8  Maximum daily dispatch in 2020

Station B1 B2 B3 B4 B5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 S1 S2 S3

Max Capacity 263 337 223 148 178 84 288 128 118 74 361 126 123 89 38

Station K1 K2 K3 K4 K5 K6 K7 M1 M2 M3 M4 M5 M6 M7 M8 M9

Max Capacity 232 218 205 336 148 180 210 154 242 294 101 127 52 156 77 192

Fig. 6  The diagram of our proposed analytical framework
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The EMS resource allocation (EMS_RA) model is formulated as follows:

(1)

(EMS_RA) Min �
∑

k∈K, t∈T∕|T|
|x

k, t − x
k, t+ 1| + �

∑

k∈K, i∈ I, t∈ T

d
k,iwk, i, t + �

∑

i∈ I, t∈ T

u
i, t

(2)s.t. x
k, t =

∑

i∈ I

w
k, i, t ∀ k ∈ K, t ∈ T

(3)
∑

i∈ I

wk, i, t ≤ �ak ∀k ∈ K, t ∈ T

(4)wk, i, t ≤ �bk, iak ∀i ∈ I, k ∈ K, t ∈ T

(5)ci, t − ui, t =
∑

k∈K

wk, i, t ∀ i ∈ I, t ∈ T

(6)wk, i, t, xk, t, ui, t ∈ ℤ
≥ 0

Table 9  Notations of sets, parameters, and decision variables for EMS_ RA model

Sets Notation

I Set of boroughs.
T Set of timestamps.
K Set of stations.

Parameters

ak Maximal resource (ambulances) at station k is available to serve (refer to 
Table 8).

bk,i Binary indicator to indicate if trip is established from station k to borough i 
(refer to Table 7).

ci,t Incident demand of borough i at time t.
dk,i Travel time from station k to borough i.
� Cost of reallocating resources.
� Cost for unmet demands.
� Cost of ravel time.
� Ratio to the maximal number of ambulance dispatched.

Decision variables

xk,t The number of ambulance dispatched from station k at time t.
wk,i,t The number of ambulance dispatched to serve borough i from station k at time t.
ui,t Slack variable (unmet demands) to restrict the total number of resources being 

served in borough i
must equal to the demand of borough i at time t.

sk,t Dummy variable greater than |x
k, t − x

k, t+ 1|.
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The objective function in Eq. (1) minimizes the total cost of reallocating resources, 
total travel time, and unmet EMS incident demand. Constraint set in Eq. (2) indi-
cates the number of resources served from station k equals the sum of the number 
of ambulance dispatched to all boroughs from station k at time t. Constraint set in 
Eq. (3) restricts the maximum number of resources serving from station k based on 
the value of ak . Constraint set in Eq. (4) indicates the travel availability from station 
k to borough i at time t. Constraint set in Eq. (5) indicates that the total number of 
resources being served to borough equals to the incident demand minus the unmet 
demand of borough i at time t. all decision variables wk, i, t, xk, t, ui, t are constrained 
to be non-negative integers in Eq. (6). need to explain those parameters � , � , and � in 
the objective function and how to set up their values.

We then propose to reformulate the EMS_RA model by linearizing the objec-
tive function as follows:

The first term �
∑

k∈K, t∈ T∕�T� �xk, t − xk, t+ 1� in the objective function is replaced 
with �

∑
k∈K, t∈ T∕�T� sk, t and the constraint sets in Eqs. (12) and (13). The rest of the 

model remains unchanged.
In practice, it is not likely to reallocate the EMS resource on a daily basis in 

response to the irregular changes in EMS incident demand across areas since 
it requires significant amount of workforce. Thus, we develop another EMS 
resource allocation model that allows for EMS resource reallocation on a weekly 
basis (dispatch volume as a unit of a day and a week as an allocation cycle). The 
notations of necessary parameters and decision variables are listed in Table 10.

