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Abstract
The distribution/allocation problem is known as one of the most comprehensive 
strategic decision. In real-world cases, it is impossible to solve a distribution/alloca-
tion problem in traditional ways with acceptable time. Hence researchers develop 
efficient non-traditional techniques for the large-term operation of the whole supply 
chain. These techniques provide near optimal solutions particularly for large-scale 
test problems. This paper presents an integrated supply chain model which is flex-
ible in the delivery path. As the solution methodology, we apply a memetic algo-
rithm with a neighborhood search mechanism and novelty in population presenta-
tion method called “extended random path direct encoding method.” To illustrate 
the performance of the proposed memetic algorithm, LINGO optimization software 
serves as comparison basis for small size problems. In large-size cases that we are 
dealing with in real world, a classical genetic algorithm as the second metaheuris-
tic algorithm is considered to compare the results and show the efficiency of the 
memetic algorithm.

Keywords Integrated logistics network · Flexible path · Memetic algorithm · 
Genetic algorithm

1 Introduction

The distribution/allocation problem is considered as an important strategic decision. If 
the locations of all central facilities are known in advance, but the assignment of flows 
between the set of central facilities and some other set of points are unknown, then 
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the problem becomes a distribution-allocation problem. If the assignment of flows is 
known, but the geographical disposition of the central facilities is unknown, then the 
problem is a pure location-allocation problem. The goal of location-allocation is to 
locate facilities in a way that supplies demand points most efficiently. As the name 
suggests, location-allocation is a twofold problem that simultaneously locates facilities 
and allocates demand points to the facilities.

In many countries, according to the environmental laws, companies are forced to 
equip their facilities in order to make the recovery of used products possible. As an 
example, In the last decade governmental legislation forced companies to collect, 
recover and recycle, e.g., all electronic devices in Europe, Japan, China, and many 
parts of USA and Canada as well as safe disposal of their goods [1]. The impor-
tance of this issue reveals some countries to ratify an annual recovery rate [2]. Also 
there are some pick-up policy for logistics network problems that make this pro-
cedure different for any country [2]. Except environmental damages happened by 
ignoring reverse flow, shortage in resources as the second problem is appeared. As a 
consequence, closed-loop supply chain has become a pressing topic for supply chain 
partners.

Environmental factors are not the only reason that spurs researchers or manu-
facturers to consider closed-loop logistic networks. In fact, the reason that makes 
recovery system attractive for companies is not environmental factors. The reverse 
activities represent an economic added value that can be obtained by processing the 
returned products and capturing the remaining value in the used products. There 
are some research prove the economic impact of adding reverse flow by numbers. 
One of them was focused on the gold obtained from electronic computer waste. The 
results demonstrate one ton of electronic computer waste can produce more gold 
than 17 tons of material extracted from a gold mine [3]. In another research, Xerox 
Europe company considered as a case study and the final results show the take back 
used products strategy resurrect 80 million dollars for the company [4].

By considering reverse distribution, some facilities need to be established such as 
collection/inspection center to collect and inspect the products under expert supervi-
sion as well as disposal center to have a safe disposal for non-recyclable items. Also 
some sections in plants need to be updated to be able for recycling or recovery of 
used products. Therefore, job creation can be considered as the other aspect of a 
closed-loop supply chain network.

According to the above explanation, it is realized that reverse distribution is 
important and need to be investigated in each supply chain network. Most research-
ers in this area, focused on only reverse flows in the network while considering the 
reverse and forward flow at the same time can reveal a better results [5]. Figure 1 
illustrates the considered extended supply chain network. In this study, the reverse 
flow including collection/inspection center as well as disposal center added to the 
traditional network. In the backward flow, used products are collected by collec-
tion center and after inspection, sorting, and disassembly, the recoverable products 
are shipped to the plant for further operation and return to the cycle while scrapped 
products are transferred to disposal center for a safe disposal. It is important to note 
that remanufacturing process can occur in a separated facility or in plants where new 
products are produced. The same idea is considerable for collection and inspection 
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center. It is clear that establishing several facilities at the same location can reduce 
the cost of a supply chain network, in comparison with separated design.

Customer satisfaction creates a positive effect on any organization’s profitability. 
Satisfied customers form the foundation of any successful business as customer sat-
isfaction leads to repeat purchase, brand loyalty, and positive word of mouth. Fast 
and on time delivery of products with a great accuracy plays an important role in 
customer satisfaction. The ability of supply chain to satisfy the customer’s expected 
delivery time is called “supply chain responsiveness” [6, 7]. On the other hand, 
existing an alternative shortest path may reduce transportation cost and accordingly 
the total cost of network.

Some studies optimized the supply chain network by considering both aspects, 
cost efficiency and responsiveness [6, 8]. However, most of these researches limited 
themselves by considering flow between facilities which are consecutive [6, 8, 9]. 
Nevertheless, having flow between facilities which are not consecutive can improve 
the efficiency of supply chain network. This configuration allow us to skip some 
stages and go for shortest path. Although considering flexibility in delivery path can 
increase efficiency of supply chain network, make the problem to be more complex, 
cf. Figure  2 for a sketch of the possible configuration by applying flexible logis-
tics network. By considering additional delivery paths, we provide a full capacitated 
graph between plant to customer.

