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Abstract
This paper deals with the classic radiotherapy dose fractionation problem for cancer 
tumors concerning the following goals: 

(a)	 To maximize the effect of radiation on the tumor, restricting the effect produced 
to an organ at risk (healing approach).

(b)	 To minimize the effect of radiation on one organ at risk, while maintaining 
enough effect of radiation on the tumor (palliative approach).

 We will assume the linear-quadratic model to characterize the radiation effect 
without considering the tumor repopulation between doses. The main novelty with 
respect to previous works concerns the presence of minimum and maximum dose 
fractions, to achieve the minimum effect and to avoid undesirable side effects, 
respectively. We have characterized in which situations is more convenient the 
hypofractionated protocol (deliver few fractions with high dose per fraction) and in 
which ones the hyperfractionated regimen (deliver a large number of lower doses of 
radiation) is the optimal strategy. In all cases, analytical solutions to the problem are 
obtained in terms of the data.
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1  Introduction

According to the World Health Organization, [11], “radiotherapy is one of the major 
treatment options in cancer management. (...) Together with other modalities such as 
surgery and chemotherapy it plays an important role in the treatment of 40% of those 
patients who are cured of their cancer. Radiotherapy is also a highly effective treatment 
option for palliation and symptom control in cases of advanced or recurrent cancer. 
The process of radiotherapy is complex and involves understanding of the principles 
of medical physics, radiobiology, radiation safety, dosimetry, radiotherapy planning, 
simulation and interaction of radiation therapy with other treatment modalities.”

Mathematical modelling has played an important role in understanding and opti-
mizing radiation delivery for cancer treatment. Since its formulation more than 50 
years ago, the linear-quadratic (LQ) model has become the preferred method for 
characterizing radiation effects. Usually, it is stated as follows: the survival probabil-
ity S of a tumor cell after exposure to a single dose of radiation of d Gy is expressed 
as S = exp

(
−�Td − �Td

2
)
, where �T and �T are two positive parameters describing 

the radiosensitivity of the cell, [8]. It is well known that these parameters depend 
on the type of radiation therapy chosen and also on the organ where the tumor is 
located, [14]. More precisely, LQ model implies that if the initial size of the tumor 
is U, then it will be U ⋅ S after applying a d Gy dose. Let us recall that “Gray” (Gy) is 
the unit of ionizing radiation dose in the International System of Units.

LQ model has well documented predictive properties for fractionation/dose rate 
effects in the laboratory and “it is reasonably well validated, experimentally and 
theoretically, up to about 10 Gy per fraction and would be reasonable for use up to 
about 18 Gy per fraction,” see [4]. Precisely, its range of validity is a key point of 
controversy; although there is a general consensus on the existence of this range, 
significant disagreements remain on the exact values of its limits. Let us illustrate 
this fact with other recent quotes: from [8], “in vitro (...) some authors suggesting 
significant discrepancies at doses of 5 Gy or above, while others report good agree-
ment up to tens of Gy” and according to the French Society of Young Radiation 
Oncologists, “the dose / fraction must be between 1 and 6 Gy ,” see http://​www.​sfjro.​
fr/​ilq/​en/.

Hence, given N doses, d1, ..., dN , possibly different, the probability of accumu-
lated survival can be expressed by

From here it is clear that the effect of radiation on the tumor is determined by the 
quadratic function

It should be noted that throughout this work, we will not consider tumor repopula-
tion between doses.

SN = exp

(
−

N∑
i=1

(
�Tdi + �Td

2
i

))
.

(1)ET (N, d) = �T

N∑
i=1

di + �T

N∑
i=1

d2
i
.

40   Page 2 of 30 Operations Research Forum (2022) 3: 40

http://www.sfjro.fr/ilq/en/
http://www.sfjro.fr/ilq/en/


1 3

On the other hand, radiation also affects healthy organs and tissues near the tumor 
(which we will denote by OAR, organs at risk, hereafter). In general, healthy organs 
and tissues receive less radiation than the tumor, which we will denote by �d , with 
� ∈ (0, 1] being the so-called sparing factor. The value of � depends on factors such 
as the location and geometry of the tumor and also on the technology used to deliver 
the radiation, see [3]. It can be seen as a measure of the accuracy of the radiother-
apy: if clinicians can keep the OAR almost unaffected by the radiation, � will be 
about 0; if not, it will be larger, until reaching the value � ≈ 1 at worst. Therefore, 
the effect of the radiation on the OAR is determined by the following function

where �0 and �0 are the parameters associated with the healthy organs that we are 
trying to protect. Typical values for �0, �0, �T and �T can be found in the specialized 
literature such as [14]. These data come from conducting experiments and the corre-
sponding adjustments (least squares regression) to achieve approximated values that 
best fit experimental data.

Let us now introduce two common strategies for fractionating radiotherapy 
treatments:

–	 Hypofractionation: Deliver higher doses of radiation in fewer sessions. This 
strategy results in a significant reduction in its duration.

–	 Hyperfractionation: Deliver a large number of lower doses of radiation that are 
given more than once a day.

In this paper we study the classic radiotherapy dose fractionation problem related to 
the following goals: 

(a)	 To maximize the effect of radiation on the tumor, restricting the effect produced 
on one OAR (healing approach) in Sect. 2 and

(b)	 To minimize the effect of radiation on an OAR, maintaining enough effect of 
radiation on the tumor (palliative approach) in Sect. 3.

The first novelty with respect to previous works in this framework concerns the 
presence of dose fraction bounds of the type 0 < dmin ≤ d ≤ dmax . On one hand, 
these restrictions are connected to the range of validity of the aforementioned LQ 
model and can be estimated for each particular tumor; on the other hand, they also 
take into account the minimum and maximum dose fraction that can be applied in 
practical situations in order to achieve a minimum effect and avoid undesirable side 
effects, respectively. It is well known that the dose per fraction value in most con-
ventional treatments is around 2 Gy, see for instance [10]. Depending on the tumor 
type, the values of dmin and dmax can be tuned, but the reference values dmin = 1 Gy 
and dmax = 6 Gy could be a valid generic choice (one exception is Example 4, see 
as follows). In this sense one cannot find in [10] a single treatment recommendation 
with a dose fraction less than 1 Gy and very few larger than 6 Gy.

(2)EOAR(N, d) = �0�

N∑
i=1

di + �0�
2

N∑
i=1

d2
i
,
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The counterpart for imposing a positive minimum dose fraction is that the total 
number of radiations N should not be fixed a priori and this is the second important 
novelty of this work: N will also be considered another unknown of the problem and 
we will study the dependence of the solution with respect to N. Among others, this 
approach was followed by [7], but only for uniform dose treatments. Our approach 
here includes also the study for nonuniform protocols. The origin of this work was 
an academic project, which has been extended here with the detailed study of the 
dependence of the solution with respect to N.

Summarizing, new analytical solutions in terms of the data are obtained for both 
problems, improving known results in the literature to the best of our knowledge, see 
for instance [9] and [12].

2 � Maximizing the Effect of Radiation on the Tumor

The aim of this first problem is to determine the best strategy to maximize the 
effect of radiation on the tumor, while restricting the effect on the OAR (healing 
approach):

where ET (N, d) is given by (1), EOAR(N, d) by (2) and dmin, dmax and �OAR are a pri-
ori known positive parameters, that should be provided by the specialists. Roughly 
speaking, the restriction EOAR(N, d) ≤ �OAR can be interpreted in the sense that 
the percentage of surviving cells of the OAR should be greater than or equal to 
exp (−�OAR).

This is the classic fractionation problem that has been studied (with some varia-
tions) in several works, see for example the recent papers [2] and [12] (where more 
than one OAR is considered) and the references therein. The first novelty of our 
approach is that dose bound constraints are also included. Usually in the literature 
the lower bound 0 value is taken for di and no upper bound is imposed; some excep-
tions are [5] and [6], where an upper bound is included, but not a positive lower 
bound. The danger of losing control of the tumor, due to the use of doses below a 
critical limit, has already been pointed out by [7]. In addition, our approach to the 
problem is more useful since the number of doses N is not initially set as in [2] and 
[12]. The case including repopulation was studied in [3], only assuming the non-
negativity of di.

From a mathematical point of view, this is a mixed-integer optimization problem 
involving a discrete variable, N ∈ ℕ , which corresponds to the number of radiation 
doses, and N continuous variables, di ∈ ℝ, 1 ≤ i ≤ N , which are the doses. In other 
words, this problem has the peculiarity of having a variable number of unknowns.

Along this paper, it will be denoted

(P1)

⎧⎪⎨⎪⎩

Maximize ET (N, d),

subject to N ∈ ℕ, d ∈ ℝ
N such that

EOAR(N, d) ≤ �OAR,

dmin ≤ di ≤ dmax, i = 1, ...,N,
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Also, we will denote by ⌊x⌋ the greatest integer less than or equal to x and by ⌈x⌉ the 
least integer greater than or equal to x. Finally, the notation dN = (d0,… , d0) means 
that dN ∈ ℝ

N having the N components equal to d0.