(7)

(EMS_RA_Linear) Min �
∑

k∈K, t∈ T∕|T|
sk, t + �

∑

k∈K, i∈ I, t∈ T

dk, iwk, i, t + �
∑

i∈ I, t∈ T

ui, t

(8)s.t. x
k, t =

∑

i∈ I

w
k, i, t ∀k ∈ K, t ∈ T

(9)
∑

i∈ I

wk, i, t ≤ �ak ∀k ∈ K, t ∈ T

(10)wk, i, t ≤ �bk, iak ∀i ∈ I, k ∈ K, t ∈ T

(11)ci, t − ui, t =
∑

k∈K

wk, i, t ∀i ∈ I, t ∈ T

(12)xk, t − xk, t+ 1 ≤ sk, t ∀k ∈ K, t ∈ T∕|T|

(13)− xk, t + xk, t+ 1 ≤ sk, t ∀k ∈ K, t ∈ T∕|T|

(14)wk, i, t, xk, t, ui, t, sk, t ∈ ℤ
≥ 0
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The overall objective is still to minimize the total cost of reallocating 
resources, total travel time, and unmet EMS incident demand. The optimization 
model is given as follows:

(15)

(EMS_RA_Weekly) Min �
∑

k∈K, t∈T

xk + �
∑

k∈K, t∈T

sk, t + �
∑

k∈K

qk

+ �
∑

k∈K, i∈ I, t∈T

dk, iwk, i, t

(16)s.t. x
k
≥

∑

i∈ I

w
k, i, t ∀k ∈ K, t ∈ T

(17)
∑

i∈ I

wk, i, t ≤ �ak ∀k ∈ K, t ∈ T

(18)wk, i, t ≤ �bk, iak ∀k ∈ K, i ∈ I, t ∈ T

(19)ci, t − ui, t =
∑

k∈K

wk, i, t ∀i ∈ I, t ∈ T

(20)
∑

i∈ I

(wk, i, t − wk, i, 0) ≤ sk, t ∀k ∈ K, t ∈ T

(21)
∑

i∈ I

(−wk, i.t + wk, i, 0) ≤ sk, t ∀k ∈ K, t ∈ T

(22)xk − gk ≤ qk ∀k ∈ K

Table 10  Notations of parameters and decision variables for the EMS_RA_Weekly model

Parameters Notation

� Weight for the total number of resources assigned define what is xk.
� Weight for auxiliary variables s

k, t , i.e., daily reallocating resources.
gk Dispatch amount of last Monday at station k or average dispatch 

amount of last week at station k)
� Weight for auxiliary variables qk , i.e., weekly reallocating resources.

Decision Variables

xk The number of resources assigned from station k at time t.
ui,t The number of demand not being satisfied in borough i at time t.
qk Auxiliary variable to indicate |xk − gk|.
sk,t Auxiliary variable to indicate �

∑
i∈ I

(w
k, i, t − w

k, i, 0)�.
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The EMS_RA_Weekly model is similar as the EMS_RA_Linear model except that 
we force the EMS resource allocation plan to be fixed on a weekly basis, and mini-
mize the gap of the EMS resource allocation plan between the current time horizon 
and previous time horizon. Constraint set in Eq. (16) indicates that the daily number 
of resources needed for station k in a week at time t less than to weekly scheduled 
number of resources that server all the boroughs in set I at time t. The constraint set 
in Eq. (24) limits the range of decision variables.

4.2  EMS Dispatch Simulation

In this section, we construct a discrete-event simulation model to determine the 
number of ambulances that are needed to meet the standard response time. The 
standard response time, as mentioned in Sect. 3, are 5 min for high-priority calls 
and 9 min for low-priority calls, while the standard response time is 7 min with-
out considering priority. In simulation modeling, for each station, we need to esti-
mate the call arrival process and EMS service time.

The dispatch volume for each station is derived from the result of the EMS-RA 
model in Sect.  4.1. We define EMS service time as the time interval between the 
ambulance arrival at the accident scene and the end of the accident. According to 
our analysis, the EMS service time in March and April 2020 is near normally dis-
tributed, as shown in Fig. 5 in Sect. 3.4. The mean EMS service time is 54.26 min 
with a standard deviation of 26.93 min. Similarly, the EMS service time of each sta-
tion is also normally distributed; mean EMS service times with standard deviation are 
shown in Table A21 in the Appendix. Then, we consider EMS calls as arrival events 
in an hourly basis as shown in Fig. 7. In Table 11, the hourly dispatch rate is inferred 
from the percentage of hourly dispatched volume out of the total dispatched volume.