According to the above description, within this study, we add reverse distribu-
tion through an integrated design to the presented network. This avoids suboptimal 
solution revealed by separated design [5] and increases efficiency of the network by 
sharing number of resources. Also, except normal delivery which is defined from 
any stage to the other one, two additional delivery paths named, direct delivery and 
direct shipment are added to the network to increase the flexibility and performance 

Fig. 1  Extended supply chain network
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of the supply chain network. Direct delivery, connects plants to retailers and also 
distribution centers to customers by skipping distribution centers and retailers 
respectively. Products can ship from plants to customers through direct shipment as 
well. Therefore, in addition we are facing with an integrated forward/reverse logis-
tic network with a full delivery graph between plant to customer. This network is 
defined as a single period, single product and multi stage network. The model pre-
sents an NP-hard problem that is not possible to solve through traditional methods 
in acceptable time, particularly in large size. In this regard, many researchers have 
been developed heuristics and metaheuristics to cope with this NP-hard [6, 9–14]. 
Although as the network presented in this study is not a case-based network, devel-
oping an efficient solution methodology to tackle this NP hard problem is still a crit-
ical need in this area [15].

With in this study, we consider a memetic algorithm with a novelty in chromo-
some representation called “extended random path direct encoding method” and 
local search engine to enhance its search ability for the proposed flexible model and 
optimize the design of the supply chain network [16]. The reasons that we apply the 
extended random path direct encoding method can be summarized as follow:

– To deal with the complexity of different delivery paths.
– To integrate integrated logistics problem into memetic algorithms, using direct 

encoding.
– To reduce size of encoding.
– To decrease computational time.

Our aim is to show the efficiency of the proposed algorithm compared to a clas-
sical genetic algorithm particularly in large-size problems. The rest of this paper is 
organized as follows: The literature review and problems definition are introduced 
in Section  2. In Section  3, the proposed memetic algorithm as the main solution 
methodology is discussed briefly. Section 4 give the problem setting and computa-
tional results and finally, conclusion and suggestion for future work are presented in 
Section 5.

Fig. 2  Possible configuration for the proposed flexible network
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2  Literature Review and Problem Definition

There are some studies regarding the application of memetic algorithm and com-
parison between different metaheuristic algorithms. It should be noted that, many 
researchers applied some algorithms close to memetic algorithm but named them 
differently. Other names such as hybrid genetic algorithm, modified genetic algo-
rithm, adapted genetic algorithm or Genetic local search algorithm in the litera-
ture can be considered as a memetic algorithm.

Pishvaee et al. [6] proposed an integrated design for a logistic network to avoid 
suboptimality may obtain from separated design. Although the model can be for-
mulated into a biobjective mixed integer linear programming, traditional methods 
are not capable to find a solution in acceptable time. The aim of this study is 
minimizing the total cost and maximize the responsiveness of the whole network. 
They applied a multi-objective memetic algorithm as the solution methodology 
to find the set of non-dominated solution. A new dynamic search strategy using 
three different local searchs is proposed in this study. To verify the performance 
of the memetic algorithm, the pareto optimal solution obtained by the proposed 
MA is compared by a multi-objective genetic algorithm and LINGO optimization 
software. The numerical results obtained form error percent proved that the pro-
posed memetic algorithm outperformed than the considered genetic algorithm.

Finding an optimal design of supply chain is discussed by Yun et al. [17] for a 
multistage network. In this study a hybrid genetic algorithm (hGA) with an adap-
tive local search engine based on hill climbing method is applied. Two meas-
ures of performance is considered in this research. First is focused on the average 
CUT time and second the time that all tasks of the longest route are completely 
finished. To show the efficiency of the proposed hGA, the proposed algorithm 
is compared to four different algorithms such as enumeration method, GA and 
another hGA with a local search technique and without a local search scheme. 
Using numerical results, they proved the proposed hGA works better than other 
mentioned algorithms.

An efficient memetic algorithm combined with a local search method pre-
sented by Moghaddam et al. [18] to solve a flexible flow line scheduling consist 
of processor blocking. In this study a new chromosome representation and opera-
tors are proposed for the solution methodology . The efficiency of the proposed 
memetic algorithm is versified based on a comparison to a classical genetic algo-
rithm under the same condition through numerical results. The obtained results 
showed that the classical GA can not be considered as an efficient method for this 
kind of problem while the proposed memetic algorithm showed a good efficiency 
and capability. A comparison regarding convergence rate between the memetic 
and genetic algorithm is adapted as well. The results reveal a very sharp conver-
gence of the MA compared by the GA.

Lin et al. [19] presented a memetic algorithm for a path planning and forma-
tion control of swarm robots. The goal was obtaining the best configuration of 
robot swarm when the evolution reaches a stability state. A non-random initial 
population is applied for the proposed algorithm. They compared the memetic 
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algorithm to a traditional genetic algorithm through numerical results. They 
observed the memetic algorithm works better in comparison with the traditional 
genetic algorithm due to the local search scheme for searching optimal solution. 
Also they showed the high efficiency of the proposed algorithm for large swarms.