2.1 � Existence of Solution for (P
1
)

Theorem 1  Let us assume dmin > 0 and �0 ≥ 1 . Then, the problem (P1) has (at least) 
one solution.

Proof  Taking into account the restrictions for (P1) and that dmin > 0 , we have 
N ≤ �0. Hence, the set of feasible values for N is finite.

If �0 = 1 , the solution is (N, d) = (1, dmin) , because no other pair is feasible. When 
�0 ∈ (1, 2) , the value N = 1 is still the unique possible option. Consequently, we are 
faced with a maximizing problem of an increasing 1D function. Then, the solution 
will be given by the largest feasible value. In this case, it is quite easy to verify that 
the unique solution of (P1) is the pair (1,min {dmax, d0}), where d0 = �0(1) . Let us 
stress that �0(d0) = �OAR.

If �0 ≥ 2 we can reduce the problem (P1) to a finite collection of continuous opti-
mization problems (PN

1
) with fixed N given by:

Firstly we will prove the existence of a solution for each problem (PN
1
) (see Theo-

rem 2), for N running 
[
1, �0

]
∩ ℕ and denote it by d

N . Then, it is enough to take the 

pair 
(
N, d

N
)

 from the finite set 
{(

N, d
N
)
∶ N ∈

[
1, �0

]
∩ ℕ

}
, that maximizes the 

value of ET (N, d) as a solution to the problem (P1) . 	�  ◻

The existence of a solution for each problem (PN
1
) is proved below:

Theorem 2  Let us assume dmin > 0 , �0 ≥ 2 and N ∈
[
1, �0

]
∩ ℕ . Then the problem 

(PN
1
) has (at least) one solution.

(3)�0(r) = �0�r + �0�
2r2, �0 = max

{
1,

�OAR

�0(dmax)

}
, �0 =

�OAR

�0(dmin)
,

(4)�0(N) =
−�0N +

√
(�0N)

2 + 4�0N�OAR

2�0�N
.

(PN
1
)

⎧
⎪⎪⎨⎪⎪⎩

Maximize ẼN
T
(d) = 𝛼T

N�
i=1

di + 𝛽T

N�
i=1

d2
i
,

subject to d ∈ ℝ
N such that

EOAR(N, d) ≤ 𝛾OAR,

dmin ≤ di ≤ dmax, i = 1, ...,N.
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Proof  For small values of N, more precisely N ∈
[
1, �0

]
∩ ℕ , it is easy to ver-

ify that the solution for (PN
1
) is the trivial one with maximum doses, that is, 

d
N
= (dmax, ..., dmax). For other values, N ∈

(
�0, �0

]
∩ ℕ , the existence of solution 

for (PN
1
) follows from the classic Weierstrass Theorem, because we are maximizing a 

continuous objective function over a compact set. 	�  ◻

Remark 1 

(a)	 Let us point out that (P1) is a nonconvex quadratically constrained quadratic opti-
mization problem (even (PN

1
) with fixed N), because the objective is to maximize 

a convex function. Typically, this type of problems is computationally difficult 
to solve, but here we will see that it can be done analytically.

(b)	 Unless all the components of the solution are equal, the uniqueness of solution 
fails: it is enough to take two indices i, j ∈ {1, ...,N} such that di ≠ dj and inter-
change these coordinates to generate a new solution.

(c)	 Under the condition 𝜌0 < 1 , it is apparent that the set of feasible points is empty 
and hence, the existence of solution for (P1) fails.

(d)	 The hypothesis dmin > 0 is also needed for proving the existence of solution for 
(P1) , as it can be shown through the following example:

Example 1 
It is clear that for all feasible points we have ET (N, d) ≤ EOAR(N, d) ≤ 10. Let us 
stress that here N can take any natural value, without restrictions. Inspired by Theo-
rem 4, let us consider the sequence given by

It is easy to check that it is feasible for N ≥ 4,

Hence, the problem (P10) has no solution (N, d) : the supremum value 10 cannot be 
attained since it should happen that

which is clearly impossible.

(P10)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Maximize ET (N, d) =

N�
i=1

di +

N�
i=1

d2
i
,

subject to N ∈ ℕ, di ∈ ℝ,

EOAR(N, d) =

N�
i=1

di + 2

N�
i=1

d2
i
≤ 10,

0 ≤ di ≤ 1, i = 1, ...,N.

dN = (d0N , ..., d0N), with d0N =
−1

4
+

√
1

16
+

5

N
.

EOAR(N, d
N) = 10, ET (N, d

N) = 10 − Nd2
0N

⟶ 10, as N → +∞.

10 +

N∑
i=1

d
2

i
= ET (N, d) +

N∑
i=1

d
2

i
= EOAR(N, d) ≤ 10,
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The following result provides a simpler version of the optimization problem for 
the bigger values of N:

Theorem 3  Let us assume dmin > 0 , �0 ≥ 2 and N ∈
(
�0, �0

]
∩ ℕ . Then, the inequal-

ity constraint of the problem (PN
1
) has to be active at any solution d

N
 of (PN

1
).

Proof  Arguing by contradiction, let us assume that the constraint is not active, i.e.,

Since 𝜆0 < N , we know that there exists some index j ∈ {1, ...,N} such that 
dj < dmax . Then, for sufficiently small 𝜖 > 0 , the point (d1, ..., dj−1, dj + �, dj+1, ..., dN) 
is feasible and satisfies

but this contradicts the fact that d
N

 is a solution for (PN
1
) . 	�  ◻

Hence, from now on, in this case we will consider the equality restriction

Therefore, the objective function can be written as

Based on this identity, we can directly simplify the formulation of the problem (PN
1
) 

as follows:

Proposition 1  Let us assume dmin > 0 , �0 ≥ 2 , N ∈
(
�0, �0

]
∩ ℕ and denote

	 (i)	 If 𝜔𝛿 > 0 , then (PN
1
) is equivalent to 

 where 

EOAR(N, d
N
) =

N∑
i=1

𝜑0(di) < 𝛾OAR.

ẼN
T
(d

N
) < ẼN

T
((d1, ..., dj−1, dj + 𝜖, dj+1, ..., dN)),

N∑
i=1

�0(di) = �OAR.

(5)ẼN
T
(d) =

[
𝛼T −

𝛽T𝛼0

𝛽0𝛿

] N∑
i=1

di +
𝛽T𝛾OAR

𝛽0𝛿
2

.

(6)�� =
�T

�T
−

�0

�0�
.

(PN,+

1
)Maximize

N∑
i=1

di, subject to d ∈ �
N
1
,

𝕂
N
1
= {d ∈ ℝ

N ∶ EOAR(N, d) = �OAR, dmin ≤ di ≤ dmax, 1 ≤ i ≤ N}.
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	 (ii)	 If 𝜔𝛿 < 0 , then (PN
1
) is equivalent to 

	 (iii)	 If �� = 0, then every feasible point for (PN
1
) is a solution.

Remark 2 

(a)	 The idea of this transformation can be found in [9] in the context of the problem 
(P2) that we will study in the next section.

(b)	 Let us note that for the majority of tumors 𝛼T∕𝛽T > 𝛼0∕𝛽0 and therefore, the case 
𝜔𝛿 > 0 is more frequent in clinical practice.

(c)	 As a consequence of Proposition 1, we can appreciate the great difference 
between the cases 𝜔𝛿 > 0 and 𝜔𝛿 < 0 : in the first one, to maximize the effect 
of radiation on the tumor we have to increase the cumulative dose, while in the 
second the cumulative dose remains minimum.

2.2 � Solving (PN
1
)

Let us begin by showing a 2D-example of previous problems that will inspire the 
general results of this section.

Example 2  Let us consider the following optimization problems:

In Fig. 1 the points on the blue surface are those that satisfy the equality constraint 
and the intersection of blue and orange surfaces gives the curve on which to maxi-
mize or minimize.

Visually one can guess that the unique solution to (P2,+

1
) is located on the diagonal 

(more precisely, it is given by (d0, d0) with d0 =
√
7 − 1 ) and there are two solutions 

of (P2,−

1
) lying on the boundary (specifically, (d1, d2) with d1 = 1 , d2 =

√
10 − 1 and 

d1 =
√
10 − 1 , d2 = 1).

2.2.1 � Solving (PN,+
1

)

In fact, what happens in previous example can be extended to the general N−dimensional 
case. More precisely, we will prove that the solution for (PN,+

1
) is a vector with equal 

coordinates:

(PN,−

1
)Minimize

N∑
i=1

di, subject to d ∈ �
N
1
.

