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Abstract
An O(n3) heuristic algorithm is described for solving d-city travelling salesman 
problems (TSP) whose cost matrix satisfies the triangularity condition. The algo-
rithm involves as substeps the computation of a shortest spanning tree of the graph 
G defining the TSP and the finding of a minimum cost perfect matching of a certain 
induced subgraph of G. A worst-case analysis of this heuristic shows that the ratio of 
the answer obtained to the optimum TSP solution is strictly less than 3/2. This rep-
resents a 50% reduction over the value 2 which was the previously best known such 
ratio for the performance of other polynomial growth algorithms for the TSP.

1 Introduction

Heuristic algorithms with polynomial rates of growth in the number of variables can 
be used to provide approximate solutions to combinatorial problems. The question 
then arises as to what is the worst possible ratio of the value of the answer obtained 
by the heuristic to the value of the optimum solution. We will denote this worst-case 
ratio by  Rw.

Values of  Rw for the graph-coloring problem have been investigated by Garey and 
Johnson [4] who showed that finding a polynomial growth graph-coloring algorithm 
with  Rw < 2 is just as hard as finding a polynomial algorithm for optimal coloring. 
For the loading (packing) problem [3, 5], Johnson et al. described an algorithm with 
 Rw ≤ 11/9. Rosenkrantz, Stearns, and Lewis [7] investigated a variety of heuristics 
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for the travelling salesman problem. For the best of the algorithms investigated in 
[7],  Rw → 2, as n, the number of cities in the travelling salesman problem (TSP), 
tends to be ∞.

In this paper, we describe a heuristic algorithm with O(n3) growth rate and for 
which  Rw < 3/2 for all n. This represents an improvement of 50% over the previously 
best known value of  Rw for the TSP.

2  The Main Result

Consider the n-city TSP defined on the complete graph G = (X, A) where X is the set 
of vertices and A is the set of links. Let the link cost matrix be [cij] which satisfies 
the triangle inequality.

Let T∗ =
(
X,AT∗

)
 be the shortest spanning tree (SST) of the graph G, and let 

C(T*) be the cost of T*. Let:

where di(T*) is the degree of vertex x∗
i
∈ X with respect to the T*. The cardinal-

ity ||XO(T∗)|| of the set XO(T∗) is always even [1].
Consider now the subgraph < XO(T∗)> induced by the set XO(T∗) of vertices. 

Since ||XO(T∗)|| is even, a perfect matching in <XO(T∗)> always exists. A matching is 
called “perfect” [1] if it contains exactly 1∕2||XO(T∗)|| links. Let M∗

O
=
(
XO(T∗),AM∗

O

)
 

be the minimum-cost perfect matching of <XO(T∗)> and C
(
M∗

O

)
 be its cost.

We can now state the following theorem:

Theorem  1 A Hamiltonian circuit  ΦH  of G can be found with cost 
C
(
ΦH

)
≤ C(T∗) + C

(
M

∗
O

)
<

3

2
C(Φ∗) where C(Φ∗)  is the optimal value of the TSP 

tour Φ∗.

In the proof of Theorem 1, we will make use of the following Lemma.

Lemma 1 For an n-city TSP with n even, we have C(M∗) ≤
1

2
C(Φ∗) , where M* is 

the minimum-cost perfect matching of the graph G defining the TSP and Φ* is the 
optimal TSP tour.

Proof Consider Φ∗ =
(
xi1 , xi2 ,… , xin

)
 . Starting from vertex xi1 and travelling round 

the circuit Φ*, allocate the links traversed in an alternating manner to two sets M1 
and M2. Starting with M1, for example:

XO(T∗) =
{
xi|di(T∗)odd

}

M1 =
{(

xi1 , xi2

)
,
(
xi3 , xi4

)
,… ,

(
xin−1 , xin

)}

and

M2 =
{(

xi2 , xi3

)
,
(
xi4 , xi5

)
,… ,

(
xin , xi1

)}
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M1 and M2 are matchings of G and:

Since M1 and M2 are defined arbitrarily, we can assume C
(
M1

)
≤ C

(
M2

)
 with-

out loss of generality, and so we have:

Hence the Lemma.

Proof of Theorem 1 It is well known [2] that for a graph G.

where Φ∗
p
 is the shortest Hamiltonian path of G. (The last inequality becoming ≤ if 

zero-cost links are allowed.)
The graph Ge =

(
X,AT∗ ∪ AM∗

O

)
—which is a ε partial graph of G—is Eulerian, 

i.e., has all vertices of even degree, since M∗
O
 is a matching of all odd degree ver-

tices of T*. Hence, Ge contains an Eulerian circuit Φe =
(
xi1 , xi2 ,… , xik

)
 . Since Φe 

traverses all the links of Ge it also visits all the vertices x∗
i
∈ X at least once. Let 

C(Φe) be the cost of Φe , i.e.,

If Φ∗
O
 is the TSP solution to the problem defined by the induced subgraph 

< XO(T∗) > , then we have from Lemma 1,C
(
M∗

O

)
≤

1

2
C
(
Φ∗

O

)
 and since 

C
(
Φ∗

O

)
≤ C(Φ∗) we immediately obtain

From expressions (1), (2), and (3), it follows that:

Consider the traversal of Φe starting from xi1 up to the point when a vertex xir is 
reached which has been visited previously — i.e., xir =

[
xi1 ,… , xir−1

]
 . Let xis be the 

first vertex following xir in the sequence of Φe which has not been previously visited 
and consider the circuit Φ1 =

(
xi1 ,… , xir−1 , xin … , xik

)
 derived from Φe by replacing 

the path Prs =
(
xir−1 , xir … , xis−1 , xis

)
 with the single link 

(
xir−1 , xis

)
 . Because of the 

triangularity condition, we have:

C
(
M1

)
+ C

(
M2

)
= C(Φ∗)

C(M∗) ≤ C
(
M1

)
≤

1

2
C(Φ∗)

(1)C(T∗) ≤ C
(
Φ∗

p

)
< C(Φ∗)

(2)C(Φe) = C(T∗) + C
(
M∗

O

)

(3)C
(
M∗

O

)
≤

1

2
C(Φ∗)

(4)C(Φe) <
3

2
C(Φ∗)

cir−1 is
≤

∑

(xi,xj)∈Prs

cij
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where Prs is also used as an unordered set of the links on the path Prs. Hence, we 
have C(Φe) ≥ C

(
Φ1

)
.

In the same way, starting with a traversal of Φ1 a circuit Φ2 can be produced with 
a path of Φ1 replaced by a direct link and C

(
Φ1

)
≥ C

(
Φ2

)
 . Eventually, a Hamilto-

nian circuit ΦH of G will result with the following:

Hence the Theorem.
The algorithm implied by Theorem 1 consists of two parts: the calculation of an 

SST and finding a minimum-cost perfect matching. Several good 0
(
n2
)
 algorithms 

exist for finding the SST of a graph [1]. The best known algorithm for calculating 
minimum matchings is one developed by Lawler [6] and has growth rate 0

(
n3
)
 . The 

overall growth rate of the proposed algorithm is — therefore — 0
(
n3
)
 . (Note that the 

last step of converting Φe to a Hamiltonian circuit ΦH can be done in linear time.)
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C
(
ΦH

)
≤ ... ≤ C

(
Φ1

)
≤ C(Φe) <

3

2
C(Φ∗)

20   Page 4 of 4 Operations Research Forum (2022) 3: 20

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem
	Abstract
	1 Introduction
	2 The Main Result
	References