A mixed integer linear programming is introduced by Lee and Dong [5]. The 
model considered an integrated design of forward and reverse network for end-of-
lease computer products. As the solution methodology the authors presented a Tabu 
search-based memetic algorithm.

Another integrated forward/reverse logistics network is developed by Ko and 
Evans [20]. They formulated the model into a mixed integer nonlinear programming. 
They introduced a 3-PLS service providers to design the proposed network. A genetic 
algorithms is considered to cope with complexity of the proposed NP hard problem.

Wang et al. [21] established profit distribution plans using the improved Shapley 
value model. Optimal sequential coalitions were selected based on a strictly mono-
tonic path, cost reduction model, and best strategy of sequential coalition selection 
in cooperative game theory. Following an empirical study in Chongqing, China, they 
suggested that the proposed approach outperforms other algorithms, and the best 
sequential coalition can be selected and adjusted to increase the negotiation power 
for network optimization of logistics distribution.

Wang et  al.[22] optimized a location-routing problem by using eco-packages, 
in a state-space-time network. Their optimization involves solving a two-echelon 
location routing problem and the pickup and delivery problem with time windows. 
They showed that the 3D sharing state-space-time (SST) network representation 
in the first echelon annotatively captured the eco-package route sequence and state 
transition constraints over the shortest path in the pickup and delivery at any given 
moment of the transport phase.

In another study, Wang et al. [23] proposed and presented a collaborative two-echelon 
multicenter vehicle routing problem based on a state-space-time (CTMCVRP-SST) net-
work to facilitate collaboration and resource sharing in a multiperiod state-space-time 
(SST) logistics network. A three-component solution framework is proposed to solve 
CTMCVRP-SST: a) A biobjective linear programming model, b) an integrated algo-
rithm consisting of SST-based dynamic programming (DP), improved K-means cluster-
ing and improved non-dominated sorting genetic algorithm-II, c) a cost gap allocation 
model. Results showed that the proposed algorithm outperforms existing algorithms in 
minimizing the total cost with all other constraints being the same.

Fu et  al. [24] proposed memetic algorithm MA-TOSCA to help WSNs resist 
cascading failures via topology optimization, where they designed the local search 
operator based on a new network balancing metric “sink-oriented betweenness 
entropy”. Following their simulations, they have shown that the proposed model 
can properly characterize the cascading process of WSNs and MA-TOSCA can find 
more robust topology with less time compared to existing algorithms.

Fu et  al. [25] developed a new opportunistic network framework WAON (WSN-
Assisted Opportunistic Network). They proposed a forwarding mechanism NetSpray 
for WAON, which supports four forwarding operations (mobile-to-mobile, static-to-
mobile, mobile-to-static, and static-to-static). Their simulation and practical experi-
ments showed that NetSpray can fully exploit the message-synchronization capability 
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of WAON, and had better performance than existing forwarding mechanisms in disas-
ter scenarios.

In another study Fu et al. [26] designed a routing-based cascading model of WSNs 
and presented a routing recovery mechanism. In the proposed model, the load of a 
sensor node was defined as the number of data packets was limited by its congestion 
state. Extensive simulations have shown that the cascading invulnerability of WSNs 
is positively related to the overload-tolerance coefficient and inversely related to the 
congestion-tolerance coefficient, and the time required for overloaded nodes to reboot 
should be as short as possible.

Grac [27] compared memetic algorithm and genetic algorithm in order to investi-
gate the performance for the cryptanalysis on simplified data encryption standard 
problems(SDES). The various methods and experiments were studied, and it was con-
cluded that the memetic algorithm performed better than the genetic algorithms for 
such type of NP-Hard combinatorial problem.

Yadegari et al. [28] developed a memetic algorithm with an extended priority-based 
encoding/decoding method based on a flexible combinatorial neighborhood search 
mechanism. As discrete solution representation applied in this study is time consum-
ing, they applied a technique to convert the discrete representation to a continuous one 
to deal with. Moreover a multi-start simulation annealing is considered to speed up the 
proposed algorithm.

Now we describe the proposed supply chain network mathematically. We assume 
the number of possible open facilities including suppliers, plants, distribution centers, 
retailers, customers, collection/inspection centers and disposal centers as well as their 
maximum capacities are known. The requested demand, returned rate preturn

j
 and dis-

posal rate (1 − p
disposal

j
) are also known. The model is aim to minimize the total cost 

including transportation cost and operation cost while the subset of facilities to be 
opened are chosen to design the optimum configuration of the supply chain and satisfy 
demand requested by customers. In this regard the problem is formulated by applying 
the following mixed integer linear programming (MILP) model while we consider a 
connected graph G = (V ,E) where V = {1, 2, ..., n} is a finite set of nodes and 
E = {(i, j)|i, j ∈ V} is a finite set of edges which represent connection between the 
nodes.