(P2,+

1
)

⎧⎪⎨⎪⎩

Maximize d1 + d2,

subject to (d1, d2) ∈ ℝ
2,

2(d1 + d2) + d2
1
+ d2

2
= 12,

1 ≤ d1, d2 ≤ 3.

(P2,−

1
)

⎧⎪⎨⎪⎩

Minimize d1 + d2,

subject to (d1, d2) ∈ ℝ
2,

2(d1 + d2) + d2
1
+ d2

2
= 12,

1 ≤ d1, d2 ≤ 3.
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Theorem 4  Let us assume dmin > 0 , �0 ≥ 2 and N ∈
(
�0, �0

]
∩ ℕ. Then, the unique 

solution to (PN,+

1
) has the form d

N
= (d0, ..., d0) with d0 = �0(N).

Proof  By using the Cauchy-Schwarz inequality, we have

Therefore, for each feasible point it follows that

Defining q(z) = �0�
2z2∕N + �0�z − �OAR , previous inequality can be rewritten as

Taking into account that the polynomial q can be factorized in the form q(z)
= �

0
�2(z − z

1
)(z − z

2
)∕N with z1 < 0 < z2 , we know that relation (8) holds if and 

only if 
∑N

i=1
di ∈ [0, z2] , because all the components di have to be positive.

Now it is clear that the maximum value is achieved when 
∑N

i=1
di = z2 . Combin-

ing this fact with (7), we deduce that

Hence

(
N∑
i=1

di

)2

≤ N

(
N∑
i=1

d2
i

)
.

(7)�OAR = �0�

N∑
i=1

di + �0�
2

N∑
i=1

d2
i
≥ �0�

N∑
i=1

di +
�0�

2

N

(
N∑
i=1

di

)2

.

(8)q

(
N∑
i=1

di

)
≤ 0.

�OAR = �0�

N∑
i=1

di + �0�
2

N∑
i=1

d
2

i
≥ �0�

N∑
i=1

di +
�0�

2

N

(
N∑
i=1

di

)2

= �OAR.

Fig. 1   2D Example
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In this case, Cauchy-Schwarz inequality becomes (in fact) an equality and this is 
true if and only if all the components are equal, i.e., d1 = ... = dN . Therefore, 
d
N
= (d0, ..., d0) with d0 = z2∕N and this is the desired expression, see (4).
Let us emphasize that d0 satisfies dmin ≤ d0 ≤ dmax , thanks to the hypothesis 

N ∈
(
�0, �0

]
 . 	�  ◻

2.2.2 � Solving (PN,−
1

)

Given d a solution of (PN,−

1
) , since the objective function and the functions defining the 

restrictions are C1 , we can apply the Lagrange Multipliers Rule, see [1], to deduce the 
existence of real numbers � ∈ [0,+∞), � ∈ ℝ and {𝜇i}

2N
i=1

⊂ [0,+∞) verifying

Inspired by the 2D example, we will prove that d lies on the boundary of 
[dmin, dmax]

N . Let us argue by contradiction assuming that di ∈ (dmin, dmax) , for all 
i ∈ {1, ...,N} . Then, thanks to (11) we deduce that �i = 0,∀i ∈ {1, ..., 2N}. In this 
case, (10) reads:

If � = 0 , identity (12) implies that � = 0, but this is not possible by (9). Therefore 
� ≠ 0 and from (12) we get d1 = ... = dN . In other words, we arrive to the solution 
of problem (PN,+

1
) , contradicting our initial hypothesis.

Consequently, there exists (at least) one index j ∈ {1, ...,N} such that 
dj ∈ {dmin, dmax} . Without loss of generality we can suppose that j = N . Let us see that 
in this case we can reduce the dimension of the optimization problem (PN,−

1
) by means 

for the following auxiliary problem:

(
N∑
i=1

di

)2

= N

N∑
i=1

d
2

i
.

(9)𝛼 + |𝜆| +
2N∑
i=1

𝜇i > 0,

(10)� + �(�0� + 2�0�
2di) + (�N+i − �i) = 0, 1 ≤ i ≤ N,

(11)�i(dmin − di) = 0, �i+N(di − dmax) = 0, 1 ≤ i ≤ N.

(12)� + �(�0� + 2�0�
2di) = 0, 1 ≤ i ≤ N.

(PN−1,−

1
)

⎧⎪⎪⎨⎪⎪⎩

Minimize

N−1�
i=1

di + dN ,

subject to d ∈ ℝ
N−1 such that

EOAR(N − 1, d) = �OAR − �0(dN),

dmin ≤ di ≤ dmax, i = 1, ...,N − 1.
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Proposition 2  Assume that d = (d1, ..., dN) is a solution of (PN,−

1
) . Then (d1, ..., dN−1) 

is a solution of (PN−1,−

1
).

Proof  Every feasible point (d1, ..., dN−1) for the problem (PN−1,−

1
) satisfies

This implies that (d1, ..., dN−1, dN) is a feasible point for (PN,−

1
). Hence, using that d is 

a solution of (PN,−

1
) , we get

which implies that (d1, ..., dN−1) is a solution of (PN−1,−

1
) . 	�  ◻

Arguing exactly in the same form as before with the problem (PN−1,−

1
) , we 

deduce that there must be an index j ∈ {1, ...,N − 1} such that dj ∈ {dmin, dmax} 
and we can reduce again the dimension of the problem, obtaining a new problem 
with N − 2 unknowns. Repeating this process several times we arrive to the final 
1D problem:

Clearly, it is enough to solve the quadratic equation to get the solution.
Summarizing previous results, given N ∈

(
�0, �0

]
∩ ℕ , the solution of (PN,−

1
) 

has one of the following structures:

or

with d∗ ∈ (dmin, dmax) being the unique positive root of the quadratic equation

with �0 defined in (3).
We can characterize the unknown value K as follows: 

EOAR(N − 1, d) = �OAR − �0(dN).

N−1∑
i=1

di ≤

N−1∑
i=1

di,

(P1,−

1
)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Minimize d1 +

N�
i=2

di,

subject to d1 ∈ ℝ such that

�0(d1) = �OAR −

N�
i=2

�0(di),

dmin ≤ d1 ≤ dmax.

(13)
d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K

),

(14)
d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K−1

),

(15)�0(d
∗) = �OAR − K�0(dmin) − (N − K − 1)�0(dmax),
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(a)	 In case (13), by using the equality restriction we derive that 

 Of course, this holds if and only if the right hand side is a natural number or 
zero.

(b)	 In case (14), since �0 is a strictly increasing function in [0,+∞) , we know that 

 and using (15) we get that 

 which means that 

Taking into account conditions (16) and (17), it is easy to conclude that the latter 
structure (14) is more frequently found in practice than (13). Previous argumenta-
tions lead us to the following result:

Theorem 5  Let us assume dmin > 0 , �0 ≥ 2 and N ∈
(
�0, �0

]
∩ ℕ. Then, a solution to 

problem (PN,−

1
) is given by 

(a)	 d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K

), when K defined by (16) belongs to ℕ ∪ {0}; 

otherwise,
(b)	 d

N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K−1

), with K defined by (17) and d⋆ satisfying 

(15).

Remark 3  It is not difficult to show that a solution for (PN,−

1
) is also a solution for the 

problem

We will use this property in the proof of Theorem 8.

(16)K =
N�0(dmax) − �OAR

�0(dmax) − �0(dmin)
.

𝜑0(dmin) < 𝜑0(d
∗) < 𝜑0(dmax),

K ∈

(
N�0(dmax) − �OAR

�0(dmax) − �0(dmin)
− 1,

N�0(dmax) − �OAR

�0(dmax) − �0(dmin)

)
∩ ℕ,

(17)K = ⌊ N�0(dmax) − �OAR

�0(dmax) − �0(dmin)
⌋.

(18)

⎧⎪⎪⎨⎪⎪⎩

Minimize

N�
i=1

di,

subject to d ∈ ℝ
N such that

EOAR(N, d) ≥ �OAR,

dmin ≤ di ≤ dmax, 1 ≤ i ≤ N.
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2.3 � Analytical Solution for (P
1
)

As we pointed out, a solution of (P1) will be the pair 
(
N, d

N
)

 , where d
N

 denotes a 

solution of (PN
1
) from the finite set 

{(
N, d

N
)
∶ N ∈

[
1, �0

]
∩ ℕ

}
, maximizing the 

value of ET (N, d) . In fact, combining previous results, we can avoid the calcula-
tion of most solutions for (PN

1
) by studying its dependence with respect to N. This 

is the goal of the next results. Let us start by studying the less frequent case: 
when ⌊�0⌋ = ⌊�0⌋.

Theorem 6  Let us assume dmin > 0, �0 ≥ 2 and ⌊�0⌋ = ⌊�0⌋ . Then, the unique solu-
tion to problem (P1) is given by the pair (N, d

N
) with N = ⌊�0⌋ and d

N

= (d
max

,

..., d
max

).