The average incident response time value of regular period from 2015 to 
2019 is 8.24 min. As the demand increases significantly in March and April in 
2020, the average incident response time increased to 9.82  min, which exceeds 
the standard EMS response time of 7  min. The significant increased incident 
response time also indicates that the number of existing ambulances is insuffi-
cient for EMS incident demand.

Through simulation analysis, we can observe the variation in response time by 
the number of ambulances for the same call arrival rate and service time distribu-
tion. The intuitive idea is that as the number of ambulances increases, the aver-
age response time decreases. In simulation analysis, we then vary the number of 
ambulances at each station and constrain the response time less than the standard 
response time with acceptable utility rate (minimizing EMS resources). By set-
ting the most acceptable number of ambulances at each station, we can approxi-
mate the daily average dispatches of each ambulance and the initial number of 
ambulances at each station.

(23)− xk + gk ≤ qk ∀k ∈ K

(24)xk, ui, t, qk, sk, t ∈ ℤ
≥ 0



1 3

Operations Research Forum (2023) 4:44 Page 19 of 36 44

4.3  Assignment Model for EMS Resource Reallocation

In any situation where there is gap between EMS dispatches and EMS incidents 
within service district, we present an assignment optimization model to reallo-
cate EMS resources among service districts to fill the supply–demand gap. How-
ever, in the meantime, we would like to ensure a minimum EMS reallocation. The 
notations of parameters and decision variables are shown in Table 12.

The mathematical formulation of the EMS resource reallocation (EMS_RR) 
model is presented as follows:

(25)(EMS_RR) Min �
∑

k∈K, i∈ i

xki + �
∑

i∈ i

yki + �
∑

k∈K, i∈ I

vkixki

(26)s.t.
∑

i∈ I

xki ≤ pk ∀k ∈ K

(27)
∑

k∈K

xki = ri − yi ∀i ∈ I

Fig. 7  The trend of hourly 
incidents in 2020

Table 11  Hourly EMS resource dispatch rate in 2020. (%)

Hour Daily Percentage Hour Daily Percentage Hour Daily Percentage Hour Daily Percentage

1 3.53 7 2.48 13 5.22 19 5.13
2 3.12 8 2.92 14 5.07 20 5.15
3 2.78 9 3.81 15 5.02 21 4.61
4 2.52 10 4.65 16 5.30 22 4.27
5 2.37 11 5.13 17 5.17 23 3.75
6 2.27 12 5.28 18 5.21 0 3.94
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The objective function in Eq. (25) minimizes the total number of resources to real-
locate, the total gap between EMS demand and supply for all boroughs, and the total 
travel time spent on reallocation. The constraint set in Eq. (26) restricts the maxi-
mum number of resources that can be reallocated from borough i. The constraint set 
in Eq. (27) calculates the gap between reallocation demand and reallocation supply 
for borough i. The constraint set in Eq. (28) indicates the availability of reallocating 
resources from station k to i. The constraint set in Eq. (29) limits the range of deci-
sion variables.

5  Experimental Results

5.1  EMS Allocation Model

In this section, we show the optimized dispatch allocation for 31 stations. For 
61 days from March 1st to April 30th, the dispatch allocation result is shown in 
Fig.  A12. We compare the average number of dispatch from EMS_RA_Linear 
model with the real dispatch number in the New York Open Data for those 61 days. 
The difference between our model and real dispatch is shown in Fig. A13. The aver-
age daily dispatch volume and difference volume between our model and real dis-
patch are shown in Table 8.