Each node i ∈ V  has an associated number denotes by ci representing the fixed 
cost of considered nodes. Also each edge (i, j) ∈ E is connected with a number, 
denotes by cij , defines the unit transportation cost between the interested nodes. Two 
decision variables yi ∈ {0, 1} and xij ∈ ℕ0 represent whether a stage i ∈ V  is used 
and which quantity is shipped between node i and j. Some conditions are considered 
and presented in [16] to adapt problem 1. We would like to note that the set of nodes 

(1)

min
xij,yi

∑
(i,j)∈E

cijxij +
∑
i∈V

ciyi

s.t.
∑
(i,j)∈E

aixij ⩽ biyi

xij ≥ 0, yi ∈ {0, 1}
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V  in this study are given by the set of suppliers S , plants P , distribution centers Dc , 
retailers R , customers C , collection/inspection centers Co and disposal centers Di . 
The constraints for the presented model can be categorized into three parts.
1. capacity constraints in each node:

2. The in-flow and out-flow in each node which must be identical.

3. The demand of customers which must be satisfied.

3  Solution Approach

Recently, evolutionary algorithms (EAs) have been successfully applied to solve 
hard optimization problems [29–33]. EAs are population-based global search meth-
ods based on the mechanism of natural selection in biological systems. They are 
able to consider many points in a search space simultaneously and multiple searches 
in different area of fitness lans scape can be conducted at the same time, while con-
ventional search methods use a single point. This ability, provide a high chance of 
global convergence and make EAs more powerful than traditional methods.

Genetic algorithm (GA) is recognized as the most well-known class of evo-
lutionary algorithms. Genetic algorithms are stochastic algorithms inspired by 
Darwin’s theory of evolution. Holland, in 1975, introduced a genetic algorithm 
to cope with combinatorial problems for the first time, and since then they have 
rapidly been implemented as one of the most powerful and efficient stochastic 
solution search procedures for solving several network design problems [34, 35]. 
Genetic algorithms are not dealing with decision variables and they do not need 
any domain knowledge of the problem. They use a structure to employ genetic 
information in order to find new search directions. They are based on coding and 
objective function for evaluating fitness. A population of feasible solutions is 
generated. Typically, these solutions are in the form of a string or chromosome. A 
selection strategy is applied to choose parents from the population. Genetic algo-
rithms are implemented through genetic operators. The main genetic operators 

(2)
∑
(i,j)∈E

xij ≤

{
bi ∀i ∈ S

biyi ∀i ∈ V ⧵ {S ∪ C}.

(3)
�

(j,k)∈E

xjk =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∑
(i,j)∈E

xij ∀j ∈ V ⧵ {C ∪ Co}

preturn
j

∑
(i,j)∈E

xij ∀j ∈ C

p
disposal

j

∑
(i,j)∈Co×Di

xij ∀j ∈ Co

(1 − p
disposal

j
)

∑
(i,j)∈Co×P

xij ∀j ∈ Co

(4)
∑
(i,j)∈E

xij = bj ∀j ∈ C
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observed in nature are reproduction, cross-over, and mutation [35, 36]. Offspring 
solutions are created with some of the characteristics of each parent based on 
these genetic operators. These operators (mutation and cross over) are named as 
the input variables of GA. It should also be noted that the crossover operator is 
usually applied as the main Genetic operator. It has the main role in the perfor-
mance of a genetic algorithm, while a mutation operator is used as a background 
operator. Without cross over, all operator is used as a background operator. With-
out cross-over, all we have is local mutation. This means that, changes will hap-
pen slowly, and it will be very hard to get the population out of a local optimum. 
We can make a pretty huge jump from either of the parents by applying cross 
over. Mutation operators concentrate on the surroundings of a solution and make 
random small changes in chromosomes. It is not applied to make a big move in an 
unknown region but to move slowly [37].

Applying a population of solutions in GA allows for searching in multiple direc-
tions. But lack of enough intensification spurs researchers to another alternative with 
stronger search operators. According to [38, 39], memetic algorithms (MAs) have 
the benefits of GAs and also an additional local search engine to improve intensi-
fication. Recently, memetic algorithms (MAs) obtained increasing attention from 
the evolutionary computation community (ECC) and has been shown to be promis-
ing and effective with considerable success for solving difficult optimization prob-
lems in numerous applications domains [40–42]. Therefore, memetic algorithm has 
become a popular approach for various engineering optimization problem [42–45].

The utilized algorithm in this study is designed to establish the optimum link between 
the opened facilities and aims to minimize the cost while satisfied demand. Combining 
the aforementioned components, the flow of the proposed algorithm is as follows:

Step 1: (Data reading) Set parameters and read in the data of a given instance.
Step 2: (Initialization) Create an initial random population by the extended 
random path direct encoding method (defined in [16], Figs.  3,  4  and  5,).  
Repeat this process according to the population size denote by N. Each indi-

Fig. 3  Representation of extended random path-based direct encoding method

Fig. 4  Delivery path for a sample of gene unit
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vidual in this population identify a supply chain configuration for the presented 
problem.
Step 3: (Evaluation) Calculate the fitness value of each individual in the popu-
lation using the objective functions presented in 1.
Step 4: (Selection) Apply selection operator using roulette wheel selection.
Step 5: (Cross-over) For each selected parent, apply two-point cross-over 
operation to create two offsprings by respecting to the cross-over probability.
Step 6: (Merging, sorting) The new population obtained by cross over operator is 
merged to the initial population. The fitness values of all new individuals are cal-
culated and the new merged population is sorted according to their fitness value.
Step 7: (Segregation) The best N individuals are reserved as the initial popula-
tion for the next generation.
Step 8: (local search) The first individual which is the best as well is selected 
for local search operator (defined in [16]). If an improvement in fitness value 
is occurred, the new individual is exchanged by the current one, otherwise the 
previous one is kept as a member of population for the next generation.