Proof  In this case the set of feasible values for N is {1,… ,N1} ⊂ ℕ with 
N1 = ⌊�0⌋ = ⌊�0⌋. For those values of N, the solution for (PN

1
) has the form 

d
N
= (dmax, ..., dmax) . Among them, it is clear that in order to solve (P1) only the one 

with the largest number of components is of interest; this is attained at N1 . 	�  ◻

We will continue to analyze the most common case: when ⌊𝜆0⌋ < ⌊𝜌0⌋ . In the 
trivial case �� = 0 , the function to be minimized and the one defining the restric-
tion are proportional. Therefore, we can derive the following result:

Proposition 3  Let us assume dmin > 0, �0 ≥ 2, ⌊𝜆0⌋ < ⌊𝜌0⌋ and �� = 0. Then any fea-
sible pair (N, d) with EOAR(N, d) = �OAR is a solution to problem (P1) . In particular, 
the pairs (N, d

N
) with N ∈ {⌈�0⌉,… , ⌊�0⌋} and d

N
= (d0, ..., d0), where d0 = �0(N), 

with N in the above set.

Proof  Due to the hypothesis �� = 0 , we deduce straightforwardly that problem (P1) 
is equivalent to

Obviously, the maximum value is reached when the restriction becomes an equal-
ity. This can be achieved in several ways, such as the treatments with equal doses 
described in the proposition statement. Let us emphasize that d0 ∈ [dmin, dmax] if and 
only if N ∈ [�0, �0]. 	�  ◻

Theorem  7  Let us assume dmin > 0, �0 ≥ 2, ⌊𝜆0⌋ < ⌊𝜌0⌋ and 𝜔𝛿 > 0. Then, the 

unique solution to problem (P1) is given by the pair 
(
N, d

N
)

 with N = ⌊�0⌋ and 

d
N
= (d0, ..., d0) , where d0 = �0(N).

(P̃1)

⎧⎪⎨⎪⎩

Maximize EOAR(N, d),

subject to N ∈ ℕ, d ∈ ℝ
N such that

EOAR(N, d) ≤ 𝛾OAR,

dmin ≤ di ≤ dmax, i = 1, ...,N,
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Proof  Here, the set of feasible values for N is {1,… ,N2} ⊂ ℕ with N2 = ⌊�0⌋. Argu-
ing as in previous theorem, among the small values, i.e., N ∈ {1,… ,N1}, with 
N1 = ⌊�0⌋, for solving (P1) we only retain N = N1 and d

N1
= (dmax, ..., dmax) . For the 

other values, i.e., N ∈ {N1 + 1,… ,N2}, since 𝜔𝛿 > 0 , the corresponding solution for 
(PN

1
) is given by d

N
= (d0, ..., d0) with d0 = �0(N) . In order to study the dependence 

with respect to N for these values, thanks to Proposition 1, it is enough to consider 
the auxiliary function �0(N) = N�0(N). Here, it follows easily that �0 is a strictly 
increasing function and then, it will take its maximum value in {N1 + 1,… ,N2} at 
N2.

Finally, we will derive that (N2, d
N2
) is the unique solution to problem (P1) by 

showing that

To that end, let us consider the linear function

with d0 = �0(N2).

Using that N1�0(dmax) ≤ �OAR = N2�0(d0) by the admissibility, we get that 
H1(�0∕(�0�)) ≥ 0 . Also, it can be checked that H�

1
(x) = N2d0 − N1dmax > 0, because 

N1 < N2 . Then, from the assumption 𝜔𝛿 > 0 (see (6)), it follows that H1(𝛼T∕𝛽T ) > 0 , 
which is equivalent to (19). 	�  ◻

In the case 𝜔𝛿 < 0, the situation is more complicated and it is detailed in the next 
result:

Theorem 8  Let us assume dmin > 0, �0 ≥ 2, ⌊𝜆0⌋ < ⌊𝜌0⌋ and 𝜔𝛿 < 0 . Then, a solution 
to problem (P1) is given by one of the following pairs: 

	 (i)	
(
N, d

N
)

 with N = ⌊�0⌋ and d
N
= (dmax, ..., dmax),

	 (ii)	
(
N, d

N
)

 with N = ⌈�0⌉ and d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K

), when K defined 

by (16) with N = N belongs to ℕ ∪ {0}, or

	 (iii)	
(
N, d

N
)

 with N = ⌈�0⌉ and d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K−1

), where K is 

defined by (17) and d⋆ satisfies (15) with N = N.

Proof  The expression given in i) is derived exactly as in Theorem 6 for the values 
N ≤ �0 . Taking into account that d∗ can be very close to dmax or dmin , item ii) can be 
seen as a kind of special case of iii). So, we will focus on proving iii) that it is the 

(19)ET (N1, d
N1
) < ET (N2, d

N2
).

H1(x) = N2(xd0 + d
2

0
) − N1(xdmax + d2

max
), x ∈ [

�0

�0�
,+∞),
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most complicated case. To that end, it is enough to show that if (d
min

, ..., d
min

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

,

d
∗
, d

max
, ..., d

max

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
N−K−1

) is a solution for (PN
1
) and (dmin, ..., dmin

�����������
K̃

, d̃∗, dmax, ..., dmax
�����������

N−K̃

) is a solu-

tion for (PN+1
1

) , with N > 𝜆0 , then the following relation holds

Together with (5) and the assumption 𝜔𝛿 < 0 , this implies iii), because (20) means 
that the values of the objective function ET at the solutions are decreasing with N 
and therefore, the maximum value will be attained at N = ⌈�0⌉ , the lowest value of 
N in the set (�0, �0] ∩ ℕ.

Comparing their expressions in form (17) with N + 1 and N, resp., we conclude 
that K̃ ≥ K + 1 . Hence, if we denote K0 = K̃ − K ∈ ℕ , inequality (20) can be written 
as

Let us recall that d⋆ satisfies (15) and d̃∗ verifies

We will show that (21) holds dividing the argumentation in three cases:
Case 1.- Suppose that K0dmin + (1 − K0)dmax ≤ 0 . We choose the point

that under the assumption satisfies the bounds restrictions and

This means that it is feasible for problem (18). Taking into account Remark 3, we 
get (21).

Case 2.- Suppose now that K0dmin + (1 − K0)dmax > 0 and furthermore
K0�0(dmin) + (1 − K0)�0(dmax) ≤ 0 . We can argue similarly choosing

Due to (22) and the hypothesis we have

(20)Kdmin + d∗ + (N − K − 1)dmax ≤ K̃dmin + d̃∗ + (N − K̃)dmax.

(21)d∗ − d̃∗ ≤ K0dmin + (1 − K0)dmax.

(22)𝜑0(d̃
∗) = 𝛾OAR − K̃𝜑0(dmin) − (N − K̃)𝜑0(dmax).

(d1, ..., dN) = (
K0

K0 − 1
dmin, ...,

K0

K0 − 1
dmin

�������������������������������������
K0−1

, dmin, ..., dmin
�����������

K̃−K0

, d̃∗, dmax, ..., dmax
�����������

N−K̃

),

EOAR(N, d) = 𝛼0𝛿
(
K̃dmin + d̃∗ + (N − K̃)dmax

)
+

+ 𝛽0𝛿
2

(
(K0)

2

K0 − 1
d2
min

+ (K̃ − K0)d
2
min

+ (d̃∗)2 + (N − K̃)d2
max

)
≥

≥ K̃𝜑0(dmin) + 𝜑0(d̃
∗) + (N − K̃)𝜑0(dmax) = 𝛾OAR.

(d1, ..., dN) = (dmin, ..., dmin
�����������

K

, d̃∗, dmax, ..., dmax
�����������

N−K−1

).
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Again, we have a feasible point for  problem (18) and therefore we deduce d∗ ≤ d̃∗ 
and hence (21), because d∗ − d̃∗ ≤ 0 < K0dmin + (1 − K0)dmax.

Case 3.- Finally, suppose that K0dmin + (1 − K0)dmax > 0 together with
K0𝜑0(dmin) + (1 − K0)𝜑0(dmax) > 0 . Here, we introduce the auxiliary function 

defined for s ∈ [0, 1] by

Solving the quadratic Eqs. (15) and (22), it is easy to derive that

Using the Mean Value Theorem, we deduce that there exists � ∈ (0, 1) such that

Therefore, inequality (21) is equivalent to

Under the present hypotheses, the function G is strictly increasing and, since � is 
an unknown value in (0, 1), we will verify that (23) is valid if it holds for � = 0 . 
On the other hand, the value K0 ∈ ℕ is also unknown, but we can verify that the 
function

is strictly decreasing, because

Hence, inequality (23) will be true if F(1) ≤ G(0)� . We conclude by noting that

Then,

EOAR(N, d) = K𝜑0(dmin) + 𝜑0(d̃
∗) + (N − K − 1)𝜑0(dmax) =

= 𝛾OAR − K0𝜑0(dmin) + (K0 − 1)𝜑0(dmax) ≥ 𝛾OAR.

