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Abstract
During 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) transmission has been increasing among the world’s population at an alarm-
ing rate. Reducing the spread of SARS-CoV-2 and other diseases that are spread in 
similar manners is paramount for public health officials as they seek to effectively 
manage resources and potential population control measures such as social distanc-
ing and quarantines. By analyzing the US county network structure, one can model 
and interdict potential higher infection areas. County officials can provide targeted 
information, preparedness training, and increase testing the researchers conclude 
that traditional the researchers conclude that traditional in these areas. While these 
approaches may provide adequate countermeasures for localized areas, they are 
inadequate for the holistic USA. We solve this problem by collecting coronavirus 
disease 2019 (COVID-19) infections and deaths from the Center for Disease Control 
and Prevention, and adjacency between all counties obtained from the United States 
Census Bureau. Generalized network autoregressive (GNAR) time series mod-
els have been proposed as an efficient learning algorithm for networked datasets. 
This work fuses network science and operations research techniques to univariately 
model COVID-19 cases, deaths, and current survivors across the US county network 
structure.
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1 Introduction

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) that was first 
detected in late 2019 and the resultant disease (COVID-19) have completely 
upended the way we led our lives. The global pandemic has led to debilitating 
damage to our lives, economies, health care systems, and food security [1]. The 
virus is extremely transmissible, spreading through water droplets produced when 
talking, coughing, or sneezing [2]. Since the virus’ first reports in 2019, it has 
mutated multiple times and some of these mutations have proven to spread faster 
and infect easier [3]. Additionally, when a virus mutates, combating it with vac-
cines and other public health measures becomes increasingly difficult [4]. Hence, 
it is in our best interest to investigate the spreading mechanisms and obtain ways 
to predict outbreaks, which are one of the goals of this study. The transmission of 
the virus has been further aided by modern society’s hypermobility [5]. Early on, 
COVID-19 spread fast within China and other countries due to both international 
and national travel, through air, land, and seas.

In previous works, the relationship between human mobility and epidemics 
spreading has been investigated. Recently, we have had some very important works 
relating COVID-19 to traffic. Indicatively, we mention the fundamental work of 
Kraemer et al. [6] which analyzed human mobility data and traced infection met-
rics in the early and later stages of the COVID-19 pandemic. The results reinforce 
that earlier in the pandemic, strict travel restrictions are helpful and lead to easier 
confinement and control; later, once the outbreak is spread, travel restrictions are 
less useful and local measures, such as social distancing and masking, are prefer-
able. In a second recent work [7], the authors posit that while traffic and human 
mobility are often the culprits for driving viral spreading, the traffic network struc-
ture is often overlooked from these studies. Hence, they propose a traffic-driven 
model that accounts for that; here, we also account for human mobility through the 
transportation network and consider the effects of traffic on edge affectthe spread 
of a disease.

Specifically, in this work we also investigate whether and how travel patterns affect 
COVID-19 dissemination; we do so by employing generalized network autoregression 
on a proxy of the US transportation network. We generate and use a network of all 
counties in the USA in an effort to forecast the spread of COVID-19 using data avail-
able for each county as well as travel patterns across counties. The remainder of the 
manuscript is organized as follows. First, in Sect. 2, we provide a brief literature review 
on models that have been put to the use to forecast COVID-19 cases and to protect the 
communities from its transmission. Then, in Sect. 3, we discuss our approach using the 
generalized network autoregression (GNAR). We also provide a description of the data 
that were acquired to perform the analysis in Sect. 4. Section 5 presents the computa-
tional experiments and the results we observed during our analysis. We conclude this 
work in Sect. 6.

29   Page 2 of 23 Operations Research Forum (2022) 3: 29



1 3

2  Literature Review

Due to the impact of COVID-19 in our daily lives, a lot of research has already 
appeared on the analysis of the spread of the disease. That said, epidemics and 
pandemics such as the one caused by SARS-CoV-2 are not a recent phenomenon 
for humanity. As an example, the “Spanish flu” ravaged the world in the early 
1900s. Shortly after the outbreak of the disease, in 1918, researchers Kermack and 
McKendrick published papers that presented mathematical models for predicting 
the number of infections in a population as a function of time: the assumption was 
that it is valid to split the population into smaller clusters or “compartments” when 
analyzing a disease’s propagation through a population [8]. Their foundational 
work continues to help epidemiologists model outbreaks of diseases today.

More recently, epidemiological models such as the Susceptible-Infected-
Removed (Recovered) (SIR) and Susceptible-Exposed-Infected-Removed (Recov-
ered) (SEIR) and other extensions have been put to use to model the movement 
of individuals from one “compartment” (i.e., Susceptible, Exposed, Infected, 
Removed) to the next [9]. As an example, a person may be moved from the initial 
state of Susceptible to the intermediate state of Infected upon exposure to and 
infection with a disease; later that same person may be categorized as Removed 
once they recover. As expected, such epidemiological models have been applied 
in the fight against COVID-19. These models have been largely successful, 
revealing their utility for policy to prevent the spread of disease.