Fig. 5  Presentation of the second segment of the extended random path-based direct encoding
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Step 9: (Termination) The algorithm runs until one of the stopping conditions is 
satisfied. The first stopping criteria is total number of iterations which controlled 
by the parameter “maxit”. In the second criterion, a parameter as maximum num-
ber of iterations without improvement is defined. If the pre-specified stopping 
conditions are not satisfied, the algorithm needs to go back to Step 4.

Also, we would like to note that a complete explanation regarding above items 
has been presented in [16]. In this study, a memetic algorithm with a local search 
engine and a new chromosome representation is considered. Evaluation of the per-
formance of our memetic algorithm is divided to two parts in order to solve the test 
instances. The first one is applied for small size problems using commercial pack-
age (LINGO optimization software), and the second is employing a classical genetic 
algorithm as the second meta-heuristic algorithm. The procedure of the classical 
genetic algorithm is displayed through a flowchart in Figure 6 to clearly show the 
overall steps involved in the algorithms. To have a comparison between these two, 
a same structure is considered for both algorithms. The only different is the local 
search engine is replaced by mutation operator in the proposed memetic algorithm. 
In this regard in following, we consider some explanation regarding the mutation 
operator applied for the classical genetic algorithm.

The mutation operator can create offspring on individuals and aim to vary the 
solution to avoid GA lead to Local optimum. Mutation operator is repeated accord-
ing to number of mutation rate. For applying this operator, single parent is selected 
and a random change is happened on the selected parent by modifying one or more 
gene values. As this operator causes a very small change, a very low rate is used 
most of the time [46].

For the proposed genetic algorithm, random mutation operator is used which sim-
ply select a gene at random and replace it with a random number from a feasible 
range. This method is selected according to the characteristic of the chromosomes.

4  Test Problems and Computational Results

Within this section, 13 numerical examples with different sizes are carried out to 
show the performance of the proposed MA. Since the framework of this research is 
not exactly the same with the previous studies, there is no benchmark model avail-
able for the proposed model in the area of closed-loop supply chain. Therefore, the 
size of the presented numerical examples are selected randomly using uniform dis-
tribution as shown in Table 1. Performance of the proposed MA is proved in two 
levels. In the first level, we employed LINGO17 to provide optimal results for small 
size problems. In the second level, a comparison between the classical GA and the 
proposed MA is considered under the same condition. Also, the structure of the GA 
applied in this study is the same by the proposed MA; however, the local search 
mechanism is replaced by the classical mutation operator.

The first seven test problems are small sized and the number of decisions vari-
ables are 98, 128, 209, 234, 468, 1006, and 1780, respectively, and the remaining 
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Fig. 6  The flow diagram of the 
classical GA Start
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problems are large sized. Other parameters are generated randomly using uni-
form distributions according to the information presented in Table 2. To test the 
robustness of the method each test problem has been implemented 10 times on 
a personal computer with Intelr CoreTM i5 2.40 GHz with 12 GB RAM. The 

Table 1  Settings of test 
problems

Problem S P Di R C Co Di

1 2 3 3 4 3 2 1
2 2 2 5 8 2 2 1
3 2 4 6 10 2 2 1
4 2 3 8 9 3 3 2
5 2 4 10 16 4 4 2
6 3 6 15 24 6 6 2
7 4 8 20 32 8 8 4
8 6 12 30 48 12 12 6
9 6 14 32 54 14 14 6
10 8 16 40 64 16 16 8
11 10 18 36 80 18 18 10
12 10 20 40 84 20 20 10
13 12 24 40 96 24 24 12

Table 2  Parameters values used 
in the test problems

Parameters Range

Capacity of facilities
bj, j ∈ S Uniform (200,1100)
bj, j ∈ P Uniform (100,1000)
bj, j ∈ Dc Uniform (50,900)
bj, j ∈ R Uniform (50,850)
bj, j ∈ D Uniform (100,500)
bj, j ∈ Co Uniform (20,100)
bj, j ∈ Di Uniform (20,100)
Returned and disposal rate
preturn
j

10 %

p
disposal

j
50 %

Transportation cost
cij Uniform (1,3)
Operation cost
cj, j ∈ P Uniform (100,2500)
cj, j ∈ Dc Uniform (100,2100)
cj, j ∈ R Uniform (100,400)
cj, j ∈ Co Uniform (100,500)
cj, j ∈ Di Uniform (50,400)
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proposed MA and GA were developed in the MATLAB 2016 on the above men-
tioned system.