G(s) =

√
𝛼2
0
+ 4𝛽0

(
𝛾OAR − (K̃ − sK0)𝜑0(dmin) − (N − K̃ + s(K0 − 1))𝜑0(dmax)

)
.

d∗ =
−𝛼0 + G(1)

2𝛽0𝛿
, d̃∗ =

−𝛼0 + G(0)

2𝛽0𝛿
.

d∗ − d̃∗ =
G(1) − G(0)

2𝛽0𝛿
=

G�(𝜃)

2𝛽0𝛿
=

K0𝜑0(dmin) + (1 − K0)𝜑0(dmax)

G(𝜃)𝛿
.

(23)
K0�0(dmin) + (1 − K0)�0(dmax)

K0dmin + (1 − K0)dmax
≤ G(�)�.

F(m) =
m�0(dmin) + (1 − m)�0(dmax)

mdmin + (1 − m)dmax
,

F�(m) = 𝛽0𝛿
2
dmindmax(dmin − dmax)

(mdmin + (1 − m)dmax)
2
< 0.

d̃∗ ∈ [dmin, dmax] ⟺ 𝜑0(d̃
∗) ∈ [𝜑0(dmin),𝜑0(dmax)] ⟺

([22])

⟺𝛾OAR − K̃𝜑0(dmin) − (N − K̃)𝜑0(dmax) ∈ [𝜑0(dmin),𝜑0(dmax)].
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as asserted. 	�  ◻

Remark 4 

(a)	 Note that all expressions included in Theorems 6–8 and Proposition 3 can be 
explicitly calculated from the problem data.

(b)	 On the other hand, when 𝜔𝛿 > 0 , the optimal value of N is the largest one within 
its range of possibilities (i.e., it is a hyperfractionated type treatment) with equal 
doses, while in the case 𝜔𝛿 < 0 the optimal value is the smallest one (i.e., it is a 
hypofractionated type treatment). In this last case, let us stress that not all doses 
have to be equal or large; in fact, some of them may be minimum. As far as we 
know, this structure is not usually cited in the specialized literature.

(c)	 One interesting case appears when 𝛼T∕𝛽T < 𝛼0∕𝛽0, because then 𝜔𝛿 < 0 for all 
� ∈ (0, 1] and the optimal regimen is always of hypofractionated type, regardless 
of the technology used and the geometry of the tumor. In practice this condition 
holds in some special cases, such as the prostate tumor, where �T∕�T ≈ 1.5 Gy, 
while �0∕�0 = 2 Gy , see [9] and [14].

(d)	 After Remark 2-b), it is clear that the hypofractionated case (associated with 
𝜔𝛿 < 0 ) is very convenient in the practice. Assuming that the other parameters 
are set, the condition 𝜔𝛿 < 0 can always be achieved by taking � close enough to 
0. This last fact is related to increasing the precision of the radiotherapy process 
(for instance, by using cutting-edge technology).

(e)	 A related problem to (P1) is studied in [3] and [6], where the number of dose 
fractions N is also an unknown, jointly with d. The framework for that problem 
includes a repopulation term in the objective function, but only the lower bound 
dmin = 0 is assumed. Furthermore, the determination of the optimal value for N is 
carried out in [6] by means of numerical simulations, while in [3, Theorem 2] it 
is done explicitly and the value N = 1 is obtained when 𝜔𝛿 < 0 . In this last case, 
it is clear that the single dose could be too large in practice (remember that no 
upper bound is imposed in [3]) and then more fractions would have to be tried 
until an acceptable one is found.

Next, we illustrate the general process with a particular example:

Example 3  Let us consider the following parameters taken from a typical clinical situ-
ation: �T = 0.05 Gy−1, �T = 0.005 Gy−2, �0 = 0.04 Gy−1, �0 = 0.02 Gy−2, see [9], 
together with dmin = 1 Gy, and dmax = 6 Gy . Then, the problem reads

G(0) =

√
𝛼2
0
+ 4𝛽0

(
𝛾OAR − K̃𝜑0(dmin) − (N − K̃)𝜑0(dmax)

)
≥

≥

√
𝛼2
0
+ 4𝛽0𝜑0(dmin) ≥ 𝛼0 + 𝛽0𝛿dmin =

F(1)

𝛿
,
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	 (i)	 For � = 0.3 and �OAR = 0.78 , we have �0 ≈ 5.7 , �0 ≈ 56.52 and 𝜔𝛿 ≈ 3.33 > 0 . 
Among the values, N ∈ {6, 7, 8,… , 54, 55, 56} , we have proved (see Theo-
rem 7) that the biggest one, N = 56 , and the solution of (P56

11
) (that here is the 

hyperfractionated d
56

= (1.008, ..., 1.008) ) provides the solution of (P11) ; in 
fact, ET (56, d

56
) ≈ 3.107 . We can easily check that with the standard protocol 

d̃25
S

= (2, ..., 2) we get ET (25, d̃
25
S
) = 3 , and therefore there is about 3.5% gain in 

terms of effect on the tumor, while the efficiency regarding OAR is the same 
( EOAR(56, d

56
) = EOAR(25, d̃

25
S
) = 0.78 ). On the other hand, the hypofraction-

ated radiotherapy given by d̃15
2

= (2.67, ..., 2.67) produces ET (15, d̃
15
2
) ≈ 2.54, 

although the damage on OAR is also lower: EOAR(15, d̃
15
2
) ≈ 0.67 . These last 

treatments are mentioned in [10] (see pg. 16) in connection with breast cancer.
		    Of course, here we are only taking into account the mathematical point 

of view. In clinical practice, other factors such as patient inconvenience and 
additional cost may advise the use of fewer doses, if the difference in terms of 
efficiency is considered small.

	 (ii)	 For � = 0.1 and �OAR = 0.22 , we calculate �0 ≈ 7.05 , �0 ≈ 52.38 and 
𝜔𝛿 = −10 < 0 . In this case, the solution for (P11) is given by (N, d) with 
N = 8, d = (1, d∗, 6, ..., 6

⏟⏟⏟
6

) and d∗ ≈ 5.588 Gy (see Theorem 8-iii)), having 

ET (8, d) ≈ 3.37 . Recall that this is a hypofractionated type treatment. Just for 
comparison reasons, let us mention that the solution of (P7

11
) is d̃7

1
= (6, ..., 6) 

and the solution of (P9
11
) is d̃2 = (1, 1, d∗

2
, 6, ..., 6
���

6

) with d∗
2
≈ 4.9 Gy producing 

ET (7, d̃
7
1
) ≈ 3.36 and ET (9, d̃2) ≈ 3.355 , that are smaller than ET (8, d) as 

expected.
	 (iii)	 Let us emphasize that the difference between “few” and “many” doses is rela-

tive to each particular problem and not an absolute classification. For instance, 
in the problem (P11) with � = 0.3 and �OAR = 0.1 , the solution is given by (N, d) 
with N = 7, d

7
= (1.031,… , 1.031) which corresponds to the hyperfraction-

ated case (because N ∈ {1,… , 7} ), although the number of delivered doses 
is lower than in the previous hypofractionated treatment, see ii).

For 𝜔𝛿 < 0 , in most practical situations the solution is the one presented in Theo-
rem 8-iii), but the alternatives i) and ii) can also appear.

We have summarized the resolution of problem (P1) in algorithmic form in Table 2.

(P11)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Maximize ET (N, d) = 0.05

N�
i=1

di + 0.005

N�
i=1

d2
i
,

subject to N ∈ ℕ, di ∈ ℝ,

EOAR(N, d) = 0.04�

N�
i=1

di + 0.02�2
N�
i=1

d2
i
≤ �OAR,

1 ≤ di ≤ 6, i = 1, ...,N.
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Example 4  Radiotherapy treatment of spinal tumors is complicated by the proximity 
to the major nerve tracts and the risk of radiation myelopathy (RM). For this reason, 
doses cannot be easily increased. Stereotactic Body Radiation Therapy (SBRT) is a 
modern technique allowing to deliver much higher radiation doses in fewer sessions 
and with great precision. Due to its growing interest, there are recent studies on the 
determination of maximum doses and the number of fractions for spinal SBRT. This 
case fits into our framework because the spinal cord is a single OAR.

