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Abstract
Zero-determinant strategies are memory-one strategies in repeated games which 
unilaterally enforce linear relations between expected payoffs of players. Recently, 
the concept of zero-determinant strategies was extended to the class of memory-n 
strategies with n ≥ 1 , which enables more complicated control of payoffs by one 
player. However, what we can do by memory-n zero-determinant strategies is still 
not clear. Here, we show that memory-n zero-determinant strategies in repeated 
games can be used to control conditional expectations of payoffs. Equivalently, 
they can be used to control expected payoffs in biased ensembles, where a history 
of action profiles with large value of bias function is more weighted. Controlling 
conditional expectations of payoffs is useful for strengthening zero-determinant 
strategies, because players can choose conditions in such a way that only unfavora-
ble action profiles to one player are contained in the conditions. We provide sev-
eral examples of memory-n zero-determinant strategies in the repeated prisoner’s 
dilemma game. We also explain that a deformed version of zero-determinant strate-
gies is easily extended to the memory-n case.

Keywords Repeated games · Zero-determinant strategies · Memory-n strategies

1 Introduction

Repeated games have succeeded in explaining cooperative behavior in the pris-
oner’s dilemma situation, where defection is more favorable than cooperation [1, 
2]. Recently, finite-memory strategies (strategies with finite recall) in repeated 
games have attracted much attention in game theory, because the rationality of  
real agents is bounded [3]. In computer science, agents with bounded rational-
ity were modeled by finite automata, and equilibria of such agents have been 
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investigated [4–7]. In evolutionary biology, evolutionary stability of finite-
memory strategies has been mainly focused on [8–10]. The class of memory- 
one strategies contains several representative strategies in the repeated prisoner’s 
dilemma game, such as the Grim Trigger strategy [11], the Tit-for-Tat strategy 
[12, 13], and the Win-Stay Lose-Shift strategy [9]. Moreover, longer-memory 
strategies have recently been investigated since longer memory enables agents 
more complicated behavior [14–18].

In 2012, two physicists, William Press and Freeman Dyson, discovered a novel 
class of memory-one strategies, called zero-determinant (ZD) strategies, in the infi-
nitely repeated prisoner’s dilemma game [19]. Counterintuitively, ZD strategies uni-
laterally control expected payoffs of players by enforcing linear relations between 
expected payoffs. Since the discovery of ZD strategies, many extensions have 
been done, including extensions to multi-player multi-action stage games [20–24], 
extensions to games with imperfect monitoring [25–27], extensions to games 
with a discounting factor [23, 28–30], extensions to asynchronous games [31, 32],  
an extension to linear relations between moments of payoffs [33], and an exten-
sion to long-memory strategies [34]. In addition, evolutionary stability of ZD strat-
egies, such as extortionate ZD strategy and generous ZD strategy, in the repeated 
prisoner’s dilemma game has been substantially investigated [35–40]. Human  
experiments also compared performance of extortionate ZD strategy and that of gen-
erous ZD strategy [41, 42]. Furthermore, mathematical properties of the situation 
where several players take ZD strategies were investigated [21, 27].

In this paper, we provide an interpretation about the ability of memory-n ZD 
strategies [34]. Although memory-n ZD strategies were originally introduced as 
strategies which unilaterally enforce linear relations between correlation functions 
of payoffs, we here elucidate that the fundamental ability of memory-n ZD strategies 
is that they unilaterally enforce linear relations between conditional expectations 
of payoffs. Equivalently, we can rephrase that memory-n ZD strategies unilaterally 
enforce linear relations between expected payoffs in biased ensembles [43–49]. The 
results in Ref. [34] can be derived from this interpretation. We also provide exam-
ples of memory-n ZD strategies in the repeated prisoner’s dilemma game. Since 
expected payoffs conditional on previous action profiles are used in linear relations, 
players can choose conditions in such a way that only action profiles unfavorable to 
one player are contained in the conditions, which may result in strengthening origi-
nal memory-one ZD strategies. Furthermore, we show that extension of deformed 
ZD strategies [33] to the memory-n case is straightforward.

This paper is organized as follows. In Sect.  2, we introduce a model of repeated 
games. In Sect. 3, we review ZD strategies. In Sect. 4, we show that there exist strate-
gies which unilaterally enforce probability zero to specific action profiles. In Sect. 5, we 
introduce the concept of biased memory-n ZD strategies, and show that they unilater-
ally enforce linear relations between expected payoffs in biased ensembles or probabil-
ity zero for a set of action profiles. In this section, we also discuss that the factorable 
memory-n ZD strategies in Ref. [34] can be derived from biased memory-n ZD strate-
gies. In Sect. 6, we provide examples of biased memory-n ZD strategies in the repeated 
prisoner’s dilemma game. In Sect. 7, we introduce memory-n version of deformed ZD 
strategies and provide several examples. Section 8 is devoted to concluding remarks.
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2  Model

We consider a repeated game with N players. The set of players is described as 
N ∶= {1,⋯ ,N} . The action of player a ∈ N  in a one-shot game is written as 
�
a
∈ A

a
∶=

{
1,⋯ ,M

a

}
 , where M

a
< ∞ is the number of action of player a. We 

define A ∶=
∏

N

a=1
A
a
 . We collectively write � ∶=

(
�1,⋯ , �

N

)
∈ A and call � an 

action profile. The payoff of player a when the action profile is � is described as 
s
a
(�) . We also write a probability M-simplex by Δ

M
 . We consider the situation that 

the game is repeated infinitely. We write an action of player a in t-th round (t ≥ 1) 
by �

a
(t) . The (behavior) strategy of player a is described as T

a
∶=

{
T
(t)
a

}∞

t=1
 , where 

T
(t)
a

∶ A
t−1

→ Δ
M

a

 is the conditional probability at t-th round. We write the expecta-
tion of the quantity B with respect to strategies of all players by �[B] . We introduce 
a discounting factor by � , which satisfies 0 ≤ � ≤ 1 . The payoff of player a in the 
repeated game is defined by

for 0 ≤ 𝛿 < 1 , and

for � = 1 . In this paper, we consider only the case � = 1 . Below we write 
∑

�∈A and ∑
�
a
∈A

a

(∀a) as 
∑

�
 and 

∑
�
a

 , respectively.
The payoff is rewritten as

where we have defined the joint probability distribution of action profiles 
{
�(t�)

}
t

t
�=1

It should be noted that ℙ
t
 satisfies the recursion relation

We first introduce (time-independent) memory-n strategies (n ≥ 0).