In Cameroon, research based on SIR determined that the number of COVID-
19 cases was limited due to the health precautions taken [10]. Another similar 
application of the SIR model originates from Saudi Arabia, where researchers 
analyzed the number of COVID-19 cases and deaths both with and without public 
health measures such as quarantine enforcement [11]. Although SIR models have 
been accurate enough in predicting the size of the COVID-19 outbreaks, more 
recent research indicates that individuals who contract the virus once can become 
infected again [12], necessitating a means to dynamically update the parameters 
of the SIR model in an effort to improve its predictive power. In [13], the authors 
propose time-varying these parameters to account for changes over time, using 
machine learning to determine exactly how to update these parameters.

Moreover, the incubation period of COVID-19 (i.e., the period during which 
an infected individual bears no symptoms yet can still transmit the virus to 
others) has proven to be an important factor in the spread of COVID-19 [14]. 
While asymptomatic, some recently infected individuals can unknowingly spread 
COVID-19, a fact that needs to be included in epidemic models [15].

Similarly to the work from Saudi Arabia, researchers in Wuhan used the SEIR 
model to analyze the impacts of public health measures such as quarantines and 
restrictions of movement [16]. Following the time-varying updates recommended 
in [13], researchers in Portugal dynamically adjusted the exposure rates and 
other parameters in order to simulate infected asymptomatic individuals who can 
spread the virus [17].
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Another methodology that has been put to the use in the fight against COVID-
19 is agent-based simulation modeling. Even before SARS-CoV-2 first appeared, 
researchers have been using simulation in conjunction with transit data; the 
insight is that population movements will critically affect the spread of diseases 
[18]. As far as COVID-19 is concerned, agent-based simulation models have 
been used to test the effect of public health mitigation efforts. As an example, 
in [19] using agent-based simulation models, the researchers conclude that tra-
ditional measures such as mask-wearing and social distancing, as well as lock-
downs, are viable tools in the fight against COVID-19.

The work presented here is heavily motivated by the literature on diffusion 
processes on networks (see [20]). COVID-19 and its spread is no exception, 
with many works pointing to the relationship between outbreaks and popula-
tion movements through the transportation network [6, 21]. Since 2020, we have 
seen a multitude of works investigating the network spreading dynamics in air 
and rail networks as well as public transit [22–25].

Finally, we discuss time series models. Autoregressive Integrated Moving 
Average (ARIMA) models regress a forecast value onto previous values of the 
time series [26]. Thus, ARIMA models seek to describe autocorrelations in the 
time series data [27]. In India, researchers used ARIMA to model and predict 
COVID-19 infections [28], with higher accuracy of other moving average and 
exponential smoothing models. Still in India, other research analyzed COVID-19 
spreading trends using both an ARIMA and a Holt-Winters model (Holt-Winters 
accounts for trends and seasonality) [29]. The accuracy of the models (during the 
time period specified) proved very high, at 99.8%. Another example of ARIMA 
and Holt-Winters models comes from Jakarta [30], finding that ARIMA outper-
forms the other time series approaches. Last, ensemble methods include a variety 
of time series models; the final prediction of an ensemble model is a combina-
tion of the time series models included [31]. Such an ensemble model was put to 
use in Nigeria. The time series model, called Prophet, processed missing values, 
seasonal effects, and outliers, allowing it to perform well against other models for 
predicting spread [32].

Researchers employing these techniques across the world can help leaders 
interdict the spread of the virus. What we mean by this statement is to use spread 
prediction in a way that informs mobility policy such that threat to human life is 
minimized. A recent interdiction policy, motivated by COVID-19, is presented 
in [33]. Interestingly, the authors utilize the mobility data and a set of different 
network science notions on a network obtained from the districts and boroughs 
in New York City. Outside the context of viral spread and epidemics, researchers 
have investigated the idea of using betweenness centrality and extensions, such 
as betweenness-accessibility [34] to identify the most critical links (i.e., streets 
or main arteries) and nodes (i.e., zip codes, cities, or counties) whose interdic-
tion or closure lead to better isolation of areas. While our work does not focus 
on interdiction, our contributions can help policy-makers identify parts of the 
network that are more susceptible to increases in positivity rate.
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3  The Generalized Network Autoregressive Process

In this section, first we describe the Generalized Network Autoregressive Process 
(GNAR) [35] and the associated R package [36]. Then, we present the way that we 
adapt the GNAR model to our problem. We also provide the different metrics that 
we use to evaluate the performance of time series models.

3.1  The GNAR Process

Suppose we have a directed graph G = (N,E) where N is a set of nodes 
( N = {1,… , n} ) and E is a set of edges. Suppose we have an edge e = (i, j) ∈ E for 
i, j ∈ N and suppose a direction of e is from a node i to a node j, then we write it as 
i → j . For any A ⊂ N we define the neighbor set of A as follows:

The r-th stage neighbors of a node i ∈ N is defined as

for r = 2, 3,… with N(1)(i) = N({i}).
Under this model, we assume that we can assign a weight �i,j on an edge (i, j). We 

define a distance between nodes i, j ∈ N such that there exists an edge (i, j) ∈ E as 
di,j = �−1

i,j
 . Then we define

The GNAR model uses a covariate for an edge effect in different types of nodes by 
an additional attribute, such as infected or not infected in an epidemiological net-
work. Assume that a covariate takes discrete values {1,… ,C} ⊂ ℤ . Then, let wi,k,c 
be wi,k for a covariate c such that

Now we are ready to define the generalized network autoregressive processes 
(GNAR) model. Suppose we have a vector of random variables in

which varies over the time horizon and each random variable associates with a node. 
For each node i ∈ N and time t ∈ {1,… , T} a generalized network autoregressive 
processes model of order (p, [s]) ∈ ℕ × (ℕ ∪ {0})p on a vector of random variables 
Xt is

N(A) ∶= {j ∈ N∕A|i → j, for i ∈ A}.