For illustrative purposes only, we present a numerical example by choosing the 
following values for the parameters: �T∕�T = 3.8 Gy−1 (corresponding to a menin-
gioma, see [14]), �0∕�0 = 2 Gy−1 and � = 0.16 . In the first three columns of the fol-
lowing table we have summarized the treatments with the same BED (biologically 
effective dose) as those ones cited in [13] for spinal SBRT and our �T∕�T ; in the last 
two columns we have calculated the effects on the tumor (these values coincide with 
BED×�T and are all very close, as expected by construction) and on the spinal cord 
(associated with a risk of up to 5% of RM):

For these values, 𝜔𝛿 = −8.7 < 0, which corresponds to the hypofractionated case. 
For a better comparison with the results in Table  1, we have chosen dmin = 6.55 , 
dmax = 16.62 and �OAR = 49.91�0� (associated with the most harmful treatment). As 
mentioned in the Introduction, there is controversy over the validity of the LQ model 
for large doses as dmax . This issue has also been noted in [13], but their authors 
decided to use it due to the lack of clinical validity of the alternative models. Here 
we will follow the same approach.

Using our algorithm, we arrive to the solution for (P1) given by N = 2 and non-
equal doses d = (7.13, 16.62) . The corresponding effects are ET = 109.81�T and 
EOAR = �OAR. We can appreciate that only two fractions (with a cumulative dose of 
23.75) are needed to achieve an effect on the tumor approximately 23% higher than 
the other treatments in Table 1, reaching the maximum allowed effect on OAR.

Remark 5  Although this work deals with the case of only one OAR, when multiple 
OARs are involved, there is still some hope to take advantage of our study. If one 
OAR is clearly more important than the others, we can prioritize it, apply our algo-
rithm with the corresponding constraint and then check if the damage to the others 
OARs is acceptable. Clearly, this approach may work sometimes, but not always.

When all the OARs have (more or less) the same relevance, assuming that the 
constraints are written in the form

Table 1   Effects for SBRT treatments

Fractions Dose (in Gy) Cumulative dose E
T
= BED × �

T
E
OAR

1 16.62 16.62 89.31�
T

38.72�0�
2 11.26 22.52 89.25�

T
42.81�0�

3 8.9 26.7 89.23�
T

45.71�0�
4 7.5 30 89.21�

T
48.00�0�

5 6.55 32.75 89.20�
T

49.91�0�
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(24)�j�j

N∑
i=1

di + �j�
2
j

N∑
i=1

d2
i
≤ �OARj

, j = 1,… ,m,

Table 2   Algorithm for solving problem (P1)

DATA: �
T
, �

T
, �0, �0, dmin, dmax, � and �

OAR
 (all positive, d

min
< d

max
 and � ≤ 1)

CALCULATE: 
�� =

�
T

�
T

−
�0

�0�
,
 
�0 = max

{
1,

�
OAR

�0(dmax)

}
 and

�0 =
�
OAR

�0(dmin)
,
 with �0(r) = �0�r + �0�

2
r
2.

DENOTE: 
�0(N) =

−�0N +
√
(�0N)

2 + 4�0N�OAR

2�0�N
.

IF 𝜌0 < 1, (P1) has NO SOLUTION.

IF �0 = 1 , the pair (N, d
N

) = (1, d
min

) is the UNIQUE SOLUTION of (P1).
IF �0 ∈ (1, 2) , the UNIQUE SOLUTION of (P1) is the pair

(N, d
N

) = (1,min {d
max

, d0}), with d0 = �0(1).

IF �0 ≥ 2 and ⌊�0⌋ = ⌊�0⌋ , the UNIQUE SOLUTION of (P1) is the pair (N, d
N

) with N = ⌊�0⌋ and 

d
N

= (d
max

, ..., d
max

).

IF �0 ≥ 2, ⌊𝜆0⌋ < ⌊𝜌0⌋ and 𝜔𝛿 > 0, the UNIQUE SOLUTION of (P1) is the pair (N, d
N

) with N = ⌊�0⌋ 
and d

N

= (d0, ..., d0), where d0 = �0(N).

IF �0 ≥ 2, ⌊𝜆0⌋ < ⌊𝜌0⌋ and 𝜔𝛿 < 0, take N1 = ⌈�0⌉ and

CALCULATE: 
M =

N1�0(dmax) − �
OAR

�0(dmax) − �0(dmin).

IF M ∈ ℕ ∪ {0} , take K = M and 

d
N1

1
= (d

min
, ..., d

min

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d
max

, ..., d
max

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N1−K

)

.

IF M ∉ ℕ ∪ {0} , take K = ⌊M⌋ and 

d
N1

1
= (d

min
, ..., d

min

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, d
max

, ..., d
max

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N1−K−1

),

with d∗ > 0 and �0(d
∗) = �

OAR
− K�0(dmin) − (N1 − K − 1)�0(dmax).

Also take N2 = ⌊�0⌋ and d
N2

2
= (d

max
, ..., d

max
).

CALCULATE: E
T
(N1, d

N1

1
) and E

T
(N2, d

N2

2
).

A SOLUTION of (P1) is the pair (N, d
N

) that maximizes E
T
 between them.

(*) In the particular case �0 ≥ 2, �0 = 1 and 𝜔𝛿 < 0,

the UNIQUE SOLUTION of (P1) is the pair (N1, d
N1

1
) = (1,�0(1))..

IF �0 ≥ 2, ⌊𝜆0⌋ < ⌊𝜌0⌋ and �� = 0, ANY FEASIBLE PAIR (N, d) such that E
OAR

(N, d) = �
OAR

 is a 
SOLUTION for (P1) . In particular,

the pairs (N, d
N

) with N ∈ {⌈�0⌉,… , ⌊�0⌋} and d
N

= (d0, ..., d0), where d0 = �0(N).
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none of them being deductible from the rest, and denoting

we can construct two different global “fictitious” OARs that combine (24) into one 
as follows: 

1.	 “Adding” all the constraints to obtain 

 with �0 =
∑m

j=1
�j�j, �0 =

∑m

j=1
�j�

2
j
 and �OAR =

∑m

j=1
�OARj

. This set is the small-
est one defined by only one of this type of relations and containing KN . We can 
assure that any vector in KN

0
 will satisfy (at least) one of the original constraints 

(24) and (hopefully) more than one.
2.	 On the other hand, the largest set of this type contained in KN is defined by 

 with 𝛼̃0 = min{
𝛾OARj

𝛽j𝛿
2
j

∶ j = 1,… ,m} , 𝛽0 = min{
𝛾OARj

𝛼j𝛿j
∶ j = 1,… ,m} and 

𝛾̃OAR = 𝛼̃0𝛽0.
Applying our theory to KN

0
 and K̃N

0
 may provide some insights (upper and lower 

bounds) about what happens in KN.

3 � Minimizing the Effect of Radiation on One Organ at Risk

In this section, we will consider a problem closely related to that of the previous sec-
tion: the goal of this second issue will be to determine the best strategy to minimize 
the effect of radiation on one organ at risk (OAR), while maintaining a minimum 
effect of radiation on the tumor. It is clear that this approach can be interesting (at 
least) for palliative therapies. Mathematically, we formulate it in the following way:

where EOAR(N, d) is given by (2), ET (N, d) is defined in (1) and �T is a given positive 
parameter. Of course, this is also a mixed-integer optimization problem in which 
the number of radiation doses, N ∈ ℕ , is an unknown, as well as the value of the N 
doses, di ∈ ℝ, 1 ≤ i ≤ N.

KN = {(d1,… , dN) ∈ [dmin, dmax]
N ∶ verifying (24)},

KN
0
= {(d1,… , dN) ∈ [dmin, dmax]

N ∶ �0

N∑
i=1

di + �0

N∑
i=1

d2
i
≤ �OAR},

K̃N
0
= {(d1,… , dN) ∈ [dmin, dmax]

N ∶ 𝛼̃0

N∑
i=1

di + 𝛽0

N∑
i=1

d2
i
≤ 𝛾̃OAR},

(P2)

⎧⎪⎨⎪⎩

Minimize EOAR(N, d),

subject to N ∈ ℕ, d ∈ ℝ
N such that

ET (N, d) ≥ �T ,

dmin ≤ di ≤ dmax, i = 1, ...,N,
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This problem has recently been studied in the outstanding work [9], but with 
fixed N and only imposing the nonnegativity constraint for the doses. Moreover, 
in [9] it is also remarked that “The real interest of the present approach would be 
the determination of the optimum solution for N in clinical practice.” As an inter-
mediate step, we have achieved here the expression of the optimal value for N in 
terms of the parameters of the problem in this particular setting.

As we will see, the study for problem (P2) can be carried out following the 
same argumentation to that of (P1) with minor differences.

3.1 � Existence of Solution for (P
2
)

In the sequel we will denote

Our first observation concerns the existence of solution for (P2):

Theorem 9  Let us assume dmin > 0 . Then, the problem (P2) has (at least) one solution.