The test problems are solved by the proposed MA under a constant population 
size of 100 while three different population sizes: 100, 200, and 300 are con-
sidered for the classical GA. Regarding stopping condition, we imposed a maxi-
mum iteration number of 200 as well as a maximum number of iteration without 
improvement 6, 8, 10, 12, 20, 25, and 30 for our small size problems, respec-
tively. For the large-size problems, we increased the latter bound by 5. Also, to 
standardize all test problems we set the number of local search iterations to be 

Table 3  Results obtained by LINGO

Problem Problem size number of involved 
facilities

Solution Ave time (s)

1 2 ⋅ 3 ⋅ 3 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 18 1920 0.05
2 2 ⋅ 2 ⋅ 5 ⋅ 8 ⋅ 2 ⋅ 2 ⋅ 1 22 2905 0.1
3 2 ⋅ 4 ⋅ 6 ⋅ 10 ⋅ 2 ⋅ 2 ⋅ 1 27 2345 0.12
4 2 ⋅ 3 ⋅ 8 ⋅ 9 ⋅ 3 ⋅ 3 ⋅ 2 30 2335 0.12
5 2 ⋅ 4 ⋅ 10 ⋅ 16 ⋅ 4 ⋅ 4 ⋅ 2 42 1160 0.14
6 3 ⋅ 6 ⋅ 15 ⋅ 24 ⋅ 6 ⋅ 6 ⋅ 2 62 4100 0.16
7 4 ⋅ 8 ⋅ 20 ⋅ 32 ⋅ 8 ⋅ 8 ⋅ 4 84 11365 0.17
8 6 ⋅ 12 ⋅ 30 ⋅ 48 ⋅ 12 ⋅ 12 ⋅ 6 126 -
9 6 ⋅ 14 ⋅ 32 ⋅ 54 ⋅ 14 ⋅ 14 ⋅ 6 140 -
10 8 ⋅ 16 ⋅ 40 ⋅ 64 ⋅ 16 ⋅ 16 ⋅ 8 168 -
11 10 ⋅ 18 ⋅ 36 ⋅ 80 ⋅ 18 ⋅ 18 ⋅ 10 190 -
12 10 ⋅ 20 ⋅ 40 ⋅ 84 ⋅ 20 ⋅ 20 ⋅ 10 204 -
13 12 ⋅ 24 ⋅ 40 ⋅ 96 ⋅ 24 ⋅ 24 ⋅ 12 232 -

Table 4  Results for the 
proposed MA Algorithm with 
n = 100 and crrate = 0.4 over 
10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 4.06
2 2905 2905 2905 5.11
3 2345 2405 2351 10.34
4 2335 2535 2355 32.7
5 1160 1340 1185 35.05
6 4100 4600 4222 97.6
7 11365 12095 11814 261.5
8 16588 18189 17300.5 2070
9 12358 15133 13330.6 2633.3
10 21585 26332 23457.8 3970
11 22056 23088 22400 10200
12 27388 29171 27982.3 14666.6
13 29039 31607 29982.3 26333.3
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equal to the number of retailers for each test problem. Therefore the local search 
iteration number will be proper with the size of the test problems.

To evaluate the performance of the proposed MA and GA, LINGO17 is 
adapted to solve the optimization problems. Obtained results are presented 
in Table  3. Although LINGO provides optimal results for small size problems 
quickly, Table 3 indicates that LINGO is inappropriate for solving the large-size 
problems, and it is run out of memory.

According to the results presented in Table 4, for the test problem No. 1 and 2, 
as the equality of Min, Max and Average cost shows, the proposed MA is able to 
find the optimal solution for all 10 runs. For test problems No. 3 to 7, the value 
of Min cost indicates that the MA is capable to reach optimal solution. Therefore, 
we conclude that the proposed MA is able to provide good solutions for the small 
size problems, which allows us to trust the algorithm for large-size problems as 
well. The results obtained by the classical GA with three different sizes are pre-
sented in Table 5 to 7.

To indicate the trade-offs between the proposed MA and the classical GA, four 
comparison criteria are considered. First the relative gap between the mean of 
the objective function value’s associated with the MA and the optimal solution 
obtained by LINGO optimization software (i.e., OFV − GapMA−LIN ). Second, the 
same procedure for the classical GA (i.e., OFV − GapGA−LIN ). Third, the rela-
tive between the mean of the objectives value associated with the MA and GA 
(i.e., OFV − GapGA−MA ) and finally the relative gap between the mean of the CPU 
time’s associated with the MA and GA (i.e., CT − GapMA−GA ). The comparison is 
focused on two aspects: objectives function value and CPU time.

(5)OFV − GAPMA−LIN =
MAanswer − LINanswer

LINanswer

Table 5  Results for GA 
Algorithm with n = 100 and 
crrate = 0.4 over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 1.75
2 2905 2905 2905 2
3 2345 2405 2369 3.1
4 2335 2535 2415 7.59
5 1160 1530 1225 10.2
6 4190 4720 4350 20.2
7 11805 12895 12292.3 50.1
8 18324 21974 19529.6 392
9 15430 16059 15706 583.3
10 25538 31389 28033.2 828
11 25488 27574 26660 1003.3
12 31746 34649 33681.33 1983.3
13 34103 43757 37667.2 2000
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Table  4 to 7 are demonstrated a comparison between the proposed MA 
and the classical GA. In order to show the performance of the proposed MA, 