Definition 1 A strategy of player a is a (time-independent) memory-n strategy 
(n ≥ 0) when it is written in the form

(1)S
a
∶= (1 − �)�

[
∞∑
t=1

�
t−1

s
a
(�(t))

]

(2)S
a
∶= �

[
lim
T→∞

1

T

T∑
t=1

s
a
(�(t))

]

(3)S
a
= lim

T→∞

1

T

T∑
t=1

∑
�(t)

⋯
∑
�(1)

s
a
(�(t))ℙ

t
(�(t),⋯ ,�(1)),

(4)ℙ
t
(�(t),⋯ ,�(1)) ∶=

t∏
t
�=1

N∏
a=1

T
(t�)
a

(
�
a
(t�)|�(t� − 1),⋯ ,�(1)

)
.

(5)

ℙ
t+1(�(t + 1),⋯ ,�(1)) =

(
N∏
a=1

T
(t+1)
a

(
�
a
(t + 1)|�(t),⋯ ,�(1)

))
ℙ
t
(�(t),⋯ ,�(1)).
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for all t > n with some common conditional probability T
a
.

Throughout this paper, we consider the situation that a player ∃a ∈ N  uses a 
memory-n strategy. We remark that strategies of players −a ∶= N�{a} are arbitrary. 
We define �−a ∶= ���

a
 . For t ≥ n , we also define the marginal probability distribu-

tion of the last n action profiles obtained from ℙ
t
 by

By taking summation of the both sides of Eq. (5) with respect to �−a(t + 1) , �(t) , ⋯ , 
and �(1) for t ≥ n , the left-hand-side becomes

where �
�,�′ represents the Kronecker delta, which takes 1 for � = �

� and 0 otherwise. 
(The last line is obtained by renaming variables.) The right-hand-side becomes

By renaming �
a
(t + 1) → �

a
 , we obtain

for t ≥ n . Then, by calculating lim
T→∞

1

T

∑
T+n−1

t=n
 of both sides, we finally obtain

(6)
T
(t)
a

(
�
a
(t)|�(t − 1),⋯ ,�(1)

)
= T

a

(
�
a
(t)|�(t − 1),⋯ ,�(t − n)

)
(
∀�

a
(t),∀

{
�(t�)

}
t−1

t
�=1

)

(7)P
t
(�(t),⋯ ,�(t − n + 1)) ∶=

∑
�(t−n)

⋯
∑
�(1)

ℙ
t
(�(t),⋯ ,�(1)).

(8)

�
�−a(t+1)∈

∏
a
�≠a Aa

�

�
�(t)

⋯
�
�(1)

ℙ
t+1(�(t + 1),⋯ ,�(1))

=
�

�−a(t+1)∈
∏

a
�≠a Aa

�

�
�(t)

⋯
�

�(t−n+2)

P
t+1(�(t + 1),⋯ ,�(t − n + 2))

=
�
�
(−1)

⋯
�
�
(−n)

�
�
(−1)
a

,�
a
(t+1)

P
t+1

�
�
(−1),⋯ ,�(−n)

�
,

(9)

�
�−a(t+1)∈

∏
a
�≠a Aa

�

�
�(t)

⋯
�
�(1)

�
N�
b=1

T
(t+1)

b

�
�
b
(t + 1)��(t),⋯ ,�(1)

��
ℙ
t
(�(t),⋯ ,�(1))

=
�
�(t)

⋯
�
�(1)

T
a

�
�
a
(t + 1)��(t),⋯ ,�(t − n + 1)

�
ℙ
t
(�(t),⋯ ,�(1))

=
�
�(t)

⋯
�

�(t−n+1)

T
a

�
�
a
(t + 1)��(t),⋯ ,�(t − n + 1)

�
P
t
(�(t),⋯ ,�(t − n + 1))

=
�
�
(−1)

⋯
�
�
(−n)

T
a

�
�
a
(t + 1)��(−1),⋯ ,�(−n)

�
P
t

�
�
(−1),⋯ ,�(−n)

�
.

(10)

0 =
∑
�
(−1)

⋯
∑
�
(−n)

T
a

(
�
a
|�(−1),⋯ ,�(−n)

)
P
t

(
�
(−1),⋯ ,�(−n)

)

−
∑
�
(−1)

⋯
∑
�
(−n)

�
�
(−1)
a

,�
a

P
t+1

(
�
(−1),⋯ ,�(−n)

)
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where we have introduced the limit distribution

Therefore, we obtain the generalized version of Akin’s lemma [34, 50]:

Lemma 1 For the quantity

the relation

holds for arbitrary �
a
.

In other words, player a unilaterally enforces linear relations between values of the 
limit probability distribution P∗ regardless of the strategies of other players. Memory-
one examples of such linear relations in the repeated prisoner’s game is provided in the 
Appendix. The quantity (13) is called a Press-Dyson tensor (or a strategy tensor) [34].

It should be noted that a Press-Dyson tensor T̂
a
 is solely controlled by player a. 

Due to properties of a probability distribution T
a
 , a Press-Dyson tensor satisfies sev-

eral relations. First, it satisfies

for arbitrary 
(
�
(−1),⋯ ,�(−n)

)
 due to the normalization condition of T

a
 . This implies 

that the number of linear relations (14) enforced by player a is at most (M
a
− 1) . 