The average daily delivery demand is 3,979 for the two months from March 
to April 2021. As shown in Fig. A13, we obtain the optimal dispatch volume per 
day for each station from model EMS_RA and calculate the difference with the 

(28)xki ≤ bkipk ∀i ∈ I∀k ∈ K

(29)xki, yi ∈ ℤ
≥ 0

Table 12  Notations of parameters and decision variables for EMS_ RR model

Parameters Notation

ri Reallocation demand of borough i at time t.
pk Maximal resource at station k is able to reallocate.
bki Trip availability from station k to borough i.
vki Travel time serving borough i from dispatch k.
� Weight for number of resources.
� Weight for travel time assigned to different boroughs.
� Weight for the balance of travel time between different boroughs.

Decision Variables

xki number of resources reallocated from station k to borough i.
yi gap between reallocation demand and reallocation supply for 

borough i.



1 3

Operations Research Forum (2023) 4:44 Page 21 of 36 44

real 61-day average dispatch volume for each station. We compare the difference 
between our dispatch outcome of 3 different travel time measures. The mean abso-
lute error for the dispatch volume of 3 different travel time measurement “median 
travel time in 2020”, “median travel time in 2019”, and “driving duration” are 63.03, 
57.64, 57.00 respectively. The whiter cell means the difference is more close to zero, 
a more red cell means the more difference between allocation result and actual dis-
patch. It shows that the dispatch outcomes xk obtained using the driving duration as 
travel time measurement can be most close to the actual dispatch. It is best to use the 
driving duration as the estimated travel time measurement.

5.2  Scenario Analysis for EMS Allocation Model

In this section, we consider the different scenarios that can be covered by our EMS 
allocation model EMS_RA in Sect. 4.1. We use driving duration as travel time meas-
urement in this section. When comparing the daily and weekly EMS resource allo-
cation plan, we can see a clear difference between the results of the daily and weekly 
models in Table 13. For priority, we obtained the results by considering high and 
low priority demands separately, see Table 14. For geographic location, we display 
different results considering each district separately, or all five districts at the same 
time in Table 14. The results we obtained show that our allocation model can be 
used in different scenarios depending on the research needs. After obtaining the 
results of the assignment model, it is thus possible to analyze and reassign the model 
by simulation to obtain results as in Sects. 5.3 and 5.4.

We demonstrate the results of the simulation analysis in Sect. 5.3 and the reallo-
cation model in Sect. 5.4, using driving duration as the measure of travel time with 
one day as an allocation cycle, dispatch volume as a unit of a day without consider-
ing priority (see Table 15).

5.3  Simulation Analysis

We attempt to infer the number of ambulances that each stations have to meet the stand-
ard response time using simulation analysis by given the number of station dispatch for 
each station in Sect. 5.1. We use average EMS response time 7 min as our standard 
response time. In Fig. 9, we display the number of ambulances capacity that each sta-
tions should have in order to meet dispatch demand and standard response time. As 
the simulation result, there are 214 ambulances in total. For each ambulance, we can 
infer that the average dispatch of each ambulance is 17.5 runs per day, which means an 
ambulance should serve 17.5 calls in average per day to meet a given dispatch demand 
with a response time of less than 7 min. Similarity, for real dispatch of ambulances, 
we attempt to infer the number of ambulances capacity of each station. The total num-
ber of ambulances is 227 by given 17.5 runs per ambulance per day; the total number 
of ambulances is 221 by given 18 runs per ambulance per day; the total number of 
ambulances is 215 by given 18.5 times per ambulance per day; the total number of 
ambulances is 209 as well as by given 19 times per ambulance per day assuming more 
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tense the situation will be. The “Fire Department of the City of New York” [26] gives 
New York EMS station locations and the number of ambulance capacity each station 
has, which has difference records from our data records. Nevertheless, the total number 
of ambulances in New York city is 225 in Fig. 9. In short, NYC EMS stations need 
214 ambulances in total to meet the dispatch demand with a response time of less than 
7 min. The less an ambulance can serve, the shorter response time can be, and less 
usage rate. The more an ambulance can serve, the longer response time can be. There-
fore, we need to make a trade-off between usage rate and response time.

5.4  EMS Reallocation

In this section, we display the number of dispatches as well as ambulances at each 
station should be reallocated to meet the requirement in Sects. 4.1 and 4.3, given the 
existing resources (the total number of dispatches in the record and the total number 
of ambulances we inferred in Sect. 5.3.