(6)OFV − GAPGA−LIN =
GAanswer − LINanswer

LINanswer

(7)OFV − GAPGA−MA =
GAanswer −MAanswer

MAanswer

(8)CT − GAPMA−GA =
CTMA

CTGA

Table 6  Results for GA 
Algorithm with n = 200 and 
crrate = 0.4 over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 2.5
2 2905 2905 2905 3.2
3 2345 2405 2363 6.1
4 2335 2535 2395 13.36
5 1160 1360 1194 18.9
6 4100 4720 4279 42.3
7 11775 12425 12071 110.5
8 16956 18659 17742.5 744.5
9 13444 15321 14259 1126.6
10 22399 27525 25597.4 1507
11 25275 27503 26038 2000
12 30985 34602 32486 3183.3
13 33596 37277 35051.2 4010

Table 7  Results for GA 
Algorithm with n = 300 and 
crrate = 0.4 over 10 runs

Test problem Min cost Max cost Ave cost Ave time (s)

1 1920 1920 1920 4
2 2905 2905 2905 4.4
3 2345 2405 2357 9.5
4 2335 2535 2375 26.1
5 1160 1340 1192 27.4
6 4100 4720 4239 84.1
7 11475 12315 11933 203.3
8 16588 18625 17410 1333
9 13166 14293 13885 2016.6
10 21686 26396 24471.6 2590
11 24827 25544 25081.3 3700
12 30142 31871 31154 6456.2
13 33006 35807 34807 8410
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objective function value gap is calculated by formula (1) based on the optimal solu-
tion obtained by LINGO optimization software and average cost computed by the 
MA. In a similar way the objective function gap is computed by formula (2) for 
the GA. By assessing the results presented in Table 8, we can observe the average 
OFV − GapGA−LIN for the first 7 test problems which are small sized is 3.5 percent 
which is almost triple compared with the result reported by the MA (i.e., 1.4) (under 
the same population size of 100 for both algorithm). By increasing the population 
size to 200 and 300 this number decreased to 3.2 and 2.8, respectively.

From another point of view, as it is bold in Table 5, although the classical GA is 
able to find the optimal solution in each run for test problem No. 1 and 2 and reach 
the optimal solutions for test problem No. 3 and 4 during 10 runs, is not able to 
find the optimal solution for test problem number 6 and 7 which our proposed MA 
is able to find (Table 4). By increasing the population size to 200, the GA can find 
optimal solution for test problem number 6 but the problem is still remain for test 
problem number 7 even by increasing the population size to 300 (Table 6 and 7). 
But as shown, the Min cost for test problem No. 7 dropped from 11775 to 11475 
by increasing population size from 200 to 300 and for average cost, dropped from 
12071 to 11933 which show progress in result. Also for large-sized test problems, 
we can see improvement in Min, Max, and average cost by increasing population 
size.

A similar comparison for OFV − Gap is provided in Figure 7 between the pro-
posed Ma and the classical GA based on the LINGO optimization software listed 

Fig. 7  Comparison of results from LINGO and the proposed MA and GA

Page 17 of 24    47Operations Research Forum (2021) 2: 47



1 3

in Table 8. Except test problem No.1 and 2 which are too small size problems the 
proposed MA present a good quality solution in comparison with the GA. When the 
MA and GA have the same size of 100, the OFV − Gap of the GA is always equal 
or higher than MA. By increasing population size to 200 and 300 an improvement 
in the GA is observed, however, they are not really competitable with the results 
obtained by the proposed MA and just slightly improve the results of the GA. We 
need to mention that in this study we kept the population size of the MA the same 
for all runs. Undoubtedly, higher population size for the MA let the algorithm to 
provide search mechanism stronger and find better results.

The results in Table 4 and 5 obtained based on the equal population size of 100 
for the MA and GA. The average OFV − GapGA−MA presented in Table 9 obtained 
through the mentioned condition calculated by formula (3) is 9.8% , which shows 

Table 8  Comparison of results from LINGO and the proposed MA and GA

OFV − GAP

MA − LINGO GA − LINGO

Test problem popsize = 100 popsize = 100 popsize = 200 popsize = 300

1 0 0 0 0
2 0 0 0 0
3 0.0025 0.0102 0.0076 0.0051
4 0.0085 0.0342 0.0256 0.0171
5 0.021 0.056 0.052 0.043
6 0.0297 0.0658 0.063 0.06
7 0.0395 0.0815 0.077 0.076
average (%) 1.4 3.5 3.2 2.8

Table 9  Comparison of 
objective function value 
between the MA and GA

OFV − GAP(GA−MA)