Second, it satisfies

for all �
a
 , �(−1) , ⋯ , �(−n) . Third, it satisfies

for all �
a
 , �(−1) , ⋯ , �(−n) . The last two comes from the fact that T

a
 takes value in 

[0, 1].
Below we write the expectation for the limit distribution P∗

(
�
(−1),⋯ ,�(−n)

)
 by 

⟨⋯⟩∗ , and note s0(�) ∶= 1 (∀�) for simplicity. We remark that the payoff of player 
∀a� ∈ N  is described as

(11)0 =
∑
�
(−1)

⋯
∑
�
(−n)

[
T
a

(
�
a
|�(−1),⋯ ,�(−n)

)
− �

�
(−1)
a

,�
a

]
P
∗
(
�
(−1),⋯ ,�(−n)

)
,

(12)P
∗
(
�
(−1),⋯ ,�(−n)

)
∶= lim

T→∞

1

T

T+n−1∑
t=n

P
t

(
�
(−1),⋯ ,�(−n)

)
.

(13)T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
∶= T

a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
− 𝛿

𝜎
a
,𝜎

(−1)
a

,

(14)0 =
∑
�
(−1)

⋯
∑
�
(−n)

T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
P
∗
(
�
(−1),⋯ ,�(−n)

)

(15)
∑
𝜎
a

T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
= 0

(16)T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

){≤ 0,
(
𝜎
a
= 𝜎

(−1)
a

)
≥ 0,

(
𝜎
a
≠ 𝜎

(−1)
a

)

(17)
|||T̂a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)||| ≤ 1
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That is, the payoffs in the repeated game are calculated as expected payoffs in the 
limit distribution. In the proof of Lemma 1, we have assumed that P∗ exists. When 
P
∗ does not exist, the payoffs in the repeated games cannot be defined. Therefore,  

we consider only the case that P∗ exists.

3  Previous Studies

Press and Dyson introduced the concept of zero-determinant strategies in repeated 
games [19]:

Definition 2 A memory-one strategy of player a is a zero-determinant (ZD) strategy 
when its Press-Dyson vectors T̂

a
 can be written in the form

with some nontrivial coefficients 
{
c
�
a

}
 and 

{
�
b

}
 (that is, not c1 = ⋯ = c

M
a

= const. 
and not �0 = �1 = ⋯ = �

N
= 0).

(Press-Dyson tensors with n = 1 are particularly called Press-Dyson vectors.) 
Because Press-Dyson vectors satisfy Akin’s lemma (Lemma 1), the following prop-
osition holds:

Proposition 1 ([19, 23]) A ZD strategy (19) unilaterally enforces a linear relation 
between expected payoffs:

That is, the expected payoffs can be unilaterally controlled by one ZD player.
Recently, a deformed version of ZD strategies was also introduced [33]:

Definition 3 A memory-one strategy of player a is a deformed ZD strategy when its 
Press-Dyson vectors T̂

a
 can be written in the form

(18)

S
a
� = lim

T→∞

1

T

(
n−1∑
t=1

∑
�(t)

⋯
∑
�(1)

s
a
� (�(t))ℙ

t
(�(t),⋯ ,�(1))

+

T∑
t=n

∑
�(t)

⋯
∑

�(t−n+1)

s
a
� (�(t))P

t
(�(t),⋯ ,�(t − n + 1))

)

=
∑
�
(−1)

⋯
∑
�
(−n)

s
a
�

(
�
(−1)

)
P
∗
(
�
(−1),⋯ ,�(−n)

)

=
⟨
s
a
�

(
�
(−1)

)⟩∗
.

(19)
∑
𝜎
a

c
𝜎
a

T̂
a

(
𝜎
a
|�(−1)

)
=

N∑
b=0

𝛼
b
s
b

(
�
(−1)

)
(∀�(−1))

(20)0 =

N∑
b=0

�
b

⟨
s
b

(
�
(−1)

)⟩∗
.
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with some nontrivial coefficients 
{
c
�
a

}
 and 

{
�
k1,⋯, k

N

}
.

Due to the same reason as Proposition 1, the following proposition holds:

Proposition 2 ([33]) A deformed ZD strategy (21) unilaterally enforces a linear 
relation between moments of payoffs:

That is, the moments of payoffs can also be unilaterally controlled by one ZD player.

Furthermore, Ueda extended the concept of ZD strategies to memory-n strategies 
[34]:

Definition 4 A memory-n strategy of player a is a memory-n ZD strategy when its 
Press-Dyson tensors T̂

a
 can be written in the form

with some nontrivial coefficients 
{
c
�
a

}
 and 

{
�
b
(−1),⋯, b(−n)

}
.

Because of Lemma 1, the following proposition also holds:

Proposition 3 ([34]) A memory-n ZD strategy (23) unilaterally enforces a linear 
relation between correlation functions of payoffs:

The purpose of this paper is reinterpreting memory-n ZD strategies in terms of more 
elementary strategies.

4  Probability‑Controlling Strategies

We first prove that there exist memory-n strategies which avoid an arbitrary action pro-
file � in the limit distribution. We define 𝛿

�,�̂ ∶=
∏

N

a=1
𝛿
𝜎
a
,�̂�

a

.

(21)
∑
𝜎
a

c
𝜎
a

T̂
a

(
𝜎
a
|�(−1)

)
=

∞∑
k1=0

⋯

∞∑
k
N
=0

𝛼
k1,⋯,k

N

N∏
b=1

s
b

(
�
(−1)

)
k
b

(
∀�(−1)

)

(22)0 =

∞∑
k1=0

⋯

∞∑
k
N
=0

�
k1,⋯, k

N

⟨
N∏
b=1

s
b

(
�
(−1)

)
k
b

⟩∗

.

(23)

∑
𝜎
a

c
𝜎
a

T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
=

N∑
b
(−1)=0

⋯

N∑
b
(−n)=0

𝛼
b
(−1),⋯, b(−n)

n∏
m=1

s
b
(−m)

(
�
(−m)

)

(
∀
{
�
(−m)

}
n

m=1

)

(24)0 =

N∑
b
(−1)=0

⋯

N∑
b
(−n)=0

�
b
(−1),⋯, b(−n)

⟨
n∏

m=1

s
b
(−m)

(
�
(−m)

)⟩∗

.
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Proposition 4 Given some action profiles 
{
�̂
(−m)

}n

m=1
 , memory-n strategies of player 

a of the form

where ̂T (1)
a

 is a Press-Dyson vector of a memory-one strategy satisfying ̂T (1)
a

(
𝜎
∗
a
|�̂(−1)

)
≠ 0  

for some �∗
a
 , unilaterally enforce probability zero to the history �̂(−1)

,⋯ , �̂
(−n):

Proof We consider Eq. (25) with �
a
= �

∗
a
:

By calculating expectations of the both sides with respect to the limit distribution 
P
∗
(
�
(−1),⋯ ,�(−n)

)
 corresponding to the strategy (25), and by using Lemma 1, we 

obtain

By the assumption T̂ (1)
a

(
𝜎
∗
a
|�̂(−1)

)
≠ 0 , we obtain the Eq. (26). □

Strategies of the form (25) can be used for avoiding some unfavorable situation (
�̂
(−1)

,⋯ , �̂
(−n)

)
 . We call strategies of the form (25) probability-controlling strategies. 