Fig. 8  Statistics of daily EMS incident dispatch across five service districts in NYC
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We are able to determine which stations are lower than the dispatch demand that 
should increase the dispatch capacity and which stations have exceeded the dispatch 
demand and can supply to move out, based on the dispatch allocation of EMS_RR 
model in Sect. 4.3. The average daily difference values between our model and real 
dispatch are shown in Fig. 8. For the column “2020 Difference”, positive value indi-
cates that the optimized allocation is greater than the real allocation, which implies 
that the reallocation demand is greater than 0, as well as that the reallocation sup-
ply is equal to 0 — “No Supply”, as shown in Fig. 10 “Internal demand”. Negative 

Table 13  Daily and weekly EMS dispatch volumes from the EMS_RA model and EMS_RA_Weekly (one 
day or one week as an allocation cycle, dispatch volume as a unit of a day). The total volumes of daily 
dispatches on EMS_RA model and EMS_RA_Weekly model are 4,401 and 3,979, respectively. Use driving 
duration as travel time measurement

B1 B2 B3 B4 B5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 S1 S2 S3

Daily 254 337 223 74 18 0 195 128 0 0 360 126 7 89 0
Weekly 263 337 223 143 19 0 286 128 0 0 361 126 0 89 0

K1 K2 K3 K4 K5 K6 K7 M1 M2 M3 M4 M5 M6 M7 M8 M9

Daily 194 27 36 192 148 180 210 154 242 189 0 127 52 149 77 192
Weekly 232 26 68 299 148 180 210 154 242 264 0 127 52 156 77 192

Table 14  High and low priority average daily EMS dispatch volumes from the EMS_RA model. The total 
volumes of daily dispatches is 3,980. Use driving duration as travel time measurement

Station Low Priority High Priority Station Low Priority High Priority

B1 240 5 K1 189 9
B2 310 10 K2 44 6
B3 211 0 K3 66 2
B4 89 4 K4 210 16
B5 22 1 K5 140 0
Q1 0 0 K6 165 6
Q2 196 6 K7 188 11
Q3 121 0 M1 145 1
Q4 4 0 M2 229 0
Q5 1 0 M3 187 8
Q6 342 0 M4 7 0
Q7 108 11 M5 120 0
S1 13 1 M6 45 4
S2 82 2 M7 140 5
S3 2 0 M8 68 5

M9 182 0
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value indicates that the optimized allocation dispatch is less than the real dispatch, 
which implies that the reallocation supply is greater than 0, as well as that the real-
location demand is equal to 0 — “No Demand”, as shown in Fig. 10 “Internal sup-
ply”. In the same way, a positive sum value of a borough implies that the borough 
reallocation demand is greater than 0, as well as that the borough reallocation supply 
is equal to 0 as “External demand”. A negative sum value of a borough implies that 
the borough reallocation supply is greater than 0, as well as that the borough reallo-
cation demand is equal to 0, as “External supply”. “Borough Demand” indicates the 
sum of reallocation demand for each borough. We use “Internal supply” and “Bor-
ough Demand” as input parameters pk and ri in the EMS_RR model.

In Fig. 10, column “Dispatch” indicates the reallocation dispatch from stations to 
boroughs in EMS_RR model. “Portion of Real Dispatch” indicates the reallocated 
dispatch volume per station as a percentage of the real dispatch volume. The col-
umn “Num ambulance” indicates the number of ambulances a station should reallo-
cate to a borough, which is inferred by multiplying the “Portion” and the “Estimated 
Num Ambulances”. (“Estimated Num Ambulances” indicates the “Estimated EMS 
Num(17.5)” in Fig. 9). The total reallocated dispatch volume is 884, and the total 
number of reallocated ambulance is 51.