Test problem popsize = 100 popsize = 200 popsize = 300

1 0 0 0
2 0 0 0
3 0.007 0.005 0.002
4 0.025 0.016 0.008
5 0.033 0.03 0.02
6 0.035 0.032 0.03
7 0.04 0.036 0.035
8 0.12 0.051 0.038
9 0.17 0.069 0.041
10 0.19 0.091 0.043
11 0.2 0.16 0.11
12 0.2 0.16 0.11
13 0.256 0.169 0.160
average (%) 9.8 6.3 4.6
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a noticeable difference in the objective function value between these two algo-
rithms. To improve the performance of the GA, population size is increased to 
200. According to the results of the Table  9 and 10, this change causes the aver-
age OFV − GapGA−MA to be decreased to 6.3% while the average CT − GapMA−GA 
calculated by formula (4) was almost doubled (Table 10) but still a significant gap 
can be seen between the CT − Gap of the MA and GA. To have more improvement, 
the population size of the GA is increased up to 300. The results show the average 
OFV − GapGA−MA is reduced to 4.6 but the average CT − GapMA−GA was again dou-
bled (Table 10). Also from the Table 10 we realized our proposed MA needs longer 
computation time compare by the GA when they both run under the same popula-
tion size of 100. But as we are dealing with strategic problem in this study, the qual-
ity of solution has priority than run time. Therefore, although it is obvious that GA 
is much better than the proposed MA in run time, it fails to find good solutions for 
large-sized problems. Since the size of real case studies are large, the proposed MA 
is more sufficient.

A same comparison for OFV − Gap is shown in Figure 8 between the proposed 
Ma and the classical GA with three different population sizes, provided in Table 9. 
Although increasing in population size made a good improvement in the perfor-
mance of the GA, do not show the GA as a compatible algorithm to the proposed 
MA.

From another aspect, Figure 9 demonstrates an example of the proposed MA and 
GA convergence during 100 iteration related to problem 7. This figure reveals that 
the convergence of the MA is very sharp in comparison with the GA. It means the 
MA can easily reach to the good area in search space and do a good search and 
improve the results and need less iterations to find better solutions compare by the 
GA. The proposed MA found the optimal solution after 70 iteration while the GA 

Table 10  Comparison of CPU 
time between the MA and GA

CT − GAP(MA−GA)

Test problem popsize = 100 popsize = 200 popsize = 300

1 2.32 1.62 1.015
2 2.555 1.59 1.16
3 3.33 1.69 1.08
4 4.3 2.44 1.25
5 3.43 1.854 1.27
6 4.83 2.30 1.16
7 5.219 2.36 1.28
8 5.28 2.78 1.55
9 4.51 2.33 1.30
10 4.79 2.63 1.532
11 10.1 5.1 2.756
12 7.3 4.6 2.27
13 13.16 6.5 3.13
average 5.47 2.9 1.5
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could not find the optimal solution in 100 iteration even by increasing population 
size to 300.

General speaking, the obtained results prove that the GA cannot find an appropri-
ate near optimal solution in large-size problems for the proposed flexible integrated 
forward/reverse logistics network without enriching the algorithm with a power-
ful local search engine. For the presented network with a complex nature, lack of 
intensification of the classical GA prevent the algorithm to find a good solution. We 
showed that the proposed MA algorithm is able to efficiently find a good solution for 
small and large-size problems.

Fig. 8  Comparison between the proposed MA and classical GA

Fig. 9  Comparison of the convergence between the proposed MA and classical
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5  Conclusions and Future Studies

We focused on a comprehensive mixed integer linear programming formulation for 
a seven stages closed-loop network design problem. We applied the extended ran-
dom path direct encoding method-based memetic algorithm, which was developed 
for a full delivery graph and a combined forward/reverse logistics design to decrease 
delivery time and avoid suboptimal solutions, respectively. The aim of this work is 
to minimize total cost, which we addressed as allocation problem to find the opti-
mal number and capacity for any facility as well as the optimal transportation flow 
between facilities. Since the basic problem is NP-hard, the combination with flex-
ibility in delivery path makes the search space of the problem much larger and more 
complex and NP-hard as well. Because existing methods are unable to solve this 
problem, we proposed a MA approach to compute a near optimal solution for large-
size problems. Within this study, we treat several numerical examples to verified 
correctness of the proposed method as well as confirm the effectiveness of that using 
a commercial package and a classical GA. On the other hand we applied the com-
mercial solver, to show the performance of the classical GA. Considering the scale 
of the test problems, the results display that the proposed memetic algorithm can 
effectively detect solutions that are close to optimal. Also the OFV − Gap between 
the GA and MA is significantly large which shows the efficiency and capability of 
the proposed MA.

Also, it was observed that the evaluation speed in the MA is faster while in GA is 
slow, even by increasing population size. Increasing population size does not show a 
significant improvement in the results obtained by the GA, while the computational 
time is almost double from 100 to 200 and from 200 to 300. In contrast, the pro-
posed MA needs more computational time than the GA and can be considered as a 
time consuming algorithm.

At the end, the results confirm that the classical GA cannot obtain a good solu-
tion without applying a powerful local search engine, because of a complex nature 
of the proposed flexible integrated forward/reverse logistics network while our MA 
approach produce high-quality solution. Therefore we believe the presented method 
will be an efficient method to solve this kind of multi-stage logistics network design 
problems.

Apart from costs aspect considered here, other aims such as responsiveness and 
robustness can be considered in designing integrated forward/reverse logistics net-
work that needs updating the algorithm to be capable to solve multi-objective mod-
els. Moreover, to be close to the real world application, multi-product multi-capacity 
and multi-period networks with uncertainty as well as considering inventory can be 
employed.
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