For example, the Grim Trigger strategy of player 1 in the repeated prisoner’s dilemma 
game can be regarded as a memory-one probability-controlling strategy avoiding the 
action profile (Cooperation, Defection), as we can see in the Appendix. This fact pro-
vides another explanation about the property that the Grim Trigger strategy is unbeat-
able [51]. We again discuss Grim Trigger in Sect. 6.

5  Biased Memory‑n ZD Strategies

The limit distribution P∗
(
�
(−1),⋯ ,�(−n)

)
 gives the joint probability of n action 

profiles 
(
�
(−1),⋯ ,�(−n)

)
 . When we consider some real function K

(
�
(−1),⋯ ,�(−n)

)
 

and introduce the quantity

(25)
T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
= T̂

(1)
a

(
𝜎
a
|�(−1)

) n∏
m=1

𝛿
�
(−m),�̂

(−m) ,

(
∀𝜎

a
,∀
{
�
(−m)

}
n

m=1

)

(26)P
∗
(
�̂
(−1)

,⋯ , �̂
(−n)

)
= 0.

(27)T̂
a

(
𝜎
∗
a
|�(−1),⋯ ,�(−n)

)
= T̂

(1)
a

(
𝜎
∗
a
|�(−1)

) n∏
m=1

𝛿
�
(−m),�̂

(−m) .

(28)
0 =

∑
�
(−1),⋯,�(−n)

P
∗
(
�
(−1),⋯ ,�(−n)

)
T̂
(1)
a

(
𝜎
∗
a
|�(−1)

) n∏
m=1

𝛿
�
(−m),�̂

(−m)

= P
∗
(
�̂
(−1)

,⋯ , �̂
(−n)

)
T̂
(1)
a

(
𝜎
∗
a
|�̂(−1)

)
.

(29)P
K

(
�
(−1),⋯ ,�(−n)

)
∶=

P
∗
(
�
(−1),⋯ ,�(−n)

)
e
K(�(−1),⋯,�(−n))

⟨
e
K(�(−1),⋯,�(−n))

⟩∗ ,
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this quantity can also be regarded as a probability distribution of n action pro-
files 

(
�
(−1),⋯ ,�(−n)

)
 . In this ensemble of histories, a history with large K is more 

weighted. We call such ensemble P
K

 as biased ensemble biased by the function K. 
Biased ensembles recently attract much attention in statistical mechanics of trajecto-
ries [43–49].

We now prove our main theorem.

Theorem 1 Let T̂ (1)
a

 be Press-Dyson vectors of a memory-one ZD strategy of player a:

with some coefficients 
{
c
�
a

}
 and 

{
�
b

}
 . Let K ∶ A

n

→ ℝ ∪ {−∞} be a function satis-
fying K(⋅) < ∞ , and define

Then, a memory-n strategy

unilaterally enforces either a linear relation between expected payoffs in a biased 
ensemble (biased by the function K)

or the relation

where supp f  represents the support of function f.

Proof First, we check that tensors (32) indeed satisfy the conditions of strategies, 
that is, Eqs. (15), (16), and (17). Due to the equality

for Press-Dyson vectors of memory-one ZD strategies, we obtain

(30)
∑
𝜎
a

c
𝜎
a

T̂
(1)
a

(
𝜎
a
|�(−1)

)
=

N∑
b=0

𝛼
b
s
b

(
�
(−1)

) (
∀�(−1)

)

(31)Kmax ∶= max
�
(−1),⋯,�(−n)

K

(
�
(−1),⋯ ,�(−n)

)
.

(32)
T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
= T̂

(1)
a

(
𝜎
a
|�(−1)

)
e
K(�(−1),⋯,�(−n))−Kmax

(
∀𝜎

a
,∀
{
�
(−m)

}
n

m=1

)

(33)0 =

N∑
b=0

�
b

⟨
s
b

(
�
(−1)

)
e
K(�(−1),⋯,�(−n))

⟩∗

⟨
e
K(�(−1),⋯,�(−n))

⟩∗

(34)0 = P
∗
(
�
(−1),⋯ ,�(−n)

) (
∀
(
�
(−1),⋯ ,�(−n)

)
∈ supp eK(⋅)

)
,

(35)
∑
𝜎
a

T̂
(1)
a

(
𝜎
a
|�(−1)

)
= 0

(
∀�(−1)

)

(36)

∑
𝜎
a

T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
=
∑
𝜎
a

T̂
(1)
a

(
𝜎
a
|�(−1)

)
e
K(�(−1),⋯,�(−n))−Kmax

= 0
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for arbitrary 
{
�
(−m)

}
n

m=1
 , which implies Eq. (15). In addition, because the Press-

Dyson vectors T̂ (1)
a

 of a memory-one ZD strategy satisfies

for all �
a
 and �(−1) , and the sign of T̂

a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
 is the same as that of 

T̂
(1)
a

(
𝜎
a
|�(−1)

)
 , we obtain Eq. (16) for all �

a
 and 

{
�
(−m)

}
n

m=1
 Furthermore, since the 

Press-Dyson vectors T̂ (1)
a

 of a memory-one ZD strategy satisfies

and then Eq. (32) satisfies

we obtain Eq. (17) for all �
a
 , �(−1) , ⋯ , �(−n)

Next, from Eqs. (32) and (30), we obtain

By calculating expectations of the both sides with respect to the corresponding limit 
distribution P∗

(
�
(−1),⋯ ,�(−n)