Proof  It is analogous to that of Theorem 1, although here there are infinite feasible 
values for N: combining the restrictions, those such that N ∈ [�T ,+∞) ∩ ℕ . We will 
begin by showing that for each fixed feasible value N, the associated problem (PN

2
) 

has a solution, where

For large values of N, specifically for N ≥ �T , the solution of (PN
2
) is the trivial one 

with minimum values dmin . Among them only the smallest value of N has practical 
interest, i.e., ⌈�T⌉ . For the other values, when they exist, that is for N ∈

[
�T , �T

)
∩ ℕ , 

the existence of solution for (PN
2
) is a consequence of Weierstrass Theorem, once 

more. Therefore, for each value of N in that interval, let us consider a global solution 
for the problem (PN

2
) that we will denote d

N
 . Again, it is enough to take the pair (

N, d
N
)

 from the finite set 
��

N, d
N
�
∶ N ∈

�
�T , ⌈�T⌉

�
∩ ℕ

�
, that minimizes the 

value of EOAR(N, d) as a solution to the problem (P2) . 	� ◻

�T (r) = �Tr + �Tr
2, �T = max

�
1,

�T

�T (dmax)

�
, �T = max

�
1,

�T

�T (dmin)

�
,

�T (N) =
−�TN +

√
(�TN)

2 + 4�TN�T

2�TN
.

(PN
2
)

⎧
⎪⎪⎨⎪⎪⎩

Minimize ẼN
OAR

(d) =

N�
i=1

𝜑0(di),

subject to d ∈ ℝ
N such that

ET (N, d) ≥ 𝛾T ,

dmin ≤ di ≤ dmax, i = 1, ...,N.
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Remark 6 

(a)	 As for (P1) , except if all the coordinates of d
N

 are equal, the solution for (P2) will 
not be unique, because two different coordinates can be permuted to generate a 
different one.

(b)	 When 𝜔𝛿 > 0 (see (6)), the hypothesis dmin > 0 is necessary for proving the 
existence of solution for (P2) . In contrast, when 𝜔𝛿 < 0 , it is easy to show that 
problem (P2), with only the lower bound constraints di ≥ 0 , has as solution (N, d) 
with N = 1 and d = �T (1), see [9].

(c)	 There are some particular cases in which the solution of (P2) can be determined 
from previous argumentations very easily. For instance, when �T = 1 , because 

then 
(
N, d

N
)

= (1, dmin) is the unique feasible pair. Also when 𝜌T > 1 and 

⌈�T⌉ = ⌊�T⌋ , because only the large values for N are feasible (i.e., those verifying 
N ≥ �T ) and consequently (N, d

N
) with N = ⌈�T⌉ and d

N
= (dmin, ..., dmin) is the 

solution of (P2).

When N ∈ [�T , �T ) ∩ ℕ , we know that dN = (dmin, ..., dmin) is not a solution of 
(PN

2
) , because it is not even feasible. Hence, we can simplify the problem (PN

2
) 

arguing in a similar way as in the proof of Theorem 3.

Theorem  10  Let us assume dmin > 0 and N ∈
[
�T , �T

)
∩ ℕ . Then, the inequality 

constraint of the problem (PN
2
) has to be active at any solution.

From now on, the restriction will be taken as one of equality. Here, applying 
the same procedure as for (P1) in Sect. 2, the objective function will read

Now, it is clear that we can simplify the formulation of the problem (PN
2
) , as follows:

Proposition 4  Let us assume dmin > 0 and N ∈
[
�T , �T

)
∩ ℕ . 

	 (i)	 If 𝜔𝛿 > 0 , then (PN
2
) is equivalent to 

 where 

	 (ii)	 If 𝜔𝛿 < 0 , then (PN
2
) is equivalent to 

ẼN
OAR

(d) =

[
𝛼0 −

𝛽0𝛼T𝛿

𝛽T

]
𝛿

N∑
i=1

di +
𝛽0𝛿

2𝛾T

𝛽T
.

(PN,+

2
)Maximize

N∑
i=1

di, subject to d ∈ �
N
2
,

𝕂
N
2
= {d ∈ ℝ

N ∶ ET (N, d) = �T , dmin ≤ di ≤ dmax, 1 ≤ i ≤ N}.
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	 (iii)	 If �� = 0, then every feasible point for (PN
2
) is a solution.

Proof  It suffices to note that �0 − �0�T�∕�T = −�0��� , where �� is defined in (6). 	
� ◻

Once we have seen that (PN,+

1
) and (PN,+

2
) are essentially the same problem (resp. 

(PN,−

1
) and (PN,−

2
) ), we can “translate” the results obtained in Sect. 2.2 to the current 

context as follows:

Theorem 11  Let us assume dmin > 0 and N ∈
[
�T , �T

)
∩ ℕ . Then, 

	 (i)	 the unique solution to (PN,+

2
) is given by d

N
= (d1, ..., d1) with d1 = �T (N).

	 (ii)	 a solution for (PN,−

2
) has one of the following forms: 

 with 

 with 

 and d∗ ∈ (dmin, dmax) satisfying 

3.2 � Analytical Solution for (P
2
)

As a consequence of previous results we arrive to the main theorems of this section 
that completely clarifies the situation concerning the problem (P2) . Recalling that 
�� =

�T

�T
−

�0

�0�
 (see (6)), we will see that �T and the sign of �� are the determinant 

factors in this analysis.

(PN,−

2
)Minimize

N∑
i=1

di, subject to d ∈ �
N
2
.

d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K

),

(25)K =
N�T (dmax) − �T

�T (dmax) − �T (dmin)
∈ ℕ ∪ {0}, or

d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K−1

),

(26)K = ⌊ N�T (dmax) − �T

�T (dmax) − �T (dmin)
⌋,

(27)�T (d
∗) = �T − K�T (dmin) − (N − K − 1)�T (dmax).
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Again, the case �� = 0 is easily solved, because the function to be minimized and 
the one defining the restriction are proportional. Let us now continue by studying 
the more frequent case 𝜔𝛿 > 0 . Here, we have to distinguish two different situations, 
depending on �T ∈ ℕ or not:

Theorem 12  Let us assume that dmin > 0, ⌈𝜆T⌉ < ⌊𝜌T⌋ and 𝜔𝛿 > 0 . 

(a)	 If �T ∈ ℕ , �T ≥ 2, then the unique solution to problem (P2) is given by N = �T 

and d
N
= (dmin, ..., dmin).

(b)	 If �T ∉ ℕ, then the unique solution to problem (P2) is given by 
(
N, d

N
)
, where: 

	 (i)	 N = ⌈�T⌉ and d
N
= (dmin, ..., dmin), or

	 (ii)	N = ⌊�T⌋ and d
N
= (d1, ..., d1) , with d1 = �T (N).

Proof  It follows the same lines to that of Theorem 7.
Case a).- Assume �T ∈ ℕ, �T ≥ 2. ,   
As usual, we divide the interval for feasible values of N in two parts: [�T , �T ) ∩ ℕ 

and [�T ,+∞) ∩ ℕ.

In order to study the dependence with respect to N in the interval [�T , �T ) , thanks 
to Proposition 4 (with 𝜔𝛿 > 0 ), it is enough to consider the auxiliary function 
�T (N) = N�T (N). Once more, it follows easily that �T is a strictly increasing func-
tion. Since we are assuming �T ∈ ℕ and �T ≥ 2 , then �T will take its maximum value 
in the set [�T , �T ) ∩ ℕ at N1 = �T − 1 . Therefore, the candidate for solution to prob-
lem (P2) is given by the pair (N1, d

N1
) with d

N1
= (d1, ..., d1), where d1 = �T (N1).

On the other hand, in the interval [�T ,+∞) , we know that the other candi-
date for solution to problem (P2) is given by the pair (N2, d

N2
) with N2 = �T and 

d
N2

= (dmin, ..., dmin).

To derive that (N2, d
N2
) is the unique solution to problem (P2) , we will show that

Following the same idea to that of the proof of Theorem 7, we introduce the auxil-
iary function

Taking into account the expression of d1 and that N2�T (dmin) = �T (by the definition 
of �T ), it can be checked that H�

2
(x) = N1d1 − N2dmin < 0, since N1 < N2.

Using that also �T = N1�T (d1) , we get that H2(�T∕�T ) = 0 and from the assump-
tion 𝜔𝛿 > 0 (see (6)), it follows that H2(𝛼0∕(𝛽0𝛿)) > 0 , which is equivalent to (28).

Case b).- Assume �T ∉ ℕ . Here, the optimal value of N in the interval [�T , �T ) is 

N1 = ⌊�T⌋ and d
N1

= (d1, ..., d1) with d1 = �T (N1). In the interval [�T ,+∞) , the 
other candidate is N2 = ⌈�T⌉ with d

N2
= (dmin, ..., dmin).

(28)EOAR(N2, d
N2
) < EOAR(N1, d

N1
).