N(r)(i) ∶= N{N(r−1))}∕[{∪r−1
q=1

N(q)(i)} ∪ {i}],

(1)
wi,k =

�i,k∑
l∈N(r)(i)

�i,l

.

∑
q∈N(r)(i)

C∑
c=1

wi,q,c = 1.

Xt ∶= (X1,t,… ,Xn,t) ∈ ℝ
n
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where p ∈ ℕ is the maximum time lag, [s] ∶= (s1,… , sp) , sj ∈ ℕ ∪ {0} is the maxi-
mum stage of neighbor dependence for time lag j, N(r)

t
(i) is the rth stage neighbor 

set of a node i at time t, and w(t)

i,q,c
∈ [0, 1] is the connection weight between node i 

and node q at time t if the path corresponds to covariate c. �i,j ∈ ℝ is a parameter of 
autoregression at lag j for a node i ∈ N and �j,r,c ∈ ℝ corresponds to the effect of the 
rth stage neighbors, at lag j, according to a covariate c = 1,… ,C.

3.2  COVID‑19 Analysis Using GNAR

In order to apply the GNAR model defined in this section to the county network on 
COVID-19 data, we set variables as follows.

Note that the GNAR model conducts a time series analysis on the time series data on 
the networks. The GNAR model assumes that the topology of the network is fixed over 
the time horizon t > 0 . In this research, the network is the county network G = (N,E) , 
where each node i ∈ N is a county in the particular state in the USA and we draw an 
edge (i, j) ∈ E between a county i ∈ N and a county j ∈ N if and only if a county i has 
commuters traveling to a county j. A weight �i,j on each edge (i, j) ∈ E is the number 
of commuters from a county i ∈ N and a county j ∈ N . The GNAR model assumes 
that these weights �i,j are fixed over the time horizon t > 0 . Therefore, the input of the 
GNAR package includes these variables. Now, what we wish to infer using the GNAR 
model are random variables

where Xi,n is the number of COVID-19 cases of deaths from COVID-19 at a county 
i ∈ N at the time t > 0.

In this research, we do not have differences between all nodes, i.e., we treat all 
counties in N as the same type. Therefore, we ignore this covariate index c, render-
ing the formulation of the GNAR model as follows. For each county i ∈ N and 
time t ∈ {1,… , T} a generalized network autoregressive processes model of order 
(p, [s]) ∈ ℕ × (ℕ ∪ {0})p on a vector of the numbers of COVID-19 cases of deaths 
from COVID-19 Xt is

where p ∈ ℕ is the maximum time lag, [s] ∶= (s1,… , sp) , sj ∈ ℕ ∪ {0} is the maxi-
mum stage of neighbor dependence for time lag j, N(r)

t
(i) is the rth stage neighbor 

set of a county i at time t, and w(t)

i,q
∈ [0, 1] is the connection weight between a county 

i and a county q at time t. �i,j ∈ ℝ is a user specific parameter (tuning parameter) of 
autoregression at lag j for a county i ∈ N and a user specific parameter (tuning 

(2)Xi,t ∶=

p�
j=1

⎛
⎜⎜⎝
�i,jXi,t−j +

C�
c=1

sj�
r=1

�j,r,c

�
q∈N

(r)
t (i)

w
(t)

i,q,c
Xq,t−j

⎞
⎟⎟⎠

Xt ∶= (X1,t,… ,Xn,t) ∈ ℝ
n,

(3)Xi,t ∶=

p�
j=1

⎛
⎜⎜⎝
�i,jXi,t−j +

sj�
r=1

�j,r

�
q∈N

(r)
t (i)

w
(t)

i,q
Xq,t−j

⎞⎟⎟⎠
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parameter) �j,r ∈ ℝ corresponds to the effect of the rth stage neighbors, at lag j. 
These user specific parameters are defined by a user. In this paper, we select three 
combinations of tuning parameters after conducting a model selection discussed in 
Sect. 3.2.1.

In addition, note that wi,k for a county i ∈ N and its neighbor k ∈ N(r)
t

 is computed 
using the Eq. (1).

3.2.1  Model Parameters

The GNAR package takes in a number of parameters for its predictive time series 
models. For both the cases and the deaths, we adjusted two GNAR parameters to 
create three unique models. The first model fit applies a non-negative integer, 
alphaOrder = 1, that specifies a maximum time lag of 1 to model along with 
a vector of length betaOrder = 0, which specifies the maximum neighbor set to 
model at each of the time lags [36]. These parameters represent the time lag, p, and 
the maximum stage of neighbor dependence for each of the time lags, [s], as dis-
cussed above. The second model sets ���������� = 0 and ��������� = 1 . The 
third model is the default model in GNAR, with no parameter modifications, making 
both ���������� = 0, ��������� = 0 . We conduct a model selection by chang-
ing alphaOrder and betaOrder from 0 to 5 independently. Table 1 provides a 
summary of the model parameter combinations.

Because there are two prediction options (cases and deaths) and three model 
parameter selections, in total, we create 6 different combinations (e.g., Deaths - 
Model 1). Moreover, since we predict by state, each state has these 6 models for 
comparison.