)
 and using Lemma 1, we obtain

Furthermore, if

by dividing the both sides of Eq. (41) by 
⟨
e
K(�(−2),⋯,�(−n))−Kmax

⟩∗

 , we obtain Eq. (33). 
Otherwise, the equality

holds. This equality is rewritten as

(37)T̂
(1)
a

(
𝜎
a
|�(−1)

){≤ 0,
(
𝜎
a
= 𝜎

(−1)
a

)
≥ 0,

(
𝜎
a
≠ 𝜎

(−1)
a

)

(38)
|||T̂

(1)
a

(
𝜎
a
|�(−1)

)||| ≤ 1
(
∀𝜎

a
,∀�(−1)

)
,

(39)

|||T̂a
(
𝜎
a
|�(−1),⋯ ,�(−n)

)||| =
|||T̂

(1)
a

(
𝜎
a
|�(−1)

)
e
K(�(−1),⋯,�(−n))−Kmax

|||
=
|||T̂

(1)
a

(
𝜎
a
|�(−1)

)|||e
K(�(−1),⋯,�(−n))−Kmax

≤
|||T̂

(1)
a

(
𝜎
a
|�(−1)

)|||
≤ 1

(
∀𝜎

a
,∀
{
�
(−m)

}
n

m=1

)
,

(40)
∑
𝜎
a

c
𝜎
a

T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
=

N∑
b=0

𝛼
b
s
b

(
�
(−1)

)
e
K(�(−1),⋯,�(−n))−Kmax .

(41)0 =

N∑
b=0

�
b

⟨
s
b

(
�
(−1)

)
e
K(�(−1),⋯,�(−n))−Kmax

⟩∗

.

(42)
⟨
e
K(�(−1),⋯,�(−n))

⟩∗

≠ 0,

(43)
⟨
e
K(�(−1),⋯,�(−n))

⟩∗

= 0
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However, because eK is non-negative, this equality implies Eq. (34).   ◻

Theorem 1 can be regarded as an extension of Proposition 4. It should be noted 
that the limit probability distribution P∗

(
�
(−1),⋯ ,�(−n)

)
 depends on strategies. We 

call strategies in this Theorem as biased memory-n ZD strategies. Controlling biased 
expectations of payoffs is useful for strengthening memory-one ZD strategies, because 
players can choose biased functions in such a way that unfavorable action profiles to 
one player are more weighted. Biased ensembles are used to amplify rare events in the 
same way as evolution in population genetics. When we consider situation where each 
group with N players is selected by fitness eK , expected payoffs in such situation are 
calculated by our biased expectations. Such situation may be useful in the context of 
multilevel selection [52], if K is given by the total payoffs of all players in one group, 
for instance. Furthermore, Theorem 1 contains the following three corollaries.

Corollary 1 Let T̂ (1)
a

 be Press-Dyson vectors of a memory-one ZD strategy satisfying 
Eq. (30). Let 

{
�̂
(−m)

}n

m=1
 be some action profiles. If 

∑
N

b=0
𝛼
b
s
b

�
�̂
(−1)

�
≠ 0 , then a 

memory-n strategy

unilaterally enforces the equation

Proof By choosing the function K such that

in Eq. (32), we obtain

(We remark that K can be −∞ .) It should be noted that Kmax = 0 . By using the 
assumption 

∑
N

b=0
𝛼
b
s
b

�
�̂
(−1)

�
≠ 0 , we obtain the result (46).   ◻

Corollary 1 can also be derived directly from Proposition 4.

Corollary 2 Let T̂ (1)
a

 be Press-Dyson vectors of a memory-one ZD strategy satisfying 
Eq. (30). Let 

{
�̂
(−m)

}n

m=2
 be some action profiles. Then a memory-n strategy

(44)0 =
∑

�
(−1),⋯,�(−n)

P
∗
(
�
(−1),⋯ ,�(−n)

)
e
K(�(−1),⋯,�(−n)).

(45)
T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
= T̂

(1)
a

(
𝜎
a
|�(−1)

) n∏
m=1

𝛿
�
(−m),�̂

(−m)

(
∀𝜎

a
,∀
{
�
(−m)

}
n

m=1

)

(46)P
∗
(
�̂
(−1)

,⋯ , �̂
(−n)

)
= 0.

(47)e
K(�(−1),⋯,�(−n)) =

n∏
m=1

𝛿
�
(−m),�̂

(−m)

(48)0 =

N∑
b=0

𝛼
b

⟨
s
b

(
�
(−1)

) n∏
m=1

𝛿
�
(−m),�̂

(−m)

⟩∗

.
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unilaterally enforces either a linear relation between conditional expectations of 
payoffs when the history of the previous n − 1 action profiles is �̂(−2) , ⋯ , �̂(−n)

or the relation

Proof By choosing the function K such that

in Eq. (32), we obtain the relation (50) or the relation (51). It should be noted that 
Eq. (51) can be rewritten as

which is a relation on the marginal distribution.   ◻

We remark that memory-n strategies (49) approach the strategy “Repeat” [50]

(which repeats the previous action of the player) as n increases, because ∏
n

m=2
𝛿
�
(−m),�̂

(−m) = 0 for most 
{
�
(−m)

}
n

m=1
 . This property is used to control only con-

ditional expectations when history of the action profiles is 
(
�̂
(−2)

,⋯ , �̂
(−n)

)
.

Corollary 3 Memory-n strategies of the form (32) contain factorable memory-n ZD 
strategies (23):

(49)
T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
= T̂

(1)
a

(
𝜎
a
|�(−1)

) n∏
m=2

𝛿
�
(−m),�̂

(−m)

(
∀𝜎

a
,∀
{
�
(−m)

}
n

m=1

)

(50)0 =

N�
b=0

𝛼
b

�
s
b

�
�
(−1)

�∏
n

m=2
𝛿
�
(−m),�̂

(−m)

�∗

�∏
n

m=2
𝛿
�
(−m),�̂

(−m)

�∗

(51)0 =

⟨
n∏

m=2

𝛿
�
(−m),�̂

(−m)

⟩∗

.