(a) (b)

Fig. 9  Simulation result and real station capacity
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6  Conclusion and Future Work

In this work, we present an important problem of long response time for callers 
caused by inadequate ambulance resources in response to the intense increase in 
ambulance demand during the initial phase of COVID-19 in New York City. We 
decompose this into three parts using mathematical planning models and simulation 
analysis to analyze New York EMS operations. The main purpose is to understand 
and infer the EMS resource allocation system and reasonably allocate-reallocate 
EMS resources so that callers (patients) wait times are within acceptable thresh-
olds (7 min in general). We propose a framework jointly considering EMS resource 
allocation and response time. We demonstrate easy-to-interpret results by using 
real data collected from public data in New York City, which helps support EMS 
resource allocation decisions, and our hypothesized results are very close to the real 
cases. Our study is New York City-specific and observational, but our framework is 
still general enough to allow for adapting and deriving results for different scenarios. 
We do not discuss the uncertainty about demand by assuming that all demand is 
known in advance, thus we do not discuss the predictability of resource demand in 
the case of a sudden disaster. It may make our conclusions more practical if ambu-
lance demand prediction is also included in the discussion. Also, we do not dis-
cuss transfer costs, new ambulance costs, parking costs, especially in cities like New 
York with expensive parking costs. In addition, we did not analyze backup stations 
and backup ambulances in our framework. In our analysis, we removed extreme 
cases and always minimized resources without considering backup plans. Since 
there are many extreme cases in reality, EMS backup plans could be crucial. When 
analyzing ambulance demand, priority can be set for demand based on the sensi-
tivity of patient status to response time. If the urgency of the patient can be more 
accurately identified, EMS will tend to dispatch higher priority callers first in a state 
of resource scarcity, making it more conducive to resource allocation. However, it is 
difficult to determine accurately in advance the severity level of a caller’s condition 
as EMS operators need to understand remotely the patient’s status when calling and 
the caller needs to dictate the situation, which may lead to inaccurate and incomplete 
judgment of the severity. Some callers may give up waiting for an ambulance, result-
ing in a waste of resources as well. Thus, the operator’s judgment at the beginning 
has a critical role in the overall EMS operation. In the future, it is possible to discuss 
more specific status of the caller and other uncertainties in our framework. We may 
also adopt the concepts of our proposed approach and results for application to other 
agencies that are resource-poor and sensitive to response time.

Fig. 10  Reallocation demand and supply based on the difference allocation result and real dispatch 
obtained in Fig. 8. Reallocation result. Reallocation as a percentage of real dispatch, and its portion of 
estimated capacity

▸
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Appendix

Fig. A11 Dispatch allocation 
using travel time 2020
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Fig. A12 Dispatch allocation 
using driving duration
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(a)

(b)

(c)

Fig. A13 Difference dispatch between our model and real dispatch
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Table A20 Cancel rate

Area Daily Area Daily

B1 94.39% K1 92.67%
B2 95.17% K2 91.02%
B3 96.15% K3 94.97%
B4 95.60% K4 95.33%
B5 95.17% K5 94.42%
Q1 91.63% K6 90.99%
Q2 95.19% K7 93.49%
Q3 95.36% M1 91.79%
Q4 94.73% M2 90.58%
Q5 94.30% M3 89.59%
Q6 94.79% M4 94.45%
Q7 94.65% M5 93.66%
S1 90.44% M6 94.15%
S2 93.30% M7 94.73%
S3 92.17% M8 95.38%

M9 94.96%

Table A21 Parameter of normal distribution for service time in March and April 2020

Area Mean Standard Deviation Area Mean Standard 
Deviation

B1 55.47 11.12 K1 52.24 11.87
B2 54.24 9.39 K2 50.29 12.50
B3 58.37 11.24 K3 57.04 14.35
B4 57.31 13.84 K4 58.38 10.57
B5 56.27 13.35 K5 55.01 16.36
Q1 50.13 19.23 K6 51.75 14.72
Q2 55.27 10.58 K7 54.83 14.04
Q3 52.91 16.66 M1 50.06 15.61
Q4 55.36 16.91 M2 47.08 12.26
Q5 53.47 19.60 M3 47.62 13.58
Q6 53.81 10.71 M4 54.55 16.84
Q7 53.74 16.10 M5 52.68 15.23
S1 47.08 15.79 M6 55.60 20.43
S2 52.56 18.30 M7 54.11 13.80
S3 50.94 22.59 M8 54.70 19.22

M9 55.67 13.34
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