3.3  Evaluation Performance

Measuring performance in traditional statistics often calls for measures of perfor-
mance such as RMSE and adjusted R2 . Although easily calculated, these measures 
do not measure errors in terms of the time horizon [37]. For outputs of a predictive 
time series model, performance can be measured by the mean absolute percentage 
error (MAPE) and the mean absolute scaled error (MASE). The MAPE measures an 
estimated average of a model’s forecast performance over the time horizon, while 
the MASE measures the ratio of an estimated absolute error of the forecast divided 
and estimated absolute error of the naïve forecast method over the time horizon 
[38]. The MAPE commonly falls between 0 and 1, but can be skewed outside this 

Table 1  Model Parameter Summary. We vary the value of alphaOrder and betaOrder to create 
three different models for the COVID-19 cases and deaths

Model 1 Model 2 Model 3

alphaOrder = 1 alphaOrder = 0 betaOrder = 0
betaOrder = 1 betaOrder = 1 alphaOrder = 0
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range if actual values are close to zero [38]. The MASE is less than one if a model 
has smaller error than the naïve model’s error and if a model has greater error than 
the naïve model’s error, then it is greater than one [38]. The MAPE and MASE are 
defined by the following equations:

where Yt is the observation at time t, Ft is the predicted value, and Yt − Yt−1 is error 
of the one-step naïve forecast.

In order for a model to have predictive power, its MASE must exceed the accu-
racy of the respective naïve model and we say it has a good forecasting if a model 
has the MAPE less than 0.2 [39].

When we measure the performance of each model in terms of the MASE and 
MAPE, we apply a rolling horizon design [40] in this paper. A rolling horizon 
design for a time series model is to assess accuracy of a time series model such that 
it updates the forecasted value successively using different subsets of previous and 
current observations, and then it takes averages of the performance of the model for 
different time periods.

4  Data

We obtain the data for this work from the United States Census Bureau (USCB), the 
United States of America Facts (USAFacts), and the Center for Disease Control and 
Prevention (CDC). The USAFacts obtains their data from the CDC [41] and updates 
the daily death count on their website [42]. Manipulating this data in Python, we 
transform the data into a usable format for the GNAR package, create our models, 
and assess them using a variety of evaluation performance metrics.

4.1  Data Description and Limitations

The data is entirely numerical, with no categorical predictors or response variables. 
No transformations are applied to the original data for the proposed models. We also 
note that the COVID-19 cases and deaths data meet the assumption of stationarity 
of errors because the noise of the data does not depend on the time at which the data 
was observed [27]. Autoregressive models require stationarity of the errors, mean-
ing that the series’ variance must be constant over a long time period [43].

Furthermore, we assume that the COVID-19 data is complete and accurate. 
Although human error and reporting standards affect the number of deaths and 
cases sometimes, on any given day, we assume the data obtained from the CDC is 

(4)
MAPE =

∑N

t=1

���
Y
t
−F

t

Y
t

���
N

,

(5)
MASE =

∑N

t=1

���
Y
t
−F

t

Y
t
−Y

t−1

���
N

,
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accurate. Additionally, the data is autoregressive. Last, we assume the presence of 
no outliers [44]. The principal limitation of this data involves the constant nature of 
the commuting network structure [45]. The USCB compiled this commuting data 
over a 5-year period from 2011 to 2015, giving it a static property. We thus assume 
that the traffic and commuting patterns by county remain the same through the time 
of the COVID-19 pandemic.

4.2  County Network

The USA comprises 3,143 county or county equivalents as of 2020 [46]. 48 states 
use the term “county” to describe their administrative districts while Louisiana 
and Alaska use the terms “parishes” and “boroughs,” respectively. Each county is 
assigned a unique five-digit FIPS code. The first two digits represent the state’s FIPS 
code, while the latter three digits represent the county’s FIPS code within the state. 
This number serves as a uniform index for each county, facilitating county data sort-
ing and filtering.

The number of counties per state varies widely across the USA, regardless of a 
state’s geographic size, population, or terrain. For example, Rhode Island, the state 
with the smallest land area, has 5 counties, while Alaska, the state with the largest 
land area, has 29 counties [47]. However, Delaware contains the least amount of 
counties and Texas contains the most. Moreover, the majority of the country’s popu-
lation lives in only 143 of the 3143 counties as of 2020. Table 2 and Fig. 1 display 
the number of counties in each state.

Additionally, it is not uncommon for county information to change as time goes 
on. Counties can divide, merge, or rename themselves at any time, even if that time 
does not fall on a census year. For example, Colorado created Broomfield County 
from merging parts of other counties [51]. Shannon County, South Dakota, renamed 
itself to Ogala County in 2015 out of respect to its Native American heritage [52]. 
Of course, when new counties are formed or renamed, they are assigned new FIPS 
codes, which can complicate reporting of statistics later on. Regardless, many coun-
ties and states have protocols in place to prevent such mistakes.

In this work, we construct a network structure using the original commuting 
data from the USCB using Python. The commuting data comes in the form of a 
data frame with three columns: the county from which the individuals commute, 
the county to which the individuals commute, and the number of commuters. This 
represents a flow structure, where we can deduce how many commuters commute 
from one county to the next. Using Python, we transform this flow structure into 
a matrix format, with the row and column entries representing the “From” and “To” 
columns of the original data. Thus, one can easily search in this new commuting 
data matrix for how many commuters go from one county to the next.

In this research we divide the county network in each state. We designed 
the county commuting network structure for each state with the following 
information:

– Workers commuting from within-state counties to within-state counties.
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Table 2  A list of all US counties 
per state (including the District 
of Columbia). As can be seen, 
the number of counties per state 
varies widely. Source: [48]

Sate Counties

Alabama 67
Alaska 29
Arizona 15
Arkansas 75
California 58
Colorado 64
Connecticut 8
Delaware 3
District of Columbia 1
Florida 67
Georgia 159
Hawaii 5
Idaho 44
Illinois 102
Indiana 92
Iowa 99
Kansas 105
Kentucky 120
Louisiana 64
Maine 16
Maryland 24
Massachusetts 14
Michigan 83
Minnesota 87
Mississippi 82
Missouri 115
Montana 56
Nebraska 93
Nevada 17
New Hampshire 10
New Jersey 21
New Mexico 33
New York 62
North Carolina 100
North Dakota 53
Ohio 88
Oklahoma 77
Oregon 36
Pennsylvania 67
Rhode Island 5
South Carolina 46
South Dakota 66
Tennessee 95

29   Page 10 of 23 Operations Research Forum (2022) 3: 29



1 3

– Workers commuting from out-of-state counties to within-state counties.
– Workers commuting from within-state counties to out-of-state counties.

Dividing the network into states allows us to see more localized trends in COVID-
19, instead of considering the entire country at once. States can act as “communi-
ties” in the country’s commuting network. Communities in network science are 
groups of nodes with similar characteristics [53].

Table 2  (continued) Sate Counties

Texas 254
Utah 29
Vermont 14
Virginia 133
Washington 39
West Virginia 55
Wisconsin 72
Wyoming 23

Fig. 1  All counties in the USA plotted by the ggplot2 [49] and usmap [50] packages in R 
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5  Computational Experiments

As discussed earlier, GNAR takes a univariate time series dataset along with an under-
lying network structure in order to create a predictive time series model. After trans-
forming the data for the GNAR model, we fit three models for each prediction type 
(for COVID-19 cases and COVID-19 deaths), giving us 6 models for each state. We 
will be selecting 5 states to showcase the results on; since the 5 states will be tested 
on 6 models each, this gives us a total of 30 individual models. We can evaluate the 
models for prediction accuracy graphically, using the MAPE and MASE as measures 
of performance.

In order to determine if our models would perform in a similar fashion across dif-
ferent states, we select a diverse array of states based on vaccination rates. Vaccination 
rates could affect the time-varying number of cases and deaths in a state, potentially 
leading to differing model performances. Hence, we choose the following states for 
our analysis: Rhode Island, Massachusetts, California, Florida, and Arkansas. Table 3 
describes the vaccination rate (% of population) and corresponding rank out of 50 of 
each state we choose.

We calculate the MASE and MAPE for each GNAR model with respect to each test 
period within the 40-week forecast. We then calculate the mean, median, and variance 
of these values. In order to determine if a transformation of measurements in a given 
data helps in improving the performance of a model, we test transforming measure-
ments in each county commuting network in the following ways: 

1. logarithm transformation,
2. square-root transformation, and
3. normalization.

Table 3  State vaccination rates as of 11/2021. The vaccination rates capture the percentage of population 
that is considered fully vaccinated (two doses of the appropriate vaccines, or one dose of a single dose 
vaccine). The rates help us determine which states to choose for our comparison. Adapted from [54]

State Vaccination Rate (% Population) Rank

Rhode Island 71.0 2
Massachusetts 69.8 5
California 61.4 16
Florida 59.8 22
Arkansas 48.1 43

Table 4  MAPE Interpretation. 
The following table provides 
a guide for interpretation of 
a time series model’s MAPE. 
The higher the MAPE, the less 
predictive power the model has. 
Source: [39]

MAPE Interpretation

 10 Highly accurate forecasting
10–20 Good forecasting
20–50 Reasonable forecasting
>50 Inaccurate forecasting
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In our experiments, however, all the above transformations result in minor changes 
in the performance of the model; therefore, we report here the results using the orig-
inal scale of measurements.

Table 5  Summary statistics of each model’s performance in MAPE and MASE over the time horizon

Rhode Island

Cases Deaths

MASE MAPE MASE MAPE

Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 0.8585 0.7696 0.0695 0.0013 0.9888 0.6436 0.0615 0.0009
Model 2 1.129 1.1376 0.0906 0.0019 1.8501 2.0184 0.1073 0.0017
Model 3 0.285 0.0353 0.0334 0.0007 0.517 0.0934 0.0419 0.0008
Naïve 1 0 0.1642 0.0205 1 0 0.1201 0.0101

Massachusetts

Cases Deaths

MASE MAPE MASE MAPE

Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 0.8579 0.5338 0.0723 0.0013 0.8263 0.2572 0.0691 0.0015
Model 2 0.9869 0.7752 0.078 0.0012 0.8275 0.2586 0.0692 0.0015
Model 3 0.2556 0.0193 0.0327 0.0008 0.3933 0.0103 0.0467 0.0014
Naïve 1 0 0.1582 0.0204 1 0 0.1374 0.0136