(52)e
K(�(−1),⋯,�(−n)) =

n∏
m=2

𝛿
�
(−m),�̂

(−m)

(53)
0 =

∑
�
(−1),⋯,�(−n)

P
∗
(
�
(−1),⋯ ,�(−n)

) n∏
m=2

𝛿
�
(−m),�̂

(−m)

=
∑
�
(−1)

P
∗
(
�
(−1), �̂

(−2)
⋯ , �̂

(−n)
)
,

(54)T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
= 0

(
∀𝜎

a
,∀
{
�
(−m)

}
n

m=1

)

(55)
∑
𝜎
a

c
𝜎
a

T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
=

n∏
m=1

N∑
b
m
=0

𝛼
(m)

b
m

s
b
m

(
�
(−m)

)
.
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Proof In Theorem  1, when the quantity K
(
�
(−1),⋯ ,�(−n)

)
 is written in the form ∑

n

m=2
K
m

�
�
(−m)

�
 , and the quantity G

m
(�) ∶= e

K
m
(�) ≥ 0 (m ≥ 2) is written by payoffs 

in the form

with some coefficients 
{
�
(m)

b
m

}
 , then the strategies (32) are reduced to memory-n ZD 

strategies (55).   ◻

6  Examples: the Prisoner’s Dilemma Game

6.1  Setup

We consider the repeated prisoner’s dilemma game as an example. The prisoner’s dilemma 
game is the simplest two-player two-action game, where each player chooses cooperation 
(written as 1) or defection (written as 2) in each round [19]. Payoffs of two players are

with T > R > P > S . Although the Nash equilibrium of the one-shot game is (2, 2), 
it has been known that cooperative Nash equilibria exist when this game is repeated 
infinitely many times and the discounting factor is large enough (folk theorem).

6.2  Biased Memory‑n ZD Strategies

In the repeated prisoner’s dilemma game, the following strategies are contained in 
biased memory-n ZD strategies of player 1:

where G1 is a Press-Dyson vector of memory-one ZD strategies and G
m
 (m ≥ 2) 

is non-negative quantity. For example, when we assume that 2R > T + S and 
2P < T + S , they are

(56)G
m
(�) =

N∑
b
m
=0

�
(m)

b
m

s
b
m

(�)

(57)
(
s1(1, 1), s1(1, 2), s1(2, 1), s1(2, 2)

)
= (R, S, T ,P)

(58)
(
s2(1, 1), s2(1, 2), s2(2, 1), s2(2, 2)

)
= (R, T , S,P)

(59)T̂1

(
1|�(−1),⋯ ,�(−n)

)
=

n∏
m=1

G
m

(
�
(−m)

)

(60)
G1(⋅) ∈

{
−

1

T − P

[
s2(⋅) − P

]
,−

1

R − S

[
s2(⋅) − R

]
,

1

T − S

[
s1(⋅) − s2(⋅)

]
,

−
1

B

[
s1(⋅) + s2(⋅) − (T + S)

]
,⋯

}

Page 13 of 22    48Operations Research Forum (2022) 3: 48



1 3

with B ∶= max {2R − (T + S), (T + S) − 2P} , and

for each m ≥ 2 . We remark that the set of G
m

 (m ≥ 1) also contains quantities 
which cannot be represented by payoffs. A linear relation enforced by the ZD 
strategy is

that is, a linear relation between correlation functions of payoffs. These strategies 
contain all memory-two ZD strategies reported in Ref. [34].

6.3  Extension of Tit‑for‑Tat

For example, the memory-n strategy

is a memory-n ZD strategy, which unilaterally enforces

When n = 1 , this strategy is reduced to Tit-for-Tat (TFT) strategy, which unilaterally 
enforces ⟨s1⟩∗ = ⟨s2⟩∗ [19]. Because Eq. (63) becomes zero when �(−m) = (2, 1) for 
some m ≥ 2 , Eq. (64) can be regarded as a fairness condition between two players 
in the situation where (2, 1) was not played in the previous n − 1 rounds. Since the 
action profile (2, 1) is favorable to player 1, Eq. (64) can be regarded as a fairness 
condition when player 1 is in an unfavorable position. Therefore, this strategy may 
be stronger than TFT, and whether this statement is true or not should be studied in 
future.

Similarly, a slightly different memory-n strategy

(61)

G
m
(⋅) ∈

{
1

2(R − P)

[
s1(⋅) + s2(⋅) − 2P

]
,

1

2(T − S)

[
s1(⋅) − s2(⋅) + (T − S)

]
,

−
1

2(T − S)

[
s1(⋅) − s2(⋅) − (T − S)

]
,

1

T − S

[
s1(⋅) − S

]
,

−
1

T − S

[
s1(⋅) − T

]
,

1

T − S

[
s2(⋅) − S

]
,−

1

T − S

[
s2(⋅) − T

]
,⋯

}

(62)0 =

⟨
n∏

m=1

G
m

(
�
(−m)

)⟩∗

,

(63)

T̂1

(
1|�(−1)

,⋯ ,�
(−n)

)
=

1

2n−1(T − S)n

[
s1

(
�
(−1)

)
− s2

(
�
(−1)

)] n∏
m=2

[
s2

(
�
(−m)

)
− s1

(
�
(−m)

)
+ (T − S)

]

=
[
−𝛿

�
(−1) ,(1,2) + 𝛿

�
(−1) ,(2,1)

] n∏
m=2

[
1

2
𝛿
�
(−m) ,(1,1) + 𝛿

�
(−m) ,(1,2) +

1

2
𝛿
�
(−m) ,(2,2)

]

(64)

0 =

⟨{
s1

(
�
(−1)

)
− s2

(
�
(−1)

)} n∏
m=2

{
s2

(
�
(−m)

)
− s1

(
�
(−m)

)
+ (T − S)

}⟩∗

.
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is also a memory-n ZD strategy, which unilaterally enforces

This strategy is also reduced to TFT when n = 1 . Because expectation in Eq. (66) 
is conditional on the action profiles (1,  1), (2,  1) and (2,  2), this strategy may be 
weaker than TFT. We can also construct a mixed version of (63) and (65) by choos-
ing different G

m
 for each m ≥ 2.