H2(x) = N1(xd1 + d
2

1
) − N2(xdmin + d2

min
), x ∈ [

�0

�0�
,+∞).
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When �T ∉ ℕ, any of them can provide the unique solution to problem (P2) . 	�  ◻

Finally, the case 𝜔𝛿 < 0 is studied in the next theorem:

Theorem 13  Let us assume dmin > 0, 𝜌T > 1, ⌈𝜆T⌉ < ⌊𝜌T⌋ and 𝜔𝛿 < 0 . Then, a solu-

tion to problem (P2) is given by 
(
N, d

N
)
, with N = ⌈�T⌉ and 

(a)	 d
N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K

), when K defined by (25), with N = N, belongs 

to ℕ ∪ {0}; otherwise,
(b)	 d

N
= (dmin, ..., dmin

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, dmax, ..., dmax
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K−1

), with K defined by (26) and d⋆ satisfies (27), 

both with N = N.

Proof  When 𝜔𝛿 < 0 , it is still true that N2 = ⌈�T⌉ and d
N2

= (dmin, ..., dmin). Arguing 
as in the proof of Theorem 8, the candidate when N runs [�T , �T ) ∩ ℕ is N1 = ⌈�T⌉ 
with d

N1 given by Theorem 13-a) or b) and N = N1 , thanks to Theorem 11−ii) . We 
will conclude by showing that

Let us argue with the expression b) for d
N1 , because (as we have pointed out before) 

the value d∗ can be very close to dmin or dmax and hence item a) can be seen as a spe-
cial case of b). Therefore, inequality (29) is equivalent to

For proving (30), we consider again a linear function such as

By construction, we know that

This is equivalent to say that H3(�T∕�T ) ≥ 0.
If H3 is an increasing function, since 𝜔𝛿 < 0 , we will have

which gives (30). So, taking into account that

(29)EOAR(N1, d
N1
) ≤ EOAR(N2, d

N2
).

(30)K𝜑0(dmin) + 𝜑0(d
⋆) + (N1 − K − 1)𝜑0(dmax) ≤ N2𝜑0(dmin).

H3(x) = (N2 − K)(xdmin + d2
min

) − (xd∗ + (d∗)2) − (N1 − K − 1)(xdmax + d2
max

).

K𝜑T (dmin) + 𝜑T (d
⋆) + (N1 − K − 1)𝜑T (dmax) = 𝛾T ≤ N2𝜑T (dmin).

H3

(
�0

�0�

)
≥ H3

(
�T

�T

)
≥ 0,

H�
3
(x) = (N2 − K)dmin − d∗ − (N1 − K − 1)dmax,
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let us finish the proof by showing that H�
3
(x) ≥ 0.

If N2dmin > N1dmax, this is true straightforwardly, because we know that 
N1dmax > Kdmin + d∗ + (N1 − K − 1)dmax.

Table 3   Algorithm for solving problem (P2)

DATA: �
T
, �

T
, �0, �0, dmin, dmax, � and �

T

(all positive, d
min

< d
max

 and � ≤ 1)

CALCULATE: 
�� =

�
T

�
T

−
�0

�0�
,
 
�
T
= max

{
1,

�
T

�
T
(d

max
)

}
 and

�
T
= max

{
1,

�
T

�
T
(d

min
)

}
,
 with �

T
(r) = �

T
r + �

T
r
2.

DENOTE: 
�
T
(N) =

−�
T
N +

√
(�

T
N)2 + 4�

T
N�

T

2�
T
N

.

IF �
T
= 1 , the pair (N, d

N

) = (1, d
min

) is the UNIQUE SOLUTION of (P2).

IF 𝜌
T
> 1 and ⌈�

T
⌉ = ⌊�

T
⌋ , the UNIQUE SOLUTION of (P2) is the pair (N, d

N

) with N = ⌈�
T
⌉ and 

d
N

= (d
min

, ..., d
min

).

IF �
T
∈ ℕ , �

T
≥ 2, ⌈𝜆

T
⌉ < ⌊𝜌

T
⌋ and 𝜔𝛿 > 0, the pair (N, d

N

) with N = �
T
 and d

N

= (d
min

, ..., d
min

) is the 
UNIQUE SOLUTION of (P2).

IF �
T
∉ ℕ, 𝜌

T
> 1, ⌈𝜆

T
⌉ < ⌊𝜌

T
⌋ and 𝜔𝛿 > 0,

take (N1, d
N1

1
), with N1 = ⌊�

T
⌋ and d

N1

1
= (d1, ..., d1), where d1 = �

T
(N1).

Also take N2 = ⌈�
T
⌉ and d

N2

2
= (d

min
, ..., d

min
).

CALCULATE: E
OAR

(N1, d
N1

1
) and E

OAR
(N2, d

N2

2
).

A SOLUTION of (P2) is the pair (N, d
N

) that minimizes E
OAR

 between them.
IF 𝜌

T
> 1, ⌈𝜆

T
⌉ < ⌊𝜌

T
⌋ and 𝜔𝛿 < 0,

take N = ⌈�
T
⌉ and CALCULATE 

M =
N�

T
(d

max
) − �

T

�
T
(d

max
) − �

T
(d

min
).

IF M ∈ ℕ ∪ {0} , take K = M and 

d
N

= (d
min

, ..., d
min

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d
max

, ..., d
max

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K

)

.

IF M ∉ ℕ ∪ {0} , take K = ⌊M⌋ and 

d
N

= (d
min

, ..., d
min

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K

, d∗, d
max

, ..., d
max

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N−K−1

),

with d∗ > 0 and �
T
(d∗) = �

T
− K�

T
(d

min
) − (N − K − 1)�

T
(d

max
).

A SOLUTION of (P2) is the pair (N, d
N

).

IF 𝜌
T
> 1 , ⌈𝜆

T
⌉ < ⌊𝜌

T
⌋ and �� = 0, ANY FEASIBLE PAIR (N, d) such that

E
T
(N, d) = �

T
 is a SOLUTION for (P2) . In particular, the pairs (N, d

N

) with N ∈ {⌈�
T
⌉,… , ⌊�

T
⌋} and 

d
N

= (d1, ..., d1), where d1 = �
T
(N).
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When N2dmin ≤ N1dmax, we can argue as in the proof of Theorem 8, taking the 
point d̃ = (d1, ..., dN1

) = (N2∕N1)(dmin, ..., dmin), that satisfies the bounds restrictions 
and

This means that it is feasible for the problem (PN1,−

2
) . Taking into account that 

(N1, d
N1
) is a solution for that problem, see Proposition 4-ii) and Remark 3, we get 

H�
3
(x) ≥ 0 . 	�  ◻

Remark 7 

(a)	 Once more, let us emphasize that when 𝜔𝛿 > 0 the optimal value of N is the 
largest one within its range of possibilities (i.e., it is a hyperfractionated type 
treatment), while in the case 𝜔𝛿 < 0 the optimal value is the smallest one (i.e., 
it is a hypofractionated type treatment). This classification was described in [9], 
while considering nonnegative doses.

(b)	 For the hypofractionated case, the single exposure is chosen in [9] as the pre-
ferred one. But this dose could be too large in practice and then two, three or 
more fractions would have to be tried until an acceptable one is found. This dif-
ficulty is overcome here and we get the optimal number of dose fractions directly 
(and their values).

It is possible to show that all the above possibilities mentioned in Theorems 12 
and 13 can appear in practice by means of examples. For the reader’s convenience, 
we have summarized the complete algorithm for the resolution of the problem (P2) 
in Table 3.

4 � Conclusions

In this work, we have derived the analytical expressions for the optimal total number 
of radiations N and their specific doses d for problems (P1) and (P2) . We have proved 
that they essentially depend on the sign of the quantity �� = �T∕�T − �0∕(�0�). For 
fixed N, this fact is well known in the literature and it has been reported several 
times in different frameworks (among others [2, 6, 9]). Moreover, this is consistent 
with some clinical findings as noted in [9].

When 𝜔𝛿 > 0 , we have shown that the optimal number of doses N are ⌊�0⌋ for (P1) 
and ⌊�T⌋ or ⌈�T⌉ for (P2) , the upper values of their ranges of interest (i.e., hyperfraction-
ated type treatments) with equal doses; while in case 𝜔𝛿 < 0, the optimal values of N 
are ⌊�0⌋ or ⌈�0⌉ for (P1) and ⌊�T⌋ for (P2) , the lower values of those ranges (i.e., hypof-
ractionated type treatments). In this last case, let us stress that not all doses have to be 
maximum; in fact, some of them may be minimum and at most one of them can take 
an intermediate value. The study concerning the derivation of the optimal number of 

ET (N1, d̃) = 𝛼TN2dmin + 𝛽T
(N2)

2

N1

d2
min

≥ N2𝜑T (dmin) ≥ 𝛾T .
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doses N had already been performed for example in [7] in the hyperfractionated case, 
but (as far as we know) it is completely new for the hypofractionated case.

Let us emphasize that the algorithms (described in Tables 2 and 3) can be imple-
mented quite straightforwardly using any programming language to make them more 
accessible.
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