California

Cases Deaths

MASE MAPE MASE MAPE

Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 0.9056 0.3836 0.0764 0.0014 0.801 0.2 0.0743 0.0019
Model 2 0.984 0.5088 0.083 0.0015 0.9192 0.2475 0.084 0.0019
Model 3 0.4199 0.0403 0.0492 0.0023 0.47 0.0169 0.0594 0.0028
Naïve 1 0 0.1507 0.0197 1 0 0.1447 0.0152

Florida

Cases Deaths

MASE MAPE MASE MAPE

Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 0.9679 0.5556 0.0735 0.0011 0.8444 0.3151 0.0693 0.0015
Model 2 1.0033 0.598 0.0754 0.001 0.9405 0.4205 0.0743 0.0014
Model 3 0.3098 0.0272 0.0365 0.0012 0.4182 0.0119 0.0491 0.0014
Naïve 1 0 0.145 0.0177 1 0 0.1382 0.0132
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Table 5  (continued)

Arkansas

Cases Deaths

MASE MAPE MASE MAPE

Mean Variance Mean Variance Mean Variance Mean Variance

Model 1 0.9679 0.5556 0.0735 0.0011 0.8573 0.3106 0.0698 0.0014
Model 2 1.0033 0.598 0.0754 0.001 0.9903 0.4565 0.0767 0.0013
Model 3 0.3098 0.0272 0.0365 0.0012 0.424 0.0141 0.0496 0.0014
Naïve 1 0 0.145 0.0177 1 0 0.138 0.0136

(a) Rhode Island Cases MASE. The verti-

cal axis represents MASE. Models 1 and

2 exhibit a dramatic increase in MASE

at approximately week 71, then a sharp

decrease at week 77.

(b) Rhode Island Cases MAPE. The ver-

tical axis represents MAPE. Models 1 and

2 perform well against the näıve model

until approximately week 71. Models 1,

2, and 3 all trend downward gradually.

(c) Rhode Island Deaths MASE. The

vertical axis represents MASE. Model 2

starts to perform worse than the näıve

model at approximately week 61 and con-

tinues until the end of the testing period.

Model 1 starts to perform worse than the

näıve model at approximately week 73

and continues until approximately week

85. Model 3 did not perform better than

the näıve model for about six weeks from

approximately week 78 to week 83.

(d) Rhode Island Deaths MAPE. The ver-

tical axis represents MAPE. Model 2 ex-

perienced a sharp increase in MAPE at

approximately week 56, trending to per-

form worse than the näıve model until the

end of the testing period. Model 2 and

Model 3 stayed at a lower threshold, with

Model 3 outperforming the näıve 100% of

the time.

Fig. 2  The horizontal axis depicts the number of weeks since data collection began on January 22, 2020, 
for all plots in this figure. The four subfigures discuss the three models for the cases and deaths and the 
MAPE and MASE evaluation metrics for the state of Rhode Island. Adapted from [45] and [56]
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The naïve models across all states started with a high MAPE at the beginning in 
the time horizon, sometimes doubling the MAPE of all the other models. Addition-
ally, the MAPE for the naïve model appears to increase slightly across all states in 
the last 4 weeks in the time horizon. Poor performance of the naïve model in the 
beginning of the time horizon may be caused by a sudden increase of cases and a 
lack of information in the beginning of the time horizon.

As we will see below, the MASE for Models 1 and 2 in each state exhibit a 
bimodal “hump”, with the largest hump centered around week 80 of our dataset. 
This hump then shows a sharp decrease for the last 4 weeks of the testing period for 
all models. Models 1 and 2 perform worse than the baseline naïve model during this 
bimodal hump period. The 80th week mark falls near the end of August of 2021: 
during that period, everywhere in the USA, the number of cases increased at a much 
slower pace than earlier. The timing coincides with when many people were fully 

(a) Massachusetts Cases MASE. The ver-

tical axis represents MASE. Models 1 and

2 exhibit a dramatic increase in MASE at

approximately week 71, then a sharp de-

crease at week 78. Models 1 and 2 perform

worse than the näıve model in this time.

(b) Massachusetts Cases MAPE. The ver-

tical axis represents MAPE. Models 1 and

2 follow each other closely, performing

worse than the näıve model from approx-

imately week 71 to week 81. Models 1, 2,

and 3 all trend downward gradually.

(c) Massachusetts Deaths MASE. The

vertical axis represents MASE. Models 1

and 2 again follow each other very closely,

almost overwriting each other. Models 1

and 2 start to perform worse than the

näıve model at approximately week 72

but end up performing better than it at

approximately week 84.

(d) Massachusetts Deaths MAPE. The

vertical axis represents MAPE. Models

1 and 2 follow each other closely, al-

most overwriting each other. They per-

form worse than the näıve model from

approximately week 75 to week 84. All

models trend gradually downwards.

Fig. 3  The horizontal axis depicts the number of weeks since data collection began on January 22, 2020, 
for all plots in this figure. The four subfigures discuss the three models for the cases and deaths and the 
MAPE and MASE evaluation metrics for the state of Massachusetts. Adapted from [45] and [56]
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vaccinated (for clarity, full vaccination in our work refers to a two-dose regimen or 
a single dose of an approved vaccine [55]). Hence, these big “humps” in the model 
performance could be caused by the effect of these vaccinations on the number of 
cases. Models 1 and 2 are the ones impacted by this increased number of vaccina-
tions. This is because Model 1 and Model 2 are most affected by the numbers of 
cases in neighboring counties, and vaccination rates in neighbor counties are not 
necessarily the best predictors for the number of cases in each individual county. 
Overall, since Model 3 seems largely unaffected by correlations between numbers of 
fully vaccinated individuals in neighbor counties, Model 3 performs the best, since 
it outperforms the naïve model at almost all times during the time horizon. Ear-
lier, we mentioned that full vaccination refers to individuals that have received two 

(a) California Cases MASE. The vertical

axis represents MASE. Models 1 and 2

follow each other closely and exhibit a

dramatic increase in MASE at approxi-

mately week 71, then a sharp decrease at

week 77. Models 1 and 2 perform worse

than the näıve model in this time.

(b) California Cases MAPE. The verti-

cal axis represents MAPE. Models 1 and

2 follow each other closely, performing

worse than the näıve model from approx-

imately week 61 to week 80. Models 1, 2,

and 3 all trend downward gradually.

(c) California Deaths MASE. The verti-

cal axis represents MASE. Models 1 and

2 again follow each other very closely, al-

most overwriting each other. Models 1

and 2 start to perform worse than the

näıve model at approximately week 72

but end up performing better than it at

approximately week 84.

(d) California Deaths MAPE. The verti-

cal axis represents MAPE. Models 1 and

2 follow each other closely. They perform

worse than the näıve model from approx-

imately week 72 to week 84. All models

trend gradually downwards.

Fig. 4  The horizontal axis depicts the number of weeks since data collection began on January 22, 2020, 
for all plots in this figure. The four subfigures discuss the three models for the cases and deaths and the 
MAPE and MASE evaluation metrics for the state of California. Adapted from [45] and [56]
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doses or a single dose of the appropriate vaccines. It would be interesting, given 
updated information and data, to study whether this effect changes when considering 
an individual as full vaccinated after having received the appropriate booster shot, 
also referred to as “up-to-date” individuals [55].

Table 5 provides a summary of the results obtained for each of the models in each 
of the states. More details graphical results are shown in Figs. 2, 3, 4, 5, and 6 for 
Rhode Island (RI), Massachusetts (MA), California (CA), Florida (FL), and Arkan-
sas (AR), respectively. Recall that in order for a model to have predictive power, its 
MASE must exceed the accuracy of the respective naïve model [39]. Therefore, in 
order for a model to have a predictive power, MASE should be smaller than 1. Addi-
tionally, a model’s MAPE must be lower than 50%. Table 4 describes appropriate 
interpretations for different levels of MAPE.

(a) Florida Cases MASE. The vertical

axis represents MASE. Models 1 and 2

follow each other very closely and exhibit

a dramatic increase in MASE at approxi-

mately week 71, then a sharp decrease at

week 77. Models 1 and 2 perform worse

than the näıve model in this time.

(b) Florida Cases MAPE. The vertical

axis represents MAPE. Models 1 and

2 follow each other closely, performing

worse than the näıve model from approx-

imately week 61 to week 65 and week 71

to week 81. Models 1, 2, and 3 all trend

downward gradually.

(c) Florida Deaths MASE. The vertical

axis represents MASE. Models 1 and 2

follow each other closely. Models 1 and

2 start to perform worse than the näıve

model at approximately week 71 but end

up performing better than it at approxi-

mately week 84.

(d) Florida Deaths MAPE. The vertical

axis represents MAPE. Models 1 and 2

follow each other closely. They perform

worse than the näıve model from approx-

imately week 71 to week 84. All models

trend gradually downwards.

Fig. 5  The horizontal axis depicts the number of weeks since data collection began on January 22, 2020, 
for all plots in this figure. The four subfigures discuss the three models for the cases and deaths and the 
MAPE and MASE evaluation metrics for the state of Florida. Adapted from [45] and [56]
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As can be seen from Table 5 and Fig. 2, Rhode Island, a state with few coun-
ties but a dense population that is highly vaccinated, exhibits a great deal of dif-
ference among its models. Also from Table 5 and Fig. 3, Massachusetts, similar to 
Rhode Island, has a more urban population that is highly vaccinated. This state did 
not exhibit much difference among its models; regardless, Model 3 outperformed all 
of them. California, a state with a large land area and population that is highly vac-
cinated, did not exhibit much difference among its models. Model 3 outperformed 
all of them, regardless as we can see from Table 5 and Fig. 4. Florida, a state with a 
low vaccination rate and a large population, did not exhibit much difference among 
its models. Model 3 still performed the best out of all of them (Table 5 and Fig. 5). 

(a) Arkansas Cases MASE. The vertical

axis represents MASE. Models 1 and 2

follow each other very closely and ex-

hibit a dramatic increase in MASE much

earlier than the other states, at approxi-

mately week 56, then a sharp decrease at

week 77. Models 1 and 2 perform worse

than the näıve model in this time but end

up performing better by week 80.

(b) Arkansas Cases MAPE. The vertical

axis represents MAPE. Models 1 and 2

follow each other very closely, perform-

ing worse than the näıve model from ap-

proximately week 60 all the way to week

80. Models 1 and 2 experienced a steep

increase in MAPE at week 55 and then

trended downward gradually.

(c) Arkansas Deaths MASE. The verti-

cal axis represents MASE. Models 1 and

2 follow each other closely. Models 1 and

2 start to perform worse than the näıve

model at approximately week 69 but end

up performing better than it at approxi-

mately week 83. This state does not expe-

rience a typical bimodal pattern of MASE

as the other states.

(d) Arkansas Deaths MAPE. The verti-

cal axis represents MAPE. Models 1 and

2 follow each other very closely. They per-

form worse than the näıve model from ap-

proximately week 68 to week 83. All mod-

els trend gradually downwards.

Fig. 6  The horizontal axis depicts the number of weeks since data collection began on January 22, 2020, 
for all plots in this figure. The four subfigures discuss the three models for the cases and deaths and the 
MAPE and MASE evaluation metrics for the state of Arkansas. Adapted from [45] and [56]
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Finally, Arkansas, a state with a great deal of rural land and one of the lowest vac-
cination rates in the country, performed differently than other states. As we see in 
Table 5 and Fig. 6, Model 3 remains the best performing model.

All states analyzed exhibit similar behavior in the measures of performance via 
the MAPE and MASE. All models decrease gradually in the MAPE as the time 
series prediction passes through the time horizon. The MAPE for the naïve model 
consistently starts very high but then gradually approaches 0 along with the other 
models. Models 1 and 2 perform worse than the MAPE for the naïve model from 
approximately week 71 to week 84. Most of the states exhibited a bimodal structure 
in the MASE from approximately week 66 to week 84. Approximately week 70 to 
week 77 showed a rapid increase in the MASE across all states. Models for all states 
perform similarly because of the inclusion of both into-state and out-of-state travel. 
Likely, there are some counties that people throughout the country commute to that 
are included in many states, including those that we select in this work. Because 
Model 3 outperforms the naïve model most of the time in the time horizon for all 
states, this model should be considered by epidemiologists. The GNAR models on 
county networks with commuting information prove potentially useful for predicting 
COVID-19 cases and deaths.

6  Conclusion

The coronavirus pandemic has ravaged the world, killing many, and affecting 
the daily lives of all people. Concentrated efforts from all parts of the earth have 
attempted to curb this virus’ spread. From mathematical models to public health pol-
icy decisions, these efforts have brought the world together in an attempt to eradicate 
this virus. In this work, we show that the GNAR model performs very well in predict-
ing COVID-19 cases and deaths throughout the county network in the USA. Using 
the open-source data from common sources, including the USCB and USAFacts, we 
can create a predictive model that could better inform public health officials.

For example, cell phone data is both nearly ubiquitous and surprisingly accurate 
[57]. Companies and organizations have been able to harness the data from com-
muter’s cell phones using their navigation applications in order to better influ-
ence their prediction of traffic flow through an area [57]. This data is almost live, 
since it comes directly from the drivers as they drive along a road. This live traffic 
data could help describe a by-county commuting network. The network could be 
dynamic, changing as more data is obtained. Perhaps analyzing trends over the past 
few weeks in a local area could result in a more accurate and current county com-
muting network structure. In addition, in this paper, we assume that the traffic and 
commuting patterns by county remain the same through the time of the COVID-19 
pandemic as of the USCB compiled this commuting data over a 5-year period from 
2011 to 2015, giving it a static property. In the beginning of the pandemic, because 
of the lock-down in many states, we had much less traffic flows. The effect of less 
traffic flows between counties might be most to Model 1 and Model 2 since Model 
1 and Model 2 put parameters to weight on neighbor traffic flows. However, since 
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Model 3 has less weight on the traffic flows between a county and its neighbor coun-
ties, Model 3 was less affected by the change of traffic flows between counties. If we 
had information on traffic flows between counties during the pandemic, we expect 
that the performances of Model 1 and Model 2 will be improved.

The data sources of this work are delineated by county, which provides data for 
a more localized area. However, one could further subdivide this data into zone 
improvement plan (ZIP) codes in order to obtain an even further refined prediction at 
a lower level. The CDC currently only collects data at the county level; however, with 
future technologies for tracking a disease’s spread, the CDC could subdivide its data 
even further. As of November 2021, there exist 41,692 ZIP codes in the USA [58]. 
Since individuals are freely able to move between their ZIP codes, and since the fre-
quency of moving between ZIP codes is likely higher on average, this subdivision of 
data may provide a great deal of insight into localized trends of movement of people. 
ZIP code analysis may demonstrate a more realistic representation of daily life and 
community interactions due to the relatively smaller distance between nodes.

In this paper we treated all states the same so that we ignored covariates 
c = 1,… ,C in Eq. (2). We might be able to use covariates c = 1,… ,C for informa-
tion of low and high vaccination rates in states and it might increase performances 
of the models using the GNAR model to predict the number of cases.

Finally, one could find any network structure and incorporate it into the GNAR model 
as long as it is geographically delineated the same way as the time series data. Any data 
that describes a flow from one geographic area to another can be formulated into a net-
work structure, which is a key component of a GNAR model. Comparing multiple net-
work structures could provide insight into what is important in the dissemination of a 
disease. With the advent of structure centrality [59], this could be a possibly interesting 
avenue for extending traditional centrality metrics (see, e.g., [34]) in epidemic spreading.

Applying this methodology to other geographic areas or governance divisions 
could also prove useful around the world, not just the USA. Any country’s munici-
palities, provinces, or townships could represent nodes in a network similar to the 
US county structure. Comparing countries of a similar geographic, climatic, and 
demographic makeup to the USA may especially prove insightful. One can also 
compare and contrast the public health policy effects in different geographic areas.
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