6.4  Grim Trigger as Biased TFT

Finally, we again interpret the Grim Trigger strategy in terms of a biased memory-
one ZD strategy. We remark that the Grim Trigger strategy itself is not a ZD strat-
egy. In Eq. (45), when we set a = 1 , n = 1 , �̂(−1) = (1, 2) , and choose TFT as the 
strategy T̂ (1)

1
 of player 1

we obtain

or T1
(
1|�(−1)

)
= �

�
(−1),(1,1) , which is the Grim Trigger strategy. It should be noted 

that the action profile (1, 2) is unfavorable for player 1. Corollary 1 claims that the 
strategy unilaterally enforces

which is consistent with Appendix. It has been known that, although a pair of TFT 
is not a subgame perfect equilibrium, a pair of Grim Trigger is a subgame perfect 
equilibrium. Therefore, this result can be interpreted as that TFT gets strengthened 
by a bias function �

�−1,(1,2).

7  Memory‑n Deformed ZD Strategies

We can consider a memory-n version of deformed ZD strategies (Definition 3).

Definition 5 A memory-n strategy of player a is a deformed memory-n ZD strategy 
when its Press-Dyson tensors T̂

a
 can be written in the form

(65)

T̂1

(
1|�(−1)

,⋯ ,�
(−n)

)
=

1

2n−1(T − S)n

[
s1

(
�
(−1)

)
− s2

(
�
(−1)

)] n∏
m=2

[
s1

(
�
(−m)

)
− s2

(
�
(−m)

)
+ (T − S)

]

=
[
−𝛿

�
(−1) ,(1,2) + 𝛿

�
(−1) ,(2,1)

] n∏
m=2

[
1

2
𝛿
�
(−m) ,(1,1) + 𝛿

�
(−m) ,(2,1) +

1

2
𝛿
�
(−m) ,(2,2)

]

(66)

0 =

⟨{
s1

(
�
(−1)

)
− s2

(
�
(−1)

)} n∏
m=2

{
s1

(
�
(−m)

)
− s2

(
�
(−m)

)
+ (T − S)

}⟩∗

.

(67)T̂
(1)

1

(
1|�(−1)

)
= − 𝛿

�
(−1),(1,2) + 𝛿

�
(−1),(2,1),

(68)T̂1

(
1|�(−1)

)
= − 𝛿

�
(−1),(1,2),

(69)P
∗(1, 2) = 0,
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where G1 is a deformed memory-one ZD strategy and G
m
 (m ≥ 2) are non-negative 

quantities.

For example, in the prisoner’s dilemma game, because of the equality

for all � , the following strategy can be regarded as an extension of TFT strategy:

A linear relation enforced by the extended TFT is

This linear relation can be interpreted as a fairness condition between two players.
In particular, because the identity

holds for arbitrary h, the strategy (63) can be rewritten as

with arbitrary {h
m
} . Therefore, we obtain the following proposition:

Proposition 5 The strategy (63) simultaneously enforces linear relations

(70)T̂
a

(
𝜎
a
|�(−1),⋯ ,�(−n)

)
=

n∏
m=1

G
m

(
�
(−m)

)
,

(71)
1

T − S

[
s1(�) − s2(�)

]
=

1

T
k − S

k

[
s1(�)

k − s2(�)
k
]

(k ≥ 1)

(72)=
1

e
hT − e

hS

[
e
hs1(�) − e

hs2(�)
]

(∀h ∈ ℝ)

(73)T̂1

(
1|�(−1),⋯ ,�(−n)

)
=

1

T − S

[
s1

(
�
(−1)

)
− s2

(
�
(−1)

)] n∏
m=2

G
m

(
�
(−m)

)
.

(74)0 =

⟨[
s1

(
�
(−1)

)
k

− s2

(
�
(−1)

)
k

] n∏
m=2

G
m

(
�
(−m)

)⟩∗

(k ≥ 1)

(75)=

⟨[
e
hs1(�(−1)) − e

hs2(�(−1))
] n∏
m=2

G
m

(
�
(−m)

)⟩∗

.

(76)

1

2(T − S)

[
s2(�) − s1(�) + (T − S)

]
=

1

2
(
e
hT − e

hS

)[ehs2(�) − e
hs1(�) +

(
e
hT − e

hS

)]

(77)

T̂1

�
1��(−1),⋯ ,�(−n)

�
=

1

2n−1
∏

n

m=1

�
e
h
m
T − e

h
m
S

�
�
e
h1s1(�(−1)) − e

h1s2(�(−1))
�

×

n�
m=2

�
e
h
m
s2(�(−m)) − e

h
m
s1(�(−m)) +

�
e
h
m
T − e

h
m
S

��
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with arbitrary {h
m
}.

Similarly, the strategy (65) can be rewritten as

with arbitrary {h
m
} , and the following proposition holds:

Proposition 6 The strategy (65) simultaneously enforces linear relations

with arbitrary {h
m
}.

It should be noted that the strategies (63) and (65) themselves do not depend on 
parameters {h

m
} . Therefore, the limit probability distribution P∗

(
�
(−1),⋯ ,�(−n)

)
 

also does not depend on {h
m
} . By differentiating Eq. (78) or Eq. (80) with respect to 

{h
m
} arbitrary times, we can obtain an infinite number of payoff relations.

8  Concluding Remarks

In this paper, we introduced the concept of biased memory-n ZD strategies (32), 
which unilaterally enforce linear relations between expected payoffs in biased ensem-
bles or probability zero for a set of action profiles. Biased memory-n ZD strategies 
can be used to construct the original memory-n ZD strategies in Ref. [34], which 
unilaterally enforce linear relations between correlation functions of payoffs. From 
another point of view, biased memory-n ZD strategies can be regarded as extension of 
probability-controlling strategies introduced in Sect. 4. Furthermore, biased memory-
n ZD strategies can also be used to construct ZD strategies which unilaterally enforce 
linear relations between conditional expectations of payoffs. Because the expectation 
of payoffs conditional on previous action profiles is used, players can choose condi-
tions in such a way that only unfavorable action profiles to one player are contained 
in the conditions. We provided several examples of biased memory-n ZD strategies 
in the repeated prisoner’s dilemma game. Moreover, we explained that extension of 
deformed ZD strategies [33] to the memory-n case is straightforward.

(78)

0 =

⟨{
e
h1s1(�(−1)) − e

h1s2(�(−1))
} n∏

m=2

{
e
h
m
s2(�(−m)) − e

h
m
s1(�(−m)) +
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The significance of this study is that we provided a method to interpret every 
time-independent finite-memory strategy in terms of linear relations about P∗ 
enforced by it. As we can see in Theorem 1, when a memory-n strategy is described 
as a biased memory-n ZD strategy, it enforces some linear relation between 
expected payoffs in biased ensembles or probability zero for a set of action profiles. 
Even if a memory-n strategy is not described as a biased memory-n ZD strategy, 
it can still enforce linear relations about P∗ (Lemma 1). Such result may be useful 
for interpretation of strategies. For example, as we saw in the repeated prisoner’s 
dilemma game, Grim Trigger can be regarded as a memory-one strategy enforc-
ing P∗(1, 2) = 0 , which directly represents that Grim Trigger is unbeatable. Fur-
thermore, for any two-player symmetric potential games, the Imitate-If-Better strat-
egy [51], which imitates the opponent’s previous action if and only if it was beaten 
in the previous round, has the similar property as Grim Trigger in the prisoner’s 
dilemma game [53]. That is, it unilaterally enforces a linear relation between condi-
tional expectations

(� is an indicator function), which directly means that ⟨s
a
⟩∗ ≥ ⟨s−a⟩∗ . (Grim Trigger 

is a special case of the Imitate-If-Better strategy for the prisoner’s dilemma game.) 
In this way, controlling conditional expectations can be useful when we investigate 
properties of finite-memory strategies.

Before ending this paper, we make two remarks. The first remark is related to 
the existence of biased memory-n ZD strategies. It has been known that the exist-
ence of memory-one ZD strategies is highly dependent on the stage game [27]. For 
example, no memory-one ZD strategies exist in the repeated rock-paper-scissors 
game. However, because we construct biased memory-n ZD strategies by using 
memory-one ZD strategies, the existence condition of biased memory-n ZD strate-
gies is the same as that of memory-one ZD strategies used for construction. Clarify-
ing the existence condition of memory-one ZD strategies is an important subject of 
future work.

The second remark is on the relation between biased memory-n ZD strategies and 
equilibrium strategies. Although we explained that Grim Trigger can be obtained by 
biasing TFT, other strategies can also be obtained. For example, in Subsect. 6.4, if 
we use �̂(−1) = (2, 1) instead of �̂(−1) = (1, 2) , Eq. (68) becomes

which unilaterally enforces P∗(2, 1) = 0 . This strategy forms neither a subgame per-
fect equilibrium nor a Nash equilibrium. Therefore, the concept of biased memory-
n ZD strategies itself is generally not related to equilibrium strategies. Rather, an 
important implication is that all time-independent finite-memory strategies can be 
interpreted by linear relations about P∗ enforced by it, as noted above. Furthermore, 
in the repeated prisoner’s dilemma game, memory-one Nash equilibria were char-
acterized by using the formalism coming with memory-one ZD strategies [50]. In 
particular, a pair of equalizer strategies, which are one example of memory-one ZD 
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strategies and unilaterally set the payoff of the opponent, forms a Nash equilibrium, 
because each player cannot improve his/her payoff as long as the opponent uses an 
equalizer strategy. We would like to investigate whether our formalism can be used 
for characterization of memory-n Nash equilibria in the repeated prisoner’s dilemma 
game or not in future.

Appendix

Akin’s Lemma for Deterministic Memory‑one Strategies

In this appendix, we provide results of Akin’s lemma in the repeated prisoner’s 
dilemma game. We use the same notation as that in Sect. 6. We write a memory-
one strategy of player 1 as

The number of deterministic memory-one strategies is sixteen [54]. The results of 
Akin’s lemma are summarized in Table  1.  We can see that each strategy indeed 
enforces a linear relation between values of the limit probability distribution P∗.

(83)T1(1) ∶=

⎛
⎜⎜⎜⎝

T1(1�1, 1)
T1(1�1, 2)
T1(1�2, 1)
T1(1�2, 2)

⎞
⎟⎟⎟⎠
.

Table 1  The results of Akin’s lemma

Strategy T
1
(C) Name Eq. (14)

(1, 1, 1, 1)� All-C 0 = P
∗(2, 1) + P

∗(2, 2)

(1, 1, 1, 0)� 0 = P
∗(2, 1)

(1, 1, 0, 1)� 0 = P
∗(2, 2)

(1, 1, 0, 0)� Repeat Nothing

(1, 0, 1, 1)� 0 = −P∗(1, 2) + P
∗(2, 1) + P

∗(2, 2)

(1, 0, 1, 0)� Tit-for-Tat 0 = −P∗(1, 2) + P
∗(2, 1)

(1, 0, 0, 1)� Win-Stay Lose-Shift 0 = −P∗(1, 2) + P
∗(2, 2)

(1, 0, 0, 0)� Grim Trigger 0 = −P∗(1, 2)

(0, 1, 1, 1)� anti-Grim Trigger 0 = −P∗(1, 1) + P
∗(2, 1) + P

∗(2, 2)

(0, 1, 1, 0)� anti-Win-Stay Lose-Shift 0 = −P∗(1, 1) + P
∗(2, 1)

(0, 1, 0, 1)� anti-Tit-for-Tat 0 = −P∗(1, 1) + P
∗(2, 2)

(0, 1, 0, 0)� 0 = −P∗(1, 1)

(0, 0, 1, 1)� anti-Repeat 0 = −P∗(1, 1) − P
∗(1, 2) + P

∗(2, 1) + P
∗(2, 2)

(0, 0, 1, 0)� 0 = −P∗(1, 1) − P
∗(1, 2) + P

∗(2, 1)

(0, 0, 0, 1)� 0 = −P∗(1, 1) − P
∗(1, 2) + P

∗(2, 2)

(0, 0, 0, 0)� All-D 0 = −P∗(1, 1) − P
∗(1, 